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Abstract—A robust adaptive type-2 fuzzy logic controller is 
designed for the longitudinal dynamics of a flexible 
air-breathing hypersonic vehicle. The aircraft’s pitch motion 
and flexible vibration are strongly coupled explicitly in the 
dynamic equations. The throttle setting is designed to control 
the velocity by dynamic inversion control method. The elevator 
deflection is designed to stabilize the pitch rate and flexible 
modes and in the end control the altitude in a stepwise manner 
by backstepping control method. The flexible modes are actively 
used in the control design in order to counteract both the 
tracking errors and the flexible vibrations. The virtual control 
signals in backstepping control as well as their derivatives are 
obtained by command filters whose magnitudes, bandwidths 
and rate limit constraints can be set. The transition processes of 
the velocity and altitude commands are also obtained by 
command filters. Uncertainties are estimated online by interval 
type-2 adaptive fuzzy logic system. The adaptive law of the fuzzy 
logic system is derived by Lyapunov synthesis approach. 
Simulation results demonstrate the effectiveness and robustness 
of the proposed controller and also validate type-2 fuzzy logic is 
more capable of handling uncertainties than type-1 fuzzy logic. 

NOMENCLATURE 

V : velocity, ft/s                         h  : altitude, ft  
γ  : flight path angle, rad           α : angle of attack, rad  
q  : pitch rate, rad/s                    L : lift, lb 
D : drag, lb                                T : thrust, lb 
g : gravitational acceleration    M : pitching moment, lb·ft 
m : mass, slug                           yI : moment of inertia, lb·ft2 
S : reference area, ft2

                c : mean aerodynamic chord, ft  
q : dynamic pressure, lb/ft2          ρ : density of air, slugs/ft3 

cφ : throttle setting instruction   φ : fuel equivalence ratio          

eδ : elevator deflection, rad       LC : lift coefficient         

DC : drag coefficient                  TC : thrust coefficient    

MC : pitching moment coefficient 
,f aη η : forebody and aftbody general elastic mode  
,f aψ ψ : forebody and aftbody coupling coefficient  
,f aω ω : forebody and aftbody natural frequency 
,f aζ ζ : forebody and aftbody damping ratio  
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I. INTRODUCTION 
YPERSONIC vehicle has been widely researched since 
1960s due to its high speed (at least 5 Mach), high 
thrust-to-weight ratio and reusability. It will 

dramatically reduce the flight time between continents and 
bring great development in civil and military applications. 
Although hypersonic vehicle has these advantages, its flight 
control law design is still highly challenging. Early research 
is mainly focused on a rocket-powered hypersonic vehicle 
called generic hypersonic flight vehicle (GHFV) [1]. GHFV 
is in winged-coned configuration which has complete ground 
test data. Its flight control law design neglected the flexible 
effects and viewed it as a rigid body. Xu designed an adaptive 
sliding mode controller on the high-order feedback linearized 
model and got good control effect and robustness under a 
certain degree of parametric uncertainty [2]. Some other 
representative control methods also can be seen in [3], [4]. 

The successful flight of scramjet-powered X-43 series 
promoted more research work on air-breathing hypersonic 
vehicle (AHV). AHV is in wave-rider configuration whose 
long-thin fuselage causes non-negligible structural vibration 
problem. Furthermore, due to AHV’s special integrated 
engine-frame configuration, there exist tight and complex 
interactions between aerodynamics, structural dynamics and 
the propulsion system. Bolender developed a nonlinear model 
(called heave model) for the longitudinal dynamics of an 
AHV using Lagrange method [5], [6]. But heave model is too 
complex for control design. Three kinds of simplified models 
are derived from heave model as tableⅠshows. Rigid-body 
modes are nearly independent on flexible modes in model A. 
Relevant papers can be found in [7]. Model B gets the most 
widely used recently. It displays no coupling explicitly in 
dynamic equations but the flexible modes affect the 
aerodynamic and propulsive coefficients and therefore 
indirectly affect the rigid-body modes. Kuipers designed an 
adaptive linear quadratic controller based on the linearized 
rigid AHV model [8]. Lisa introduced the canard deflection 
as an additional control variable and designed the parameter 
adaptive law to guarantee the stability of the rigid-body 
dynamics and the flexible dynamics [9]. Parker also added the 
canard to eliminate the non-minimum phase character of the 
rigid-body dynamics and stabilized the flexible dynamics 
[10]. In this paper, we study model C which displays strong 
coupling in dynamic equations especially between the pitch 
motion and the flexible vibration but neglects the flexible 
effects on coefficients. Up to now, for model C, few papers 
have actively used flexible modes to design a control law. 
Model A and C adopt two-cantilever-beam assumptions and 
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consider 2 first-order modal coordinates. Model B adopts 
one-free-beam assumption and considers 3 modal coordinates 
(including first, second and third-order). 

TABLE I 
3 KINDS OF SIMPLIFIED MODELS 

Model A B C 

Equation coupling × × √ 

Coefficient coupling × √ × 

Beam assumption cantilever free cantilever 

√ means there exists equation or coefficient coupling whereas × means 
no coupling. 

 
Fig. 1.  Membership function example of IT2-FS 

  
Fig. 2.  The structure of T2-FLS. 

Uncertainty is inevitable during control process. One 
feasible way is to estimate it online and actively counteract it. 
Type-2 fuzzy logic system (T2-FLS) is one such powerful 
estimator. Unlike traditional type-1 fuzzy set (T1-FS), the 
membership function (MF) of type-2 fuzzy set (T2-FS) is 
fuzzy itself which is so called primary MF. The MF of the 
primary MF is called secondary MF. An example of T2-FS’s 
MF is shown in Fig.1. The region between the upper MF 
(UMF) and the lower MF (LMF) is called footprint of 
uncertainty (FOU). FOU adds an additional degree of 
freedom to the fuzzy set and makes it more capable of dealing 
with uncertain problem than T1-FS. The structure of T2-FLS 
is shown in Fig. 2. The type-2 fuzzy output set will not be 
used until it is type-reduced. The existence of type-reducer 
before defuzzifier is the most important difference from 
type-1 fuzzy logic system (T1-FLS). In order to reduce the 
computational cost, the interval T2-FS (IT2-FS) is used 
whose secondary MF grades are always 1 [11]. The widely 
used Karnik- Mendel algorithm (KMA) is chosen as the type 

reduction method [12]. Interval T2-FLS (IT2-FLS) has been 
used to estimate uncertain terms and shown its strong 
approximation capability [13]. Direct and indirect interval 
type-2 fuzzy logic controllers (IT2-FLCs) have been 
introduced in hypersonic control in my former papers 
[14]-[17]. 

This paper proposes a robust adaptive indirect interval 
type-2 fuzzy logic controller for a flexible air-breathing 
hypersonic vehicle. The flexible modes are actively used in 
the control law design. Uncertainties during control process 
are estimated online by IT2-FLS. The adaptive law is derived 
by Lyapunov synthesis approach. This paper is organized as 
follows: Section 2 describes the control problem and gives 
some preliminary knowledge. Section 3 designs the controller 
and the interval type-2 fuzzy logic system in detail. Section 4 
derives the adaptive law and gives stability analysis. In 
section 5, simulations are conducted to validate the proposed 
controller. Conclusions are given in the final part. 

II. PROBLEM STATEMENT AND PRELIMINARIES 
The control objective is to design the throttle setting and 

elevator deflection to make the AHV track the velocity and 
altitude cruise command and meanwhile restrain the flexible 
vibration.  In the following, we give some preliminary 
knowledge of the control problem. 

45−055

fη aη

 
Fig. 3.  Aircraft geometry and two cantilever beams coordinate system. 

A. The Longitudinal Dynamics of the Flexible AHV 
For a wave-rider configuration AHV, we assume that the 

fuselage is comprised of two cantilever beams which are 
clamped at the center-of-mass and only consider their 
first-order modal coordinates fη and aη . The coordinate 
system is chosen as Fig.3 shows. Then a strong coupled 
model (heave model) is derived [5], [6]. If we omit the 
relative small items in the heave model, we obtain the 
following simplified dynamic model:  
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where ,U W and ,x zF F  are velocity and forces along body 
axes ,x z , ,f aN N  are general elastic forces of forebody and 
aftbody, 363.5007fψ = , -328.8033aψ = , 16.0213fω = ,

19.5813aω = , 0.02f aζ ζ= = . Transfering (1) from body 
coordinate system to wind coordinate system and after some 
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decoupling operation, we obtain (2) and (3): 
cos sin

sin cos

sin

T DV g
m

L T g
mV V

h V
q

α γ

α γγ

γ
α γ

−⎧ = −⎪
⎪

+⎪ = −⎨
⎪

=⎪
⎪ = −⎩

�

�

�

� �

                                                     (2) 

2

2

( )

( ( ) )

( ( ) )

f f a a

f f f a a y a f

a a f a f y f a

q M C C K

M C I C K

M C I C K

ψ ψ

η ψ ψ ψ ψ

η ψ ψ ψ ψ

⎧ = + +
⎪⎪ = + + −⎨
⎪

= + + −⎪⎩

�

��

��

                         (3) 

where 2 2
y f aK I ψ ψ= − − , 22f f f f f f fC N ζ ω η ω η= − −� ,

22a a a a a a aC N ζ ω η ω η= − −� . Equation (3) shows the strong 
coupling between pitch motion and flexible vibration. 
Coefficient details can be seen in [10]. 

B. Characteristic Roots Analysis 
The dynamic equations (2) and (3) contain 9 state variables

[         ]T
f f a aV h qγ α η η η η= � �x (The variable in bold in this 

paper indicates that it is a vector). Linearize the model at the 
cruise point 0 7702.08V = ft/s, 0 85000h = ft, and then 
compute its characteristic roots as tableⅡshows. 

TABLE II 
CHARACTERISTIC ROOTS OF THE LINEARIZED  MODEL 

Mode Characteristic roots 

Altitude mode 0.0001203 

Phugoid mode -0.0008026±0.04031 i 

Short period mode 1.685, -1.756 

Forebody aeroelastic mode -0.3589±17.28 i 

Aftbody aeroelastic mode -0.6787±25.00 i 

From table Ⅱ we can see that the altitude mode is unstable 
and the phugoid mode is stable. The flexible vibration affects 
them little [18]. The short period mode contains one positive 
root and therefore is unstable, which indicates the motion of 
the angle of attack and the pitch rate is unstable. The forebody 
and aftbody aeroelastic modes are stable but their vibrational 
frequencies are close to the cantilevers’ natural frequencies. 
The analysis shows the great difficulties in control design and 
also shows the control focuses.  

C. Command Filter 
Command filters are used to obtain the derivatives of the 

virtual control signals [19]. As Fig. 4 shows, command filter 
puts magnitude, bandwidth and rate limit on the source signal 

0
cx  and outputs the revised signal cx  and its derivative cx� . 

When the signal is within the limits, the transfer function 
from the input to the output is: 
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                                                 (4) 

where iζ and iω  are filter damping ratio and bandwidth. 
Command filter can also filter out high-frequency noise and 
get the transient process of the reference command signal.  
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Fig. 4 Command filter with magnitude, bandwidth and rate limit constraints  
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Fig. 5 The block diagram of the overall control scheme 

III. CONTROL DESIGN 

A. Overall Control Scheme 
In order to simplify our control design, we divide the AHV 

dynamic equations into two subsystems: velocity subsystem 
and altitude subsystem. In velocity subsystem, the throttle 
setting φ  is used to control velocity V  to its reference signal 

cV  by dynamic inversion control method. In altitude 
subsystem, a backstepping controller is applied. The elevator 
deflection eδ  is used to stabilize pitch rate q  as well as 
flexible modes fη  and aη . Then q  controls angle of attack
α  and flight path angle γ  and finally guides altitude h  to its 
reference signal ch  in a stepwise manner. The overall control 
scheme can be seen in Fig.5. Uncertainties during control 
process are estimated online by interval type-2 adaptive fuzzy 
logic system. 

B. Velocity Subsystem Dynamic Inversion Controller Design 
The error dynamics of the velocity is: 
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= − = −
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Denote 1 1

cos cos -
, - sinxT T D

f g g
m m

φ α α γ= = . Considering 

the modelling error, the computing error in aerodynamic 
coefficients, the measuring error of states’ signals, the 
actuator delays and others (we see all the errors as general 
uncertainty), we introduce an additional item *

1Δ  to represent 
the general uncertainty . We obtain: 

108



 
 

 

*
1 1 1cV f g Vφ= + − − Δ�� �                                                          (6) 

The exact value of *
1Δ  is impossible to get. So we use a 

powerful interval type-2 adaptive fuzzy logic system 
(IT2-AFLS) to estimate it online and get 1Δ̂  instead. In order 
to stabilize the velocity tracking error, by dynamic inversion 
control, the control signal can be chosen as: 

1 1 1
1

1 ˆ[ ]c cg V k V
f

φ = − + − + Δ� �                                              (7) 

And (6) can be rewritten as: 
*

1 1 1
ˆ( )V k V= − + Δ − Δ�� �                                                          (8) 

C. Altitude Subsystem Backstepping Controller Design 
1) Altitude Error Dynamics: The error dynamics of the 

altitude is: 
sinc c ch h h V h V hγ γ= − = − ≈ −�� � � � �                                      (9) 

Similar to the velocity subsystem, we introduce *
2Δ to 

represent the general uncertainty in (8) and use 2Δ̂ to estimate 
it. Small change in γ  will cause great change in h , so we 
choose γ  as the virtual control signal. To stabilize the 
altitude tracking error, the flight path angle signal can be 
chosen as: 

2 2
ˆ

c
c

h k h
V

γ − + Δ
=
� �

                                                           (10) 

 And (9) can be rewritten as: 
� *

2 2 2
ˆ( )h k h= − + Δ − Δ��                                                        (11) 

2) Flight Path Angle Error Dynamics: The error dynamics 
of the flight path angle is:  
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In order to unify the subscript, we disuse 2f  and 2g  and 

denote
0

3 3
( ) sin cos,

e
L e LL qS C C TqSC gf g

mV mV V

δα δ α γ+ +
= = − . 

Similarly we introduce *
3Δ  to represent the general 

uncertainty in (12) and use 3Δ̂  to estimate it. Because 
e

L LC Cδα �  and sinLqSC Tαα α� , γ  is mainly driven by α . 
To stabilize the flight path angle tracking error, the virtual 
control signal can be chosen as: 

�
3 3 3

3

1 ˆ[ ]c cg k
f

α γ γ= − + − + Δ�                                            (13) 

And (12) can be rewritten as: 
� *

3 3 3
ˆ( )kγ γ= − + Δ − Δ��                                                        (14) 

3) Angle of Attack Error Dynamics: The error dynamics of 
the angle of attack is: 
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c c

L T gq
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Denote 4
sin cosL T gg

mV V
α γ+= − + . The virtual control 

signal can be chosen as: 
 i

4 4 4
ˆ

c cq g kα α= − + − + Δ�                                                (16) 
And (15) can be rewritten as: 

i *
4 4 4

ˆ( )kα α= − + Δ − Δ��                                                        (17) 
3) Pitch Rate Error Dynamics: The error dynamics of the 

pitch rate is 
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And (18) can be rewritten as: 

*
5 5

ˆ( )qq f= + Δ − Δ��                                                            (20) 
where qf  will be determined later in the stability analysis. 

D. Type-2 Adaptive Fuzzy Logic System Design 
As described in the former sections, uncertainty is 

inevitable in control design. One feasible solution is to 
actively estimate the uncertainty and use it to improve the 
controller robustness. Interval type-2 adaptive fuzzy logic 
system (IT2-AFLS) is one powerful tool to estimate large 
uncertainty. Here we use IT2-AFLS with pre-determined IT2 
antecedent sets and adaptive T1 consequent sets to estimate
ˆ

iΔ . The fuzzy rule bases consist of a collection of IF-THEN 
rules in the following form: 

ˆ:          ,      1, ,n n n n
i i i i i i iR If x is A and x is B then is C n MΔ = …� � �� �   

where ( 1,...,5)ix i =  represents the rigid body modes 

( , , , ,V h qγ α ) , n
iA� , n

iB�  are IT2 fuzzy sets, n
iC  is T1 fuzzy 

set, M  is the rule number. If  n
iA� ,  n

iB�  each has 5 fuzzy sets, 
then 5 5 25M = × = . By using the singleton fuzzification, 
product inference and the center-of-sets (COS) type reducer 
[11], the type-reduced set is given by: 

1 1
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i i in n

y f

f y f

μ μ
= =

= =

Δ =
∏ ∏
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" "    (21) 

where n
iy is the centroid of n

iC  and n
if  is the firing value 

associated with the thn rule. Here the centroid n
iy is defined as 

the point which has the maximum membership value 1. As
( ) 1n

i

n
iF

fμ = , ( ) 1n
i

n
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yμ = ,  
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The type reduced set’s bounds ,il irΔ Δ are totally determined 

by
1 1

M Mn n n
i i in n

f y f
= =∑ ∑ . Choose the following fuzzy basis 

function as: 

1 1
,  M Mn n n n n n

i il il i ir irn n
f f f fξ ξ

= =
= =∑ ∑        

                   (23) 

where ,n n
il irf f  denote the firing values involved to compute 

,il irΔ Δ .There exist several computing methods referred as 
type reduction algorithms. Here we use the Karnik-Mendel 
algorithm (KMA) to obtain ,n n

il irf f  and all the algorithm 
details can be seen in [12].  

The centroid n
iy is viewed as an adaptive parameter and can 

be redenoted by new symbol n
iθ . We get the bounds: 

,  n n n n
il i i ir i iθ ξ θ ξΔ = Δ =                                                    (24) 

Define 1 2( , ,..., )M T
i i i iξ ξ ξ=ξ , 1 2( , ,..., )M T

i i i iξ ξ ξ=ξ , 

( ) 2i i i= +ξ ξ ξ , 1 2( , ,..., )M T
i i i iθ θ θ=θ . By center-average 

defuzzification, the output of the fuzzy logic system is:  
ˆ ( ) 2 T

i il ir i iΔ = Δ + Δ = θ ξ                                                 (25) 

IV. ADAPTIVE LAW AND STABILITY ANALYSIS 

Denote [     ]TV h qγ α= ��� � � �x , *ˆ
i i i= −�θ θ θ , *ˆ T

i i i i iΔ = Δ − Δ = �� θ ξ , 

where *
iθ  is the truth value. ( 1,..., 4)ik i = are positive 

constants, ( 1,...,7)ip i =  are positive weights, ( 1,...,5)i iτ =  

are positive learning rates. *
f f fη η η= −� , *

a a aη η η= −� , 

where * *,f aη η  are the trim values. Then the rigid body modes 

error dynamics can be written as: 
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Consider the following Lyapunov function candidate: 
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The time derivative of  LV  is:  
5 5
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On the other hand, from the fourth and fifth equations of (1), 
we get:  
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where 
 5c q cq q q f q= + = + Δ +� �� � � �                                                     (30) 

Substituting (26), (29), (30) to (28), we get: 
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So, by Lyapunov synthesis approach, the adaptive law of the 
interval type-2 adaptive fuzzy logic system can be: 

5 5 6 7 5 5

ˆ ( ),  1, 2,3, 4

ˆ ( ( ) )
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where ( )Proj • is the projection operator which guarantees all 
parameters are in their allowed compact sets. Denote 

6 7 5q f f a aC p p p qψ η ψ η= + +� � � , 6 7( )
cq c f f a aC q p pψ η ψ η= +� �� ,

2 * 2 *
6 7( ) ( )f f f f a a a aC p N p Nη ω η η ω η η= − + −� � . If qC is far away 

from zero, qf  can be chosen as (33) to cancel the last bracket 
of (31). 

cc q
q

q

q C C
f

C
η+

= −
�

                                                           (33) 

When qC is near zero, (33) is infinite and there exist two 
cases. In Case one, the system is already stable and all 

, ,f a qη η� � �  and the last bracket of (31) are near zero. In Case 
two, the sum of the three terms in qC happens to be near zero, 
but at least one of , ,f a qη η� � � is not zero (so the system does not 
come stable). In Case two, we let 0qf = and soon the system 
moves to a condition that qC is far away from zero in which 
(33) works. 0qf =  also makes sense in case one, because all 

, ,
cq qC C Cη are near zero and the last bracket of (31) can be 

canceled. Choose 0.001ε = as the threshold, so  

,  

0,                    

cc q
q

qq

q

q C C
C

Cf
C

η ε

ε

+⎧
− >⎪⎪= ⎨
⎪ ≤⎪⎩

�

                                           (34) 

By (32) and (34), (31) becomes: 
4

2 2 2
6 7

1
2 2 0L i i i f f f a a a

i
V p k x p pζ ω η ζ ω η

=

= − − − <∑� � ��             (35) 

So the closed loop system is stable by Lyapunov synthesis 
approach. 

V. SIMULATION RESULTES 
At the pseudo trimmed condition: 0 7702.08V = ft/s, 

0 85000h = ft, 0 0γ = rad, 0 0.02453α = rad, 0 0q = rad/s, 
0 0.8983fη = , 0 0.7400aη =  ,  0 0 = 0f aη η=� � , 0 0.2505tδ = ,

0 0.2092eδ = . The reference command signals are chosen as 
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500VΔ =  ft/s and 1000hΔ =  ft. The Learning rates 
0.01,  1,...,5i iτ = = . The weights 1 1p = , 2 1p = , 3 1p = , 

4 1p = , 5 5p = , 6 0.1p = , 7 0.1p = . The coefficients 1 10k = , 

2 0.1k = , 3 0.5k = , 4 2k = . Frequencies of the command 

filters are 0.1vω =  , 0.1hω = , 40qγ αω ω ω= = = , 50eω = ,

50tω = and all damping ratios iζ  are chosen as 1. Choose 

Gaussian function which has the same centre but different 
variances as the primary MF of IT2-FS. UMF has large 
variance and LMF has small variance. The initial values of 
the adaptive parameter vector iθ  are randomly chosen. The 
parametric uncertainties are chosen as:  

 

0

0

0

0

0

(1 * )

(1 * )

(1 * )

(1 * )

(1 * )

f g

y y f g

f g

f g

f g

m m U U GWN

I I U U GWN

U U GWN

S S U U GWN

c c U U GWN

ρ ρ

⎧ = + +
⎪

= + +⎪
⎪ = + +⎨
⎪ = + +⎪
⎪ = + +⎩

                                           (36) 

where 0 0 0 0 0, , , ,ym I S cρ are in nominal parameter values, fU  
is the fixed parameter uncertainty and gU is the strength of 
the Gaussian white noise (GWN) whose power is 0.002. 
Simulations are conducted for IT2-AFLC and T1-AFLC in 
two circumstances: A) without uncertainty and B) with 
uncertainty.  

A. Simulation Results without Parametric Uncertainty 
At the pseudo trim condition, if we input the constant 

control signals without any control strategy, the AHV’s states 
will diverge after a few seconds, as Fig. 6 and Fig. 7 show. 
We can see that the velocity and altitude drop and the flexible 
modes vibrate sharply. It validates the former characteristic 
roots analysis. 

The simulation results will be given during the conference. 

 
Fig. 6 Velocity and altitude response without control strategy 

Set 0f gU U= = , then all parameters are in nominal 
values and there exists no uncertainty. 

 
Fig. 7 Flexible modes response without control strategy 

B. Simulation Results with Large Parametric Uncertainty 
Set 0.2fU = and 0.8gU = . Then all parameters are 

corrupted by fixed uncertainty and noise.  

VI. CONCLUSION 
The appearance of the flexible modes in the dynamic 

equations makes it very difficult to design a robust controller. 
This paper actively used the flexible modes and designed a 
robust adaptive controller to stabilize the tracking errors and 
the structural vibrations. An observer will be designed to 
estimate them online. Other kind of controllers will also be 
considered to obtain better robustness. 
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