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Abstract—In this paper, we present a new class of fuzzy
associative memories (FAMs) called tunable equivalence fuzzy
associative memories, for short tunable E-FAMs or TE-FAMs,
that belong to the class Θ-fuzzy associative memories (Θ-FAMs).
Recall that Θ-FAMs represent fuzzy neural networks having a
competitive hidden layer and weights that can be adjusted via
a training algorithm. Like any associative memory model, Θ-
FAMs depend on the specification of a fundamental memory
set. In contrast to other Θ-FAM models, TE-FAMs make use of
parametrized fuzzy equivalence measures that are associated with
the hidden nodes and allow for the extraction of a fundamental
memory set from the training data. The use of a smaller
fundamental memory set than in previous articles on Θ-FAMs
reduces the computational effort involved in deriving the weights
without decreasing the quality of the results.

I. INTRODUCTION

An associative memory (AM) is geared to storing a finite
set of associations (xξ,yξ), called fundamental memories, that
are defined on arbitrary domains X and Y. Thus, an associative
memory yields a function Φ : X → Y. Ideally, Φ(xξ) = y

ξ

and Φ(x̃ξ) = y
ξ for corrupted or noisy versions x̃

ξ of x
ξ. In

the special case, where X and Y are respectively given by
classes of fuzzy sets on some arbitrary domains X and Y , Φ
is called a fuzzy associative memory (FAM).

The class of Θ-FAMs was recently introduced in the liter-
ature [1]. The activation functions of the ξth hidden nodes in a
Θ-FAM are functions Θξ that fulfil the condition Θξ(xξ) = 1
for all ξ. In contrast to many previous FAM models [2], [3],
[4], [5], [6], [7], Θ-FAMs have a competitive hidden layer
and, in this respect, they are similar to the Hamming net [8],
that is also known as Hamming associative memories, and its
extensions [9], [10].

The class of Θ-FAMs includes (weighted) subsethood, dual
subsethood, and similarity measure FAMs whose hidden layer
activation functions can be expressed in terms of subsethood
or similarity measures [11], [12]. These particular Θ-FAM
models as well as the aforementioned FAMs [2], [3], [4], [5],
[6], [7] can be referred to as fuzzy morphological associative
memories [13] since they perform elementary morphological
operations in the complete lattice setting [14], [15], [16] of
fuzzy mathematical morphology [17].

Weighted S-FAMs, dual S-FAMs, and SM-FAMs mod-
els were successfully applied to a number of classifications
problems and to a problem of vision-based self-localization
in robotics [1]. The tuning of the weights was performed

using a specifically designed Θ-FAM training algorithm that
is guaranteed to converge in finite number of steps and, under
some weak conditions, to reach a local minimum of the
proposed objective function. The high computational cost of
tuning Θ-FAMs using this training algorithm, prohibits its use
in applications with a large training set. Another option for
tuning the weights of these Θ-FAM models would be the use
of derivative-free non-linear optimization methods, some of
which also require a high computational effort when dealing
with problems involving a large number of variables [18].

In this work, we propose the use of a new type of Θ-
FAMs, called tunable equivalence fuzzy associative memories,
for short tunable E-FAMs or TE-FAMs, in which the Θξs are
modelled in terms of parametrized fuzzy equivalence measures
such as the ones employed by Bedê et al. in the context of
fuzzy case-based reasoning systems [19] and by Drummond
et al. to restore consistency in fuzzy rule-based systems using
residuated implication operators [20].

In contrast to previous Θ-FAM models, TE-FAMs allow
for optimizing not only the weights corresponding to the
contributions of the hidden nodes but also the contributions
of the attributes of the data by adjusting the parameters of the
equivalence measures that determine the hidden node activa-
tions. Before performing the optimization of the parameters,
we extract a set of fundamental memories from the given
training set. We illustrate the selection of the fundamental
memory set and the optimization of the parameters using
a specific example. A detailed description of the training
algorithm can be found in [21], [22].

II. MATHEMATICAL BACKGROUND

This section is organized as follows. First of all, we present
well-established basic concepts that will be used throughout
the text. We then introduce the idea of equivalence measure
based on the works of Fodor’s and Roubens’ [23], [24] as well
as of Bustince et al. [25].

A. Some Basic Concepts and Notations

In 1965, Lotfi A. Zadeh extended the classical notion of a
set, by introducing the concept of fuzzy sets [26]. A fuzzy
set A consists of a set X , the universe of discourse, and
a membership function µA : X → [0, 1], that assigns a
membership degree µA(x) ∈ [0, 1] in A to each x ∈ X . In the
following, the class of fuzzy sets on the universe X is denoted
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by F(X). A fuzzy set A is said to be normal if µA(x) = 1
for some x ∈ X .

Mathematically speaking, a fuzzy set A on a universe X
can be identified with its membership function µA and can
simply be viewed as a function from the universe X to the
unit interval [0, 1]. If X is finite, say X = {x1, . . . , xn}, then
F(X) can be identified with [0, 1]n via the bijection that maps
A ∈ F(X) to the vector (A(x1), . . . , A(xn))

t ∈ [0, 1]n. In
particular, if A (or, more precisely, µA) only produces values in
{0, 1}, the A represents a classical or crisp set. Thus, a relation,
which is simply a subset of X × Y for arbitrary universes X
and Y , can viewed as a function X × Y → {0, 1}. Extending
this classical concept of a relation to the fuzzy domain, a
fuzzy relation is given by a function R : X × Y → [0, 1],
where R(x, y) can be interpreted as the degree of relationship
between x and y [27]. A fuzzy relation on X ×Y is therefore
nothing else than a fuzzy set on X × Y .

Two fuzzy relations R ∈ F(X × Y ) and S ∈ F(Y × Z),
where X,Y , and Z are arbitrary universes, can be combined
using a fuzzy relational composition that yields a fuzzy relation
on the universe X × Z. In this paper, we only address fuzzy
relational compositions of the type sup-t defined in Equations
1 and 2 below, where t : [0, 1]2 → [0, 1] stands for a t-norm
operator (an associative, commutative, and increasing mapping
with identity element 1).

The class of fuzzy sets over an arbitrary universe X , and
in particular [0, 1] and [0, 1]n, represent partially ordered sets.
Recall that a pair (P,≤) consisting of a non-empty set P
together with a reflexive, antisymmetric, and transitive binary
relation “≤” is called a partially ordered set or poset [28].
If the partial order relation ≤ clearly arises from the context,
then we simply refer to the poset under consideration using
the symbol P instead of (P,≤). If X ⊆ P , then an element
l ∈ P is said to be a lower bound of X if l ≤ x for all
x ∈ X . Similarly, u ∈ P is said to be an upper bound of X if
x ≤ u for all x ∈ X . The infimum of X ⊆ P , denoted using
the symbol

∧
X , is defined as the greatest lower bound of X .

Similarly, the supremum of X ⊆ P , denoted using the symbol∨
X , is defined as the least upper bound of X . If X = {x, y},

then we may alternatively write x∨y and x∧y instead of
∨

X
and

∧
X , respectively.

A partially ordered set L is called a lattice if every finite,
non-empty subset of L has an infimum and a supremum in
L [29]. A lattice L is complete if every subset of L has an
infimum and a supremum in L. The supremum of r, s ∈ [0, 1]
is s if and only if r ≤ s. Similarly, r∨s = r, if and only if s ≤
r. If t is a t-norm, then the sup-t composition of R ∈ F(X×Y )
and S ∈ F(Y ×Z) yields fuzzy relation R ◦t S ∈ F(X ×Z):

∀x ∈ X,∀z ∈ Z,R ◦t S(x, z) =
∨
y∈Y

R(x, y) t S(y, z), (1)

and the sup-t composition of R ∈ F(X × Y ) and S ∈ F(Y )
yields fuzzy set R ◦t S ∈ F(X):

∀x ∈ X,R ◦t S(x) =
∨
y∈Y

R(x, y) t S(y). (2)

Let L
X denote the class of all functions X → L. If L

represents a poset, then the partial ordering ≤ on L induces
a partial ordering on L

X , also denoted by ≤, is defined as
follows, for all f, g ∈ L

X :

∀x ∈ X, f ≤ g ⇔ f(x) ≤ g(x). (3)

The lattice structure on L induces the same lattice structure
on L

X . Note that F(X), is given by the complete lattice
[0, 1]X .

B. Fuzzy Equivalence

In this paper, we employ the notion of an equivalence
measure according to Bustince et al. [25] who defined an
equivalence measure as a binary operation F(X)× F(X) →
[0, 1] by extending Fodor’s and Roubens’ original definition
on [0, 1] [23], [24].

Definition 1: Let X be an arbitrary universe. An equiva-
lence measure on F(X) is a function E : F(X) × F(X) →
[0, 1] that satisfies the following conditions:

E1) E(x, y) = E(y, x) for all x, y ∈ L;

E2) E(0L, 1L) = 0;

E3) E(x, x) = 1 for all x ∈ L;

E4) if x ≤ y ≤ z, then E(x, z) ≤ E(x, y) and E(x, z) ≤
E(y, z).

In the literature of fuzzy set theory, one can find other con-
cepts that are closely related to the one of (fuzzy) equivalence,
such as fuzzy similarity measure and equality index [25], [30],
[31], [32], [33], [34], [35]. In fact, these technical terms are
either used interchangeably or their definitions are given by
different, but slight modifications of Definition 1 (see [25] for
a comparison). The main difference between the concepts of
similarity and equivalence seems to be the requirement that
the similarity between a crisp set and its complement should
be zero [33], [34]. This property is crucial for the definition
of entropy or fuzziness measures by means of similarity
measures since it is reasonable to assume that the entropy of
a crisp set equals 0 [25], [33], [34], [35]. Fuzzy equivalence
and similarity measures have been extensively studied in the
last few years and many authors have proposed formulas to
produce fuzzy equivalence measures on the class of fuzzy sets
over a universe U [25], [32], [33], [34]. In [ref sandra], a
mapping E : R2 → [0, 1], named an order compatible fuzzy
relation (OCFR), has been proposed, requiring conditions E1,
E2 and E3. In that work, E4 is called “compatibility with
total order”, a property that distinguishes OCFRs from fuzzy
relations that generalize the notion of equivalence relation from
classical set theory by requiring t-transitivity [36].

An infinite number of equivalence measures on F(X) can
be generated from fuzzy subsethood or inclusion measures [1],
[11], [25], [34], [35]. The concept of equivalence measure on
F(X) is also related to the concepts of fuzzy entropy and
distance measures [32], [33], [34].

Below we define strong equivalence measures by adding
another condition to the ones of Definition 1:
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Definition 2: An equivalence measure E is said to be
strong if ∀x, y ∈ X,E(x, y) = 1 ⇔ x = y.

Definition 2 yields Zeng’s & Li’s definition of a similarity
measure [35]. We prefer to speak of a strong equivalence
measure to avoid creating a confusion with several different
definitions of similarity measure in the literature [25], [30],
[31], [33], [35]. Below, we give an example of a strong equiv-
alence measure, that is employed for restoring consistency in
implication-based fuzzy rule-based systems [refs sandra] and
in fuzzy CBRs [19].

Example 1: For each λ ∈ (0, 1], the function Eλ : [0, 1]×
[0, 1] → [0, 1] given by

Eλ(x, y) = max
(
0 , 1−

|x− y|

λ

)
(4)

yields a strong equivalence measure on [0, 1].

Example 2 below yields a class of strong equivalence
measures that can be used to assign weights to attributes in
applications involving multi-dimensional domains.

Example 2: Let Ei be equivalence measures on [0, 1] for
i = 1, . . . , n and let w ∈ [0, 1]n such that

∑n
i=1 wi = 1. A

strong equivalence measure Ew : [0, 1]n × [0, 1]n → [0, 1] can
be defined as follows:

Ew(x,y) =

n∑
i=1

wiEi(xi, yi) ∀x,y ∈ [0, 1]n. (5)

is an equivalence measure on L.

In particular, we obtain the following (strong) tunable
equivalence measure on [0, 1]n:

Eλ,w(x,y) =
n∑

i=1

wiEλi
(xi, yi) ∀x,y ∈ [0, 1]n. (6)

where λ = (λ1, . . . , λn)
t ∈ (0, 1]n.

Equivalence measures of the form given in Equation 6
have been employed in fuzzy case-based reasoning [19]. A
particular case of an OCFR, proposed in [36], yields another
example of a parametrized equivalence measure.

Example 3: Let A = {A1, ..., An} be a collection of
fuzzy sets on a universe X such that each Ai is normal,∑

i µAi
(x) = 1 for all x ∈ X , and each element in X

has a membership degree 6= 0 in at most 2 fuzzy sets in
A. In other words, A is a fuzzy partition. Note that the
elements of A may be either crisp sets or trapezoidal fuzzy
sets. If S∗(x, y) =

∨n
i=1 min(Ai(x), Ai(y)) and SL(x, y) =∧n

i=1 1− | µAi
(x)− µAi

(y) | for all x, y ∈ X , then

∀x, y ∈ X,S+(x, y) =

{
0, if S∗(x, y) = 0
SL(x, y), otherwise

(7)

yields an equivalence measure on [a, b]. In particular, when
A is formed solely by triangular fuzzy sets, E is a strong
equivalence measure on [a, b].

III. THE CLASS OF Θ-FAMS

The class of Θ-FAMs appeared only recently in the liter-
ature [1]. Let us briefly review the definition of Θ-FAMs that
contain TE-FAMs as special cases.

Definition 3: Let M = {(Aξ, Bξ) ∈ F(X)× F(Y ) : ξ =
1, . . . , p} be a fundamental memory set, where X and Y are
arbitrary universes. Furthermore, let Θξ : F(X) → [0, 1] be
operators such that Θξ(Aξ) = 1 for ξ = 1, . . . , p and let
v be an arbitrary vector in R

p. The Θ-FAM based on Θξ

and v produces the following output O(A) ∈ F(Y ) upon
presentation of an input fuzzy set A ∈ F(X):

O(A) =
∨

j∈Iv(A)

Bj , (8)

where

Iv(A) =

{
j ∈ {1, . . . , p} : vjΘ

j(A) = max
ξ=1,...,p

vξΘ
ξ(A)

}
.

(9)

Note that this model is well-defined because an index
j than maximizes {vξΘ

ξ(A)}pξ=1 is guaranteed to exist and

therefore Iv(A) 6= ∅. If (Aξ, Bξ) ∈ [0, 1]n × [0, 1]m,
then the resulting Θ-FAM corresponds to a two-layer neural
network with p and m neurons in the hidden and output
layers, respectively. Upon presentation of an input pattern
A = (A1, A2, . . . , An)

t, the jth hidden neuron computes
vjΘ

j(A) followed by a competitive binary activation function
that yields 1 if and only if vjΘ

j(A) ≥ viΘ
i(A) for all i 6= j.

Hence, the hidden layer can be implemented in terms of a
MAXNET network [37]. Figure 1 depicts the topology of the
entire network for finite universes X = {x1, . . . , xn} and
Y = {y1, . . . , ym}.

Fig. 1. Topology of a Θ-FAM for finite universes X and Y .

Esmi et al. [1] provided theoretical results concerning the
storage capacities as well as the error correction capabilities
of Θ-FAM models. These results include sufficient conditions
for the perfect recall of all fundamental memories and a
characterization of the basins of attraction around each Aξ. The
weight vector v can be optimized using a supervised training
algorithm that was specifically designed for Θ-FAMs. Under
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some weak conditions, this supervised algorithm is guaranteed
to converge to a local minimum of the objective function in a
finite number of steps.

IV. TE-FAMS IN THE CONTEXT OF Θ-FAMS

As mentioned before, the computational cost involved in
the previous Θ-FAM training algorithms can be extremely high
for large sets of fundamental memories. This drawback moti-
vated us to develop a new supervised algorithm for a certain
subclass of Θ-FAMs whose functions Θξ are given in terms of
equivalence measures. For example, training a weighted KS-
FAM, i.e., a Θ-FAM based on the Kosko subsethood measure
[2], using the algorithm proposed in [1], required a CPU time
of about one hour for the Vowel dataset that comprises 990
instances [38].

Note that if E denotes an equivalence measure then the
operator E( · , Aξ) can play the role of Θξ in Definition 3
since Θξ(Aξ) = E(Aξ, Aξ) = 1 by property E3) of Definition
1. Thus, the notion of weighted SM-FAM can be generalized
as follows.

Definition 4: Consider a Θ-FAM as defined in Equations
8 and 9. If each function Θξ : F(X) → [0, 1] of Definition
3 is given by Θξ( · ) = Eξ(xξ, · ) for some equivalence
measure Eξon F(X), then the corresponding Θ-FAM is called
a equivalence measure fuzzy associative memory, for short E-
FAM. In the special case, where each Eξ is parametrized,
we speak of a tunable equivalence measure fuzzy associative
memory (TE-FAM).

Throughout the rest of this manuscript we will concentrate
on TE-FAMs based on tunable equivalence measures Ewξ on
the product lattice [0, 1]n. Let us gather w1, . . . ,wp ∈ [0, 1]n

as column vectors of a matrix W = [w1, . . . ,wp] ∈ [0, 1]n×p

and denote the corresponding TE-FAM using the symbol EW,v.
Thus, given an input pattern x ∈ L, the TE-FAM EW,v

generates the following output EW,v(x) ∈ F(Y ):

EW,v(x) = B ◦t F (v1Ew1(x,x1) , . . . , vpEwp(x,xp)) (10)

∀x ∈ [0, 1]n,

where

[F (x1, . . . , xk)]i =

{
1 , ifxi = ∨k

j=1xj

0 , otherwise
, for i = 1, . . . , p.

(11)

Note that the output EW,v(x) does not depend on the choice
of the t-norm t in Equation 10. Figure 2 visualizes the topology
of a TE-FAM of the form EW,v for a finite universe Y .

Esmi et al. proposed a training algorithm for TE-FAMs of
the form EW,v that comprises two stages:

1) Extraction of the set of fundamental memories from
the training set T ;

2) Optimization of the parameters w
ξ and v.

Stage 1 was devised in order to generate a small fun-
damental memory set M ⊆ T and determines the exact
topology of EW,v since initially p and x

1, . . . ,xp are unknown.
Under some weak conditions, the resulting TE-FAM with

Fig. 2. Topology of a TE-FAM of the form EW,v for a finite universe Y .

fundamental memory set M produces no training error. Stage
2 consists in optimizing a quadratic programming problem
subject to linear inequality constraints in order to find suitable
parameters for EW,v. The interested reader can find more
details in [1].

V. AN ILLUSTRATION OF THE TRAINING ALGORITHM

FOR TE-FAMS OF TYPE EW,v

We have created a small synthetic binary classification
problem in order to illustrate the training algorithm for TE-
FAMs EW,v. Let T ⊂ [0, 1]2×{0, 1} be the following training
set:

T =




(
x
1 = (0.66, 0.13), 0

)
,
(
x
2 = (0.93, 0.33), 0

)
,(

x
3 = (0.77, 0.37), 0

)
,
(
x
4 = (0.47, 0.33), 0

)
,(

x
5 = (0.27, 0.87), 1

)
,
(
x
6 = (0.17, 0.8), 1

)

 .

For a given fundamental memory set M and equivalence
measures Eξ, a TE-FAM can be defined as a map from a
class of fuzzy sets on a universe X with |X| = 2 to a class of
fuzzy sets on a universe Y with |Y | = 1. If Eλ,w denotes the
equivalence measure on F(X) = [0, 1]2 defined as in Equation
6 with λ1 = λ2 = 1 and w = (0.5, 0.5), then we have the
following matrix E with components Ej,k = Eλ,w(xj ,xk),
with x

j ,xk ∈ T :

E =




1.00 0.21 0.43 0.32 0.00 0.00
0.21 1.00 0.66 0.50 0.00 0.00
0.43 0.66 1.00 0.44 0.00 0.00
0.32 0.50 0.44 1.00 0.16 0.00
0.00 0.00 0.00 0.16 1.00 0.72
0.00 0.00 0.00 0.00 0.72 1.00




The fundamental memories, generated in Stage 1 of the
training algorithm for TE-FAMs of type EW,v, depend on the
values Ej,k and are marked using red boxes in Figure 3. To be
more precise, we obtained the following fundamental memory
set: M = {(x1, 0), (x2, 0), (x6, 1)}. Stage 2 of this algorithm
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produces the following parameters W = [w1,w2.w3] and v

for Equation 10:

W =

(
0 1 0.88
1 0 0.11

)
and v =

(
0.97
1.05
0.87

)
. (12)

Hence, we obtain Θ1( · ) = Eλ,(0,1)(x
1, · ),Θ2( · ) =

Eλ,(1,0)(x
2, · ), and Θ3( · ) = Eλ,(0.88,0.11)(x

6, · ). For x ∈
[0, 1]2, the resulting TE-FAMs EW,v produces the following
output:

EW,v(x) =

(
1 1 0
0 0 1

)
◦tF


 0.97Eλ,(0,1)(x

1,x)
1.05Eλ,(1,0)(x

2,x)
0.87Eλ,(0.88,0.11)(x

6,x)


 .

(13)
Figure 3 exhibits the decision surface produced by the resulting
TE-FAM.

Fig. 3. Decision surface after the second stage of the training algorithm for
EW,v . Symbols ◦ and + correspond to patterns belonging to the classes “0”
and “1”, respectively. Patterns marked by red boxes belong to the extracted
fundamental memory set M.

VI. APPLICATIONS IN CLASSIFICATION PROBLEMS

In this section, we describe the application of EW,v to two
supervised classification problems.

Suppose that we are provided with a training set
{(xξ, yξ) ∈ X × L : ξ = 1, . . . , k}, where L = {1, . . . , c}
is a set of class labels. First, we need to convert the pairs
(xξ, lξ) into pairs of fuzzy sets in order to be able to apply
the TE-FAM approach. If X = R

n , then the vectors x
ξ can

be converted into fuzzy sets Aξ ∈ [0, 1]n by normalizing each
coordinate. The class labels yξ can be identified with the fuzzy

sets Bξ ∈ {0, 1}c that satisfy Bξ
i = 1 if and only if ξ = i.

A. Classification of Vertebral Column

In the following, we describe the use of T-E-FAMs in a
classification corresponding to the Vertebral Column Data Set
from the UCI Machine Learning Repository [39]. The patterns
consist of biomedical data from 310 patients, 100 and 210 of
which belong respectively to the classes “normal” (NO) and

“abnormal” (AB), respectively. The patients are represented in
the data set by six biomechanical attributes derived from the
shape and orientation of the pelvis and lumbar spine: pelvic
incidence, pelvic tilt, lumbar lordosis angle, sacral slope, pelvic
radius and grade of spondylolisthesis.

In order to perform our experiments, we partitioned the
entire set of data at random into three distinct subsets, Tr
(training), Te (test) and Va (validation), containing respectively
50%, 25% and 25% of the patterns of each class.

The patterns x
ξ were mapped to the following fuzzy sets

Aξ ∈ [0, 1]6. Each attribute was normalized in order to obtain
values in [0, 1]. Then we applied the following function Ψ :
[0, 1]6 → [0, 1]6 whose ith coordinate is given by [12]:

Ψ(x)i =

{
xi if xi = 0 or xi = 1

xi −mx + 1.5

3
otherwise.

(14)

Here, mx denotes the mean of x ∈ [0, 1]n over the restricted
domain I = {i : 0 < xi < 1}, that is

mx =

∑
i∈I xi

| I |
.

We evaluated the classification performances of TE-FAMs
EW,v based on functions Θξ that are determined by equivalence
measures Eλα,wξ as in Equation 6 with λα = (ασ1, . . . , ασ6).

Here, σi denotes the standard deviation of the set {Aξ
i | ξ =

1, . . . , k} for α = 0.5, 0.51, . . . , 1. Each of these TE-FAMs
was trained using the algorithm described in [1]. In Stage 2,
we solve the proposed quadratic proggraming problem using
the well-known Trust-Region-Reflective Optimization method
[40], [41] with initial vectors ( 16 , . . . ,

1
6 )

t ∈ [0, 1]6.

Figures 4 and 5 show the percentage of fundamental
memories in the training set and the error rate for the validation
set, respectively, obtained by varying α in [0.5, 1]. Experiments
performed for α > 1 did not lead to an increase in the quality
of the results. Figure 6 plots the validation error versus the
percentage of fundamental memories in the training set. The
best result is given by α = .88, depicted in red in the figure.

Fig. 4. Reduction rate of the fundamental memories set for α ∈ [.5, 1].
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Fig. 5. Validation error for α ∈ [0.5, 1].

Fig. 6. Percentage of fundamental memories in the training set versus
validation error for α ∈ [0.5, 1].

Table I exhibits the classification performance achieved by
the TE-FAM with λ0.88 and by other well-known models from
the literature: kNN (k-nearest neighbor), MLP(multi-layer
perceptron), SVM (support vector machine) [42], [43], and
decision tree. To ensure a fair comparison, the parameters of
these models were chosen by minimizing the validation errors
within a range of values. For example, the classifier kNN was
tested using k = 1, 2, . . . , 10 and yielded the lowest validation
error for k = 1. We also performed simulations using different
MLPs with p hidden nodes for p = 10, 20, 30 and with
sigmoid activation functions. Since the performance of an MLP
depends on the initialization of weights in the training phase,
we applied 10 MLPs with random initializations of weights
for each p and selected the one that produced the lowest
validation error. The MLPs were trained using backpropagation
with early stopping, adaptive learning rate 0.01, increasing
factor 1.2, reduction 0, 7, and gradient descent with momentum
0.9. The selected MLP has 30 hidden neurons and is denoted
using the simbol MLP30. We also performed experiments using

Model Etr(%) Eval(%) Ets(%)

TE-FAM 7.74 10,26 14,29

1NN 0.00 12.82 19.48

MLP30 10.97 10.26 19.48

SVM 3.23 17.95 23.38

Tree 7.10 11.54 18.18

TABLE I. CLASSIFICATION ERRORS ON THE TRAINING SET (Etr ),
VALIDATION SET (Eval), AND TEST SET (Ets) PRODUCED BY DIFFERENT

CLASSIFIERS.

10 different SVM models using gaussian kernels with spread
factors σ = 0, 5j for j = 1, . . . , 10. The SVM classifier
with σ = 0.5 yielding the lowest validation error produced
a misclassification rate of 23.38% during the testing phase
The last line of Table I exhibits the results obtained by a
decision tree [44]. The TE-FAM approach achieved the best
classification in this problem among all the classifiers that we
tested.

B. Classification of Time Series of Vegetation Indexes

We also employed a TE-FAM model of type EW,v to
associate a time series of vegetation indexes with one of the
following classes: forest, deforestation, pasture and agriculture.
Each time series datum represents a vector in [0, 1]23 that
corresponds to the value of a certain pixel of a multispectral
image, given by a sequence of 23 images having values
in [0, 1]. These multispectral images comprise 168 pixels,
corresponding to an area of approximately 10.5km2 in the
eastern part of the state of Mato Grosso, Brazil, and were
captured from NASA’s Aqua and Terra Satellites using a
MODIS (Moderate Resolution Imaging Spectroradiometer)
sensor. Pimentel et al. extracted two distinct datasets from
1848 patterns in [0, 1]23, representing EVI-2 vegetation index
data from August 2000 to June 2011 [45]. The first dataset
has 205 data taken from areas having the following types of
vegetation: 139 forest, 18 deforested areas, 35 pasture, and
13 of agricultural land. The second dataset contains 641 time
series patterns of forest data, 100 of deforested areas, 279 of
pasture data, and 343 of agricultural land.

We compared the results obtained by a TE-FAM model
with the ones produced by MLP models in [46] and Θ-FAM
models using the training algorithm presented in [1]. In order
to ensure a fair comparison, we conducted our simulations
following the instructions described in [46]. In particular, we
applied the 4-fold cross-validation technique to each dataset in
order to assess the classification performance of each model.
We employed the same partitioning into 4 folds as in [46].

We considered a TE-FAM EW,v based on equivalence
measures Eλ,wξ as in Equation 6 with λ = (σ1, . . . , σ23),

where σi denotes the standard deviation of the set {Aξ
i | ξ =

1, . . . , k}. As before, the TE-FAM EW,v was trained using the
training algorithm presented in [21]. In addition, other types
of Θ-FAM models were subjected to the training algorithm
introduced in [1]. Specifically, we tested the Kosko subsethood
measure [2] and the dual Kosko subsethood measure FAM
as well as equivalence measure FAMs based on equivalence
measures of the form Ek(A,B) = min{Sk(A,B), Sk(B,A)}
[1] (Ek-FAMs). Recall that the Kosko subsethood measure
Sk : [0, 1]n × [0, 1]n → [0, 1] is defined as follows for all
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Dataset I Dataset II

Model Train. Test Train. Test

KS-FAM 100.00 (± 0.00) 98.98 (± 2.04) 99.19 (± 0.12) 91.30 (± 3.84)

Dual KS-FAM 100.00 (± 0.00) 98.98 (± 1.18) 99.36 (± 0.51) 94.40 (± 2.38)

Ek-FAM 100.00 (± 0.00) 97.96 (± 1.67) 99.56 (± 0.13) 95.06 (± 2.60)

TABLE II. CLASSIFICATION ERRORS ON THE TRAINING AND TEST

SETS PRODUCED BY KS-FAM, DUAL KS-FAM, AND E-FAMS BASED ON

Ek .

Mean CPU time in sec.

Model Dataset I Dataset II

TE-FAM 0.34 3.7

Θ-FAMs 3.67 5593.08

TABLE III. MEAN CPU TIME FOR TRAINING PHASE FOR TE-FAM
EW,v AND Θ− FAM MODELS.

A,B ∈ [0, 1]n [2]:

Sk(A,B) =

{
1 if A ⊆ B∑

n
i=1

min{Ai,Bi}∑
n
i=1

Ai
otherwise

.

Table II displays the classification rate produced by each Θ-
FAM model in the training and testing phases.

After training the KS-FAM, dual KS-FAM, and Ek-FAM
models, we chose the ones that produced the lowest missclas-
sification rate with the lowest variance in the training phase
for each dataset. Note that the selected models correspond
to the ones whose classification rates for the training data
are highlighted in bold face in Table II. Table III shows the
mean CPU times required for training TE-FAMs and Θ-FAMs
models using a Intel Core i5-3330 CPU with a processing
speed of 3.00 GHz.

Table IV exhibits the mean classification rates for testing
that were produced by the TE-FAM of type EW,v, the selected
Θ-FAM models [1], and several MLP models [46]. Note
that the TE-FAM model yielded a competitive classification
accuracy compared to the other classifiers we tested. The Θ-
FAM approach together with training algorithm proposed in
[1] produced the highest classification rates for both datasets.
However, Table III reveals that training the Θ-FAM models
using the algorithm of [1] requires a huge amount of CPU time
in comparison to the training phase of the TE-FAM model.
This observation applies especially to the simulations using
the second dataset that comprises 1363 instances. In this case,
the algorithm described in [1] has to cope with more than
one thousand fundamental memories consisting of 75% of the
entire dataset that is divided into 4 folds.

Model Dataset I Dataset II

TE-FAM 94.39 92.55

Θ-FAMs 98.64 95.06

MLP 89.22 93.16

MLP-G 93.45 93.50

MLP-D 92.50 92.05

MLP-GD 96.05 93.55

TABLE IV. MEAN CLASSIFICATION RATE ON THE TEST SET PRODUCED

BY TE-FAM EW,v , SELECTED Θ− FAM MODELS, AND MLPS MODELS.

VII. CONCLUDING REMARKS

In this article, we presented TE-FAMs, a novel approach to
Θ-fuzzy associative memories.The first stage of the TE-FAM
traininng algorithm automatically determines the topology of
the resulting model by selecting a set of fundamental memo-
ries. Note that each hidden node is uniquely defined in terms
of a fundamental memory (cf. Definition 3).

In contrast to the Θ-FAM approach presented in [1], the
TE-FAM approach allows not only for tuning the weights
corresponding to the contributions of the hidden nodes but
also for adjusting the contributions of the attributes of the data.
The latter is achieved by adjusting parametrized equivalence
measures of the form Ew (cf. Equation 5).

Some preliminary experiments in classification also indi-
cate a competitive accuracy. In addition, training the TE-FAMs
using the algorithm outlined in Section V could be performed
much faster than training Θ-FAMs using the previous algo-
rithm [1].
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