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Abstract— In this paper, we reformulate the fuzzy transform
of higher degree (Fm-transform) proposed originally for an
approximation of continuous functions to the discrete case. We
introduce two types of Fm-transform which components are
defined using polynomials in the first case and using specific
values of these polynomials in the second case. We provide an
analysis of basic properties of Fm-transform.

I. INTRODUCTION

FFUZZY TRANSFORM is a special soft computing
technique proposed by Perfilieva in [1] (see also [2])

that has many applications in various fields, for example
in data analysis, image processing, approximate solution of
differential equations, time series analysis, non-parametric
regression, and elsewhere (for details, we refer to [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13]). Recall that the
core of fuzzy transform (F-transform) consists in partitioning
of a real interval using fuzzy sets.

The F-transform has two phases: direct and inverse. The
direct F-transform transforms a bounded real function f to a
finite vector of real numbers (components of F -transform).
The inverse F-transform sends the latter vector back. The
result of the inverse F-transform is a function f̂ that approx-
imates f .

The original definition of F -transform computes the com-
ponents using the weighted average which is a simple con-
sequence of minimizing the expression

||f(x)− c||Ak

over all real constants c, where || · ||Ak
is a norm intro-

duced in a specific space. Therefore, it was not surprising
that a generalization of F -transform towards higher degree
polynomials (c is a polynomial of zero degree) has appeared
relatively early in [14]. Further development including two
dimensional case and applications can be found in [15],
[16],[17]. In these papers, the authors were interested in
the approximation of continuous function using polynomials
keeping the same idea as in the original F -transform. Note
that all constructions were done in L2 space and a need to
deal with discrete functions was satisfied using not precisely
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introduced formulas obtained using a discretization of the
continues counterparts. The lack of a precise formulation of
F -transform of higher degree for discrete functions motivates
us to write this contribution that should serve as a starting
point for a deeper analysis including statistical one.

For the simplicity, we restrict our development of dis-
crete Fm-transform to so-called generalized uniform fuzzy
partitions, nevertheless, one could simply reformulate the
definitions and some statements assuming also non-uniform
fuzzy partitions.

The structure of this paper is as follows: Section II in-
troduces the concept of generalized uniform fuzzy partition.
Section III is devoted to the direct Fm-transform including
an analysis of basic properties. The inverse Fm-transform
is introduced and some of their properties are derived and
discussed in Section IV. Section V concludes the paper.

II. GENERALIZED UNIFORM FUZZY PARTITION

Let Z and R denote the set of integers and reals, respec-
tively. It is well-known that a uniform fuzzy partition can
be defined using a generating function K which may be
modified by a parameter h specifying the required bandwidth.
Each basic function of the uniform fuzzy partition is then
obtained by a shift of the modified generating function K,
where the uniformity for all shifts is supposed. In this paper,
the generating function is defined as follows.

Definition 1: A function K : R → [0, 1] is said to be
a generating function if K is an even Lebesgue integrable
function (fuzzy set) which is non-increasing in [0,∞) and

K(x)

{
> 0, if x ∈ (−1, 1);
= 0, otherwise.

(1)

A generating function K is said to be normal if K(0) = 1.
Remark 1: Let us stress that our definition of generating

function does not suppose its normality, i.e., K(0) ∈ (0, 1]
in general. Moreover, the continuity of generating function
is here naturally replaced by its integrability (cf., [18]).

Example 2 (Triangular generating function): A triangu-
lar shaped generating function is a function KT : R→ [0, 1]
defined by

KT (x) = max(1− |x|, 0) (2)

for any x ∈ R.
Example 3 (Raised cosine generating function): A raised

cosine generating function is a function KC : R → [0, 1]
defined by

KC(x) =

{
1
2 (1 + cos(πx)), −1 ≤ x ≤ 1;

0, otherwise.
(3)
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for any x ∈ R.

In [19] (see also [20],[21]), a generalization leading to
denser (uniform) fuzzy partitions of real intervals with more
than two overlapping basic functions has been proposed. In
[22], we suggested the following definition of uniform fuzzy
partitions of real line (cf., [23]) that generalizes all recent
approaches to uniformly defined fuzzy partitions used for
fuzzy transform.

Definition 2: Let K be a generating function, h and r be
positive real numbers and x0 ∈ R. A system of fuzzy sets
{Ak | k ∈ Z} defined by

Ak(x) = K

(
x− c0 − k r

h

)
(4)

for any k ∈ Z is called a generalized uniform fuzzy parti-
tion (GUFP) of the real line determined by the quadruplet
(K,h, r, c0) if the Ruspini condition is satisfied:

S(x) =
∑
k∈Z

Ak(x) = 1 (5)

holds for any x ∈ R.

In the sequel, the parameters h, r and c0 are called
bandwidth, shift and central node, respectively. The fuzzy
sets Ak in (4) that form a uniform fuzzy partition of the real
line are called basic functions.

A simple consequence of (4) is the formula Ak(x) =
A0(x − kr) that holds for any x ∈ R and k ∈ Z. Putting
ck = c0 + kr one can simply check that Ak(ck) is the
maximal function value and Ak is centered around the node
ck.

The following theorem provides an equivalent condition
to Ruspini’s one that can help to verify that a quadruplet
(K,h, r, c0) determines a GUFP. Put Kh(x) = K(x

h ).

Theorem 1: A quadruplet (K,h, r, c0) determines a gen-
eralized uniform fuzzy partition iff

∞∑
i=1

∫ y+(i−1)r

ir−y
Kh(x)dx = y − r

2
(6)

holds for any y ∈ [ r2 , r].

Proof: It can be found in [22].

Let K be a normal generating function, i.e., K(0) = 1. If
α ∈ (0, 1], then we can define the product of the scalar α
and the function K by

(αK)(x) = α ·K(x).

Note that in this way, we can determine a family of similarly
shaped generating functions and the respective GUFPs, for
example, the triangular (raised cosine) shaped generating
functions and the triangular (raised cosine) generalized uni-
form fuzzy partitions.

As a consequence of the preceding theorem we obtain a
necessary condition on the GUFP saying that a quadruplet

(K,h, r, c0) to determine a GUFPs has to satisfy the follow-
ing integral equality:∫ 1

−1
K(x)dx =

r

h
.

Hence, considering GUFPs determined by similarly shaped
generating functions, we can restrict ourselves to quadruplets
( r
hK,h, r, c0), where K is a normal generating function.
Using the previous theorem, it is not so hard to prove

the following useful theorem showing that the necessary
and sufficient condition for triangular and raised cosine
generalized uniform fuzzy partitions is as simple as possible.

Theorem 2: Let K be the triangular or raised cosine nor-
mal generating function. Then, ( r

hKT , h, r, x0) determines a
GUFP iff h

r ∈ N.
Proof: It can be found in [22].

Note that it is not clear if the previous theorem remains
true for an arbitrary normal generating function (e.g., based
on B-splines or Shepard kernel [24]). In Figure 1, the trian-
gular and raised cosine generalized uniform fuzzy partitions
determined by (KT , 2, 0.5, 1) and (0.5 � KC , 2, 1, 1) are
depicted, respectively.
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Fig. 1. A part of the triangular and raised cosine GUFP of the real line

III. DIRECT Fm-TRANSFORM

A. Preliminaries

Before we provide the definition of direct discrete Fm-
transform, let us introduce several preliminary assumptions
and notations.

In the sequel, we assume that a discrete function f is given
at points x1, . . . , xn (consider xi < xi+1, i = 1, . . . , n− 1).
Let A = {Ak | k ∈ Z} be a generalized uniform fuzzy
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partition, ck = c0 + kr denote the k-th node and m refers
to the degree of polynomials. Denote by X = (x1, . . . , xn)T

the vector of all values over which the function f is defined,
Y = (f(x1), . . . , f(xn))T the vector of function values of
f ,

Xm
k =

1 x1 − ck · · · (x1 − ck)m

...
...

...
...

1 xn − ck · · · (xn − ck)m


is the n× (m+ 1) Vandermonde matrix and

Ak = diag{Ak(x1), · · · , Ak(xn)}

the diagonal matrix of weights computed as the values of
basic function Ak at points x1, . . . , xn. For the sake of
simplicity, we omit m in Xm

k and we write only Xk if no
confusion can appear.

Further, let us use D(f) to denote the domain of f . Since
f is discrete, it is easy to see that not all matrices (k ∈ Z)

XT
kAkXk (7)

need to be invertible. Therefore, we restrict ourselves to a
subfamily B ⊂ A such that each matrix in the form (7)
constructed from a basic function of B is invertible. This
motivates us to introduce the following concept of sufficiently
dense domain of a discrete function f in a generalized
uniform fuzzy partition A with respect to m.

Definition 3: Let f be a discrete function given at points
x1, . . . , xn, A be a generalized uniform fuzzy partition and
m be a natural number (including 0). The domain of f (or f ,
for short) is said to be sufficiently dense in A with respect to
m if there exists a subfamily of A denoted by Af satisfying
the following conditions:

(i) for each Ak ∈ Af the matrix XT
kAkXk is invertible,

(ii) if Ak−1, Ak+1 ∈ Af , then Ak ∈ Af ,
(iii) Af is the largest subfamily of A satisfying the previous

two conditions, i.e., if B ⊂ A satisfies (i) and (ii), then
B ⊆ Af .

Note that a condition ensuring the sufficient density of
f in A is the existence of a sequence of basic functions
Ak, Ak+1, . . . , Ak+p ∈ A such that

#{x | x ∈ D(f) and Aj(x) > 0} ≥ m+ 1

holds for j = k, k+ 1, . . . , k+p, where #{. . . } denotes the
number of elements of a set.1

Finally, let use denote by e1 the unit vector of m+1 com-
ponents having 1 in the first component and zero, elsewhere.

B. Definition

Let f be a discrete function given at the points x1, . . . , xn
which is sufficiently dense in a generalized uniform fuzzy
partition A. Without loss of generality, we always suppose
that Af = {A1, . . . , A`} for a suitable natural number `.

1This follows from the known fact that to construct uniquely a polynomial
of degree m which fits the data with respect to the weighted least square
error, we need to have at least m+ 1 distinct data.

In the next part, we introduce the discrete direct Fm-
transform of two types. The first type of Fm-transform of
the m-th degree assigns to f a vector of polynomials of m-th
degree in the form

βk
0 + βk

1 (x− ck) + · · ·+ βk
m(x− ck)m,

k = 1, . . . , `, which locally fits in “a best way” the function
f . The second type of Fm-transform of the m-th degree
assigns to f a vector of real numbers which corresponds to
the values of polynomials obtained in the previous type and
evaluated at the points c1, . . . , ck. It means that the second
type of the high degree fuzzy transform is a simplification
of the first one, where the polynomials are replaced here by
the respective function values. It should be noted that the
first type of Fm-transform is a discrete version of the higher
degree fuzzy transform defined for continuous functions (cf.,
[14]), on the other hand, the motivation for the second type
of Fm-transform comes from the techniques used in the local
polynomial regression (see [25], [26]).

Definition 4 (Fm-transform of type I): Let A be a GUFP
and f be a discrete function given at points x1, . . . , xn which
is sufficiently dense in A and denote Af = {A1, . . . , A`}.
A vector of polynomials (Fm

1 [f ](x), . . . , Fm
` [f ](x)) in the

form

Fm
k [f ](x) = βk

0 + βk
1 (x− ck) + · · ·+ βk

m(x− ck)m, (8)

where k = 1, . . . , `, is called Fm-transform of type I of f
with respect to A if

βk = (βk
0 , . . . , β

k
m)T = (XT

kAkXk)−1XT
kAkY (9)

for any k = 1, . . . , `. The polynomial Fm
k [f ] is called the

k-th component of Fm-transform of type I of f with respect
to A.

In what follows, if X = (x1, . . . , xn)T , we use

Fm
k [f ](X) = Xkβ

k (10)

to denote the evaluation of the polynomial Fm
k [f ](x) at all

points x1, . . . , xn. Note that Fm
k [f ](X) is the n× 1 vector,

where the j-th row contains precisely the value Fm
k [f ](xj).

The second type of Fm-transform replaces the polyno-
mially expressed components by their specific values as is
defined below.

Definition 5 (Fm-transform of type II): Let A be a GUFP
and f be a discrete function given at points x1, . . . , xn which
is sufficiently dense in A and denote Af = {A1, . . . , A`}.
A vector of real numbers (F1[f ], . . . , F`[f ]) is called Fm-
transform of type II of f with respect to A if

Fk[f ] = e1β
k (11)

for any k = 1, . . . , `, where βk is derived by (9). The real
number Fk[f ] is called the k-th component of Fm-transform
of type II of f with respect to A.

In what follows, for the sake of simplicity, we usually
omit “with respect to A” in “Fm-transform of type I (II) of
f with respect to A”, if no confusion can appear. Moreover,
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sometimes we use Fm
I or Fm

II to denote the type I or II of
Fm-transform, respectively. It is easy to see that if the vector
(Fm

1 [f ](x), . . . , Fm
` [f ])(x) is an Fm

I -transform of f , then

(Fm
1 [f ](c1), . . . , Fm

` [f ](c`))

is the Fm
II -transform of f . Obviously, both types coincide in

the fuzzy transform of zero degree.

C. Basic properties of Fm-transform components

One can be surprised by a specific form of coefficients of
polynomials used in the definition of Fm-transform of type
I . The explanation gives the following theorem.

Theorem 3: Let βk be the vector defined in (9). Then, βk

minimizes the functional

Φ(b0, . . . , bm) =
n∑

i=1

(f(xi)− p(xi))2Ak(xi),

where p(x) = b0 + b1(x− ck) + · · · bm(x− ck)m.

Proof: Using the partial derivatives of the functional
Φ(b0, . . . , bm) with respect to b0, . . . , bm, one can simply
derive a system of m+1 linear equations with b0, . . . , bm as
variables which solution minimizes the functional Φ. In the
matrix form, the system can be written as follows

XT
kAkXkb = XT

kAkY,

where b = (b0, . . . , bm)T . Since we assume only such
functions that are sufficiently dense with respect to A, the
matrix XT

kAkXk is invertible and the solution of the system
of linear equations is unique and can be found as

b = (XT
kAkXk)−1XT

kAkY.

Hence, we obtain b = βk.
The previous theorem shows that the polynomials as the

components of Fm
I -transform provide the best fitting of the

values of discrete function f with respect to the weighted
least square error. One can see that our definition of discrete
Fm
I -transform follows the original idea presented in [1] for

zero degree and then in [14] for higher degrees where only
the integral weighted least square error is now replaced by
its discrete version. The closeness of discrete and continuous
direction is, moreover, underline in the following theorem (cf.
Lemma 1 in [14]).

First, however, let us define two column spaces by
R(Xm

k ) = {Xm
k b | bT ∈ Rm+1} and Rn = {Y | YT ∈

Rn} and the scalar product on Rn by

〈X,Y〉Ak
= XTAkY (12)

for any X,Y ∈ Rn. Obviously, R(Xm
k ) is a subspace of the

space Rn. The norm on Rn can be defined by

||Y||Ak
= 〈Y,Y〉1/2Ak

= (YTAkY)1/2. (13)

Theorem 4: Let Rn be the column space enriched with
the scalar product 〈·, ·〉Ak

and Y ∈ Rn. The minimum of
||Y−θ||Ak

for θ ∈ R(Xm
k ) is attained at θ̂ such that (Y−

θ̂)⊥R(Xm
k ), i.e., when Y− θ̂ is orthogonal to all vectors in

R(Xm
k ). Moreover, we have

θ̂ = Xkβ
k,

where βk is defined by (9).

Proof: Put Xk = Xm
k . Let θ̂ ∈ R(Xk) such that (Y−

θ̂)⊥R(Xk) and θ ∈ R(Xk) be arbitrary. Then, we have

||Y − θ||2Ak
= (Y − θ̂ + θ̂ − θ)TAk(Y − θ̂ + θ̂ − θ)

= (Y − θ̂)TAk(Y − θ̂) + (θ̂ − θ)TAk(θ̂ − θ)

≥ ||Y − θ̂||2Ak
,

since (Y − θ̂)TAk(θ̂ − θ) vanishes using the orthogo-
nality assumption. Obviously, the minimum is attained for
θ = θ̂. Put θ̂ = Xkb̂. Using the orthogonality, we have
XT

kAk(Y −Xkb̂) = (0, . . . , 0)T (consider Xej ∈ R(Xk),
j = 1, . . . ,m+ 1, where ej is the unit vector having 1 in its
j-th components and zero, elsewhere). Hence,

XT
kAkXkb̂ = XT

kAkY.

Since we assume that XTAkXk is invertible, we obtain

θ̂ = Xkb̂ = Xk(XT
kAkXk)−1XT

kAkY = Xkβ
k,

which concludes the proof.

A simple consequence of the preceding theorem is the
following corollary saying that the quality of approximation
using the Fm-transform of type I increases with the increas-
ing degree of polynomial (cf., Lemma 2 in [14]).

Corollary 5: Let f be a discrete function given at the
points x1, . . . , xn sufficiently dense in A and Fm

k [f ] and
Fm+1
k [f ] be the k-th components of Fm-transform of type

I. Then, we have

||Y − Fm
k [f ](X)||Ak

≥ ||Y − Fm+1
k [f ](X)||Ak

, (14)

where X = (x1, . . . , xn)T .

Proof: Recall that

Fm
k [f ](X) = Xm

k βk and Fm+1
k [f ](X) = Xm+1

k β′k,

where βk is the (m + 1) × 1 vector minimizing ||Y −
Xm

k b||Ak
over all b such that bT ∈ Rm+1 and similarly

β′k is the respective (m + 2) × 1 vector. Since R(Xm
k ) ⊆

R(Xm+1
k ) ⊆ Rn, using the previous theorem, we simply

obtain

||Y − Fm
k [f ](X)||Ak

= ||Y −Xm
k βk||Ak

≥
||Y −Xm+1

k β′k||Ak
= ||Y − Fm+1

k [f ](X)||Ak

and (14) is proved.

Remark 4: Note that the same argument cannot be used in
the case of Fm-transform of type II, because, for example, it
holds ||Y − F 0

k (ck)X0
k||Ak

≤ ||Y − Fm
k (ck)X0

k||Ak
where

recall that X0
k is the n × 1 vector having all components

equal to 1. The inequality immediately follows from the fact
that Y − F 0

k (ck)X0
k is orthogonal to all vectors of R(X0

k),
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therefore, ||Y−F 0
k (ck)X0

k||Ak
specifies the shortest distance

of Y from the space determined by X0
k.

The following lemma shows the linearity of Fm-transform
components of type I. As a simple consequence, we obtain
also the linearity for type II.

Lemma 6: Let f and g be discrete functions given at the
points x1, . . . , xn and c ∈ R. Then, we have

Fm
k [f + g](x) = Fm

k [f ](x) + Fm
k [g](x)

Fm
k [cf ](x) = cFm

k [f ](x).

Proof: Let f, g be discrete functions given at the
points x1, . . . , xn sufficiently dense in A and denote Yf =
(f(x1), . . . , f(xn)), Yg = (g(x1), . . . , g(xn)) and Yf+g =
Yf + Yg (the common sum of vectors). By (9), we have

Fm
k [f + g] = (XT

kAkXk)−1XkAkYf+g =

(XT
kAkXk)−1XkAk(Yf + Yg) =

(XT
kAkXk)−1XkAkYf + (XT

kAkXk)−1XkAkYg =

Fm
k [f ] + Fm

k [g],

where we use the distributivity of the matrix operations.
Similarly one can prove the statement for the product of the
scalar c and the function f .

IV. INVERSE Fm-TRANSFORM

A. Definition

The inverse Fm-transform for both types is defined as the
linear combination of components and basic functions to ob-
tain a continuous function. Note that the original definition of
inverse discrete Fm-transform considers a discrete function
as the result. The following definition is a slight modification
of the original definition introduced in [1] (see, also [18]).

Definition 6: Let A be a GUFP and f be a discrete
function given at points x1, . . . , xn which is sufficiently
dense in A and Af = {A1, . . . , A`}. The inverse Fm-
transform of type I is a continuous function defined for any
x ∈ [x1, xn] by

Fm[f ](x) =
∑̀
k=1

Fm
k [f ](x)Ak(x), (15)

where (Fm
1 [f ](x), . . . , Fm

` [f ](x)) is the direct Fm-transform
of type I of f with respect to A.

Definition 7: Let A be a GUFP and f be a discrete
function given at points x1 < · · · < xn which is sufficiently
dense in A and Af = {A1, . . . , A`}. The inverse Fm-
transform of type II is a continuous function defined for any
x ∈ [x1, xn] by

Fm[f ](x) =
∑̀
k=1

Fm
k [f ]Ak(x), (16)

where (Fm
1 [f ], . . . , Fm

` [f ]) is the direct Fm-transform of
type II of f with respect to A.

B. Illustration of inverse Fm-transform on financial quanti-
ties

In this part, we provide several comparisons among types
and degrees of inverse Fm-transform. For the illustration,
we use a time series f(t) of financial quantities with 500
observations, i.e., t ∈ {1, . . . , 500}.

On Figure 2, one can see a comparison of F 1-transform
(red curve) and F 3-transform (green curve) of type I of f(t)
with respect to the (generalized) uniform fuzzy partition A
determined by the quadruplet (KC , 40, 40, 0). Recall that KC

is the raised cosine generating function, the bandwidth h =
40, the shift r = 40 and the central node c0 = 0. Note that we
put “generalized” into the brackets, because only two basic
functions are overlapped here. It is easy to see that the results
stated in Corollary 5 can be checked here also visually, it
means, there is no doubts about a better approximation of
the time series f(t) in the case of F 3

I -transform.
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Fig. 2. Comparison of F 1
I -transform (red) and F 3

I -transform (green) of
f(t) with respect to the GUFP determined by (KC , 40, 40, 0)

On Figure 3, an alternative comparison of F 1-transform
(red curve) and F 3-transform (green curve) of type II of
f(t) with respect to A is depicted. In this case, however, it
is not easy to say which resulting function provides a better
approximation of the time series f(t).
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Fig. 3. Comparison of F 1
II -transform (red) and F 3

II -transform (green) of
f(t) with respect to the GUFP determined by (KC , 40, 40, 0)

On Figure 4, one can see that the F 2-transform (green
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curve) of type II of f(t) provides a smoother resulting
function than the F 2-transform (green curve) of type I.
For the comparison we used the GUFP determined by
(KC , 40, 20, 0), which is slightly denser than the previous
one.
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Fig. 4. Comparison of F 2
I -transform (red) and F 2

II -transform (green) of
f(t) with respect to the GUFP determined by (KC , 40, 20, 0)

On figure 5, one can see a comparison of F 0-transform
(red curve) and F 2-transform (green curve) of f(t) of type
II. Although, it is not obvious from the figure which resulting
function approximates better the time series f(t), according
to Remark 4, we know that a better approximation is ensured
by the F 0-transform of type II. This fact can be checked
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Fig. 5. Comparison of F 0
II -transform (red) and F 2

II -transform (green) of
f(t) with respect to GUFP determined by (KC , 40, 4, 0)

also numerically using the error expressed in the form ||Y−
Fm
k (ck)X0

k||Ak
for the k-th component as it is depicted for

the first five components in Table I.

C. Basic properties of inverse Fm-transform

In the previous section, we defined the direct Fm-
transform of type I and II and showed several basic properties
for their components. Now, we are interested in basic prop-
erties of resulting functions after the application of inverse
Fm-transform. In the sequel, we assume that a GUFP A is
fixed and all discrete functions are sufficiently dense in A.

TABLE I
ERRORS OF APPROXIMATION FOR THE FIRST FIVE COMPONENTS

k ||Y − F 0
k (ck)X

0
k||Ak

||Y − F 2
k (ck)X

0
k||Ak

1 37.495 13 854.4

2 40.791 358.324

3 41.579 2068.37

4 41.044 659.774

5 38.896 614.801

1) Linearity: Recall that it holds Fm
k [af + bg] =

aFm
k [f ]+bFm

k [g] for any Fm-transform component for both
types. This kind of linearity can be extended to the resulting
functions after the application of inverse of Fm-transform.

Theorem 7: Let f and g be discrete functions given at the
points x1, . . . , xn sufficiently dense in A and a, b ∈ R. Then,
we have

Fm[af + bg](x) = aFm[f ](x) + bFm[g](x),

where the Fm-transform is of type I and II.

Proof: We will prove the statement for the Fm-
transform of type I, similarly one can prove the statement for
the Fm-transform of type II. Let f, g be discrete functions
given at the points x1, . . . , xn and assume that Af =
{A1, . . . , A`}. According to Lemma 6, we have

Fm
k [af + bg](x) = aFm

k [f ](x) + bFm
k [g](x)

for any k = 1, . . . , `. Hence, we obtain

Fm[af + bg](x) =
∑̀
k=1

Fm
k [af + bg](x)Ak(x) =

∑̀
k=1

(aFm
k [f ](x) + bFm

k [g](x))Ak(x) =

a
∑̀
k=1

Fm
k [f ](x)Ak(x) + b

∑̀
k=1

Fm
k [g](x))Ak(x) =

aFm[f ](x) + bFm[g](x)

and the proof is finished.

2) Approximation behaviour: To investigate approxima-
tion ability of Fm-transform we will use modulus of con-
tinuity. It is easy to see that if A is a generalized uniform
fuzzy partition determined by (K,h, r, c0) and x ∈ R, then
Ak(x) = 0 whenever ck 6∈ [x− h, x+ h]. Therefore, we use
the following definition of modulus continuity.

Definition 8: Let f be a discrete function given at points
x1, . . . , xn and h > 0. A modulus continuity of the function
f with respect to h is given as a function ωh(f, ·) : R→ R
defined by

ωh(f, x) = sup
xi,xj∈[x−h,x+h]

|f(xi)− f(xj)|. (17)

Note that if there is no xi ∈ [x−h, x+h] then ωh(f, x) =
0. It is easy to see that the number ωh(f, x) characterizes the
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smoothness or the continuity of the function f in a specific
neighborhood of the point x.

In the next part, we restrict our consideration to type I
fuzzy transform. Let us notice that, using Theorem 3, we
simply obtain

βk = (1, 0, . . . , 0)T = (XT
kAkXk)−1XT

kAkY

for Y = (1, . . . , 1)T being the (n× 1) vector. Let us put

xm
k = (1, x− ck, . . . , (x− ck)m)

for an arbitrary x ∈ [x1, xn]. Then, we obtain

1 = xm
k βk = xm

k (XT
kAkXk)−1XT

kAkY.

Hence, using the associativity of the matrix product and
putting

(αk1(x), . . . , αkn(x)) = xm
k (XT

kAkXk)−1XT
kAk,

one can derive

αk1(x) + · · ·+ αkn(x) = 1. (18)

Put αk(x) = (αk1(x), . . . , αkn(x)). Then, we can interpret
the value Fm

k [f ](x) (the value of polynomial attained at the
point x) as a linear combination of function values of f at the
points x1, . . . , xn and the coefficients of the vector αk(x),
i.e.,

Fm
k [f ](x) = αk(x)(f(x1), . . . , f(xn))T =

α1k(x)f(x1) + · · ·+ αnk(x)f(xn).

Unfortunately, it is not clear to us if αkj(x) ≥ 0 for any
k = 1, . . . , ` and j = 0, . . . ,m for any x ∈ [x1, xn] or
at least for any x = x1, . . . , xn holds in general and we
leave the answer to this question to our future research.
Nevertheless, assuming for the moment the non-negativity
of all coefficients the n× 1 vector αk(x) can be interpreted
as a vector of weights and each component of Fm-transform
evaluated at a point x can be obtained as a weighted average
of function values of f .

Theorem 8: Let A be a GUFP detemined by (K,h, r, c0),
f be a discrete function given at points x1, . . . , xn and put
Af = {A1, . . . , A`}. Let us assume that

αkj(xi) ≥ 0 (19)

for any i = 1, . . . , n, k = 1, . . . , ` and j = 1, . . . , n. Then,

|f(xi)− Fm[f ](xi)| ≤ ωh(f, xi) (20)

for any i = 1, . . . , `.

Proof: Let xi ∈ D(f). Then,

|f(xi)− Fm[f ](xi)| =

|
∑̀
k=1

f(xi)Ak(xi)−
∑̀
k=1

Fm
k [f ](xi)Ak(xi)|

≤
∑̀
k=1

|f(xi)− Fm
k [f ](xi)|Ak(xi) =

∑̀
k=1

|f(xi)−
n∑

j=1

αkj(xi)f(xj)|Ak(xi) ≤

∑̀
k=1

n∑
j=1

αkj(xi)|f(xi)− f(xj)|Ak(xi) ≤

∑̀
k=1

n∑
j=1

αkj(xi)ωh(f, xi)Ak(xi) = ωh(f, xi),

where we used αk1(xi) + · · · + αkn(xi) = 1 and the
assumption (20) on the non-negativity of values αkj(xi).

As we have mentioned before, there is a question if
the assumption (19) is true for all or some degrees of
polynomials used in Fm-transform, or even it depends on
data. A solution of this open problem is left to our future
research.

V. CONCLUSIONS

In this paper, we introduced discrete version of direct and
inverse fuzzy transform of higher degree of type I and II. We
used matrices to define the direct Fm-transform by means of
polynomials and showed that our definition of polynomials
leads to a minimization of the standard functional with
respect to the weighted least square error. Moreover, we
proved that polynomials of higher degrees provides a better
quality of approximation of the original function. Finally, we
introduced the inverse Fm-transform and derived some basic
facts. We illustrated the discrete approach to Fm-transform
on financial data.

In future, we want to solve the open problem stated in
the previous paragraph concerning the satisfaction of the
inequality in (19). Further, we want to investigate statistical
properties of discrete Fm-transform, since both types can
serve as non-parametric estimators. It is known that the
Fm-transform of type II is a discrete version of local
polynomial regression, therefore, we can adopt many result
from the regression theory. A comparison of the standard
“continuous”’ approaches and new “discrete” ones seems to
be very useful also from the practical point of view, e.g.,
a reduction of complexity for a manipulation with large
data. Finally, a generalization of discrete Fm-transform to
multivalued functions is also a topic of our future research.
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