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Abstract— The paper proposes a novel non-homogeneity
measure based kernelized image segmentation algorithm for noisy
images. Every 3x3 neighbourhood of every single pixel is
considered for generating localized spatial domain non-
homogeneity measures for every individual window. Then these
spatial domain non-homogeneity measures are converted into
fuzzy domain non-homogeneity coefficients by aggregating the
localized measures into a single distribution and then deriving
fuzzy domain values from a Gaussian membership function.
Quantitative analyses have been rendered with respect to state-of-
the-art noisy-image segmentation techniques and results show
improved performance. Speckle-noise ridden SAR images and
Rician noise ridden medical images are finally considered to show
real-life applications of our algorithm.

Keywords- Fuzzy membership, non-homogeneity, kernel, Speckle
noise,Rician noise, SAR, MRI, segmentation accuracy.

1. INTRODUCTION

Image segmentation constitutes an important part of image
processing which has various applications in the fields of
feature extraction and object recognition. Segmentation
methods mainly involve clustering techniques [1]-[5] which
separate a set of data points, or vectors, into different non-
overlapping groups, such that the members of a particular
group or cluster are similar to each other. Recent researches
have led to the development of fuzzy segmentation methods
which associate fuzzy membership values to each image pixel
for its tendency to belong to various clusters. Fuzzy c-means
clustering [6][7], when applied to image segmentation,
partitions an image into ¢ pre-specified number of clusters and
associates fuzzy values for each individual image pixel to
belong to a particular cluster. However, the conventional fuzzy
c-means algorithm is not immune to noise and does not take
into account the spatial information associated with every
individual pixel.

Szilagyi et. al [8] proposed an enhancement of the
conventional FCM clustering method (EnFCM) based on the
histogram of a linearly-weighted summed image obtained from
the aggregate information of the local neighbourhood of each
pixel and original image. Cai et. al [9] introduced a spatial
similarity measure to generate a non-linearly weighted
summed image. This fast generalized (FGFCM) algorithm
includes both gray-level and spatial information. But these
methods are dependent on several heuristics and parameters
which vary according to the complexities of images. Hence the
optimal choice of these parameters is very difficult, thus
making these methods non-robust, especially for noisy images.
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To do away with the problem of excessive parameterization,
Stelios et. al [10] proposed a parameter-free fuzzy local
information c-means clustering (FLICM) scheme. Gong et. al
have extended their work to a new variant of FLICM, which is
RFLICM [11] but the drawback of this algorithm is that it fails
to take spatial constraints into account.

Most of the clustering algorithms in previous literature
including the abovementioned schemes use Euclidean norm,
which is non-robust as in the case of non-Euclidean input data
set. Kernel based methods [12]-[15] of segmentation transform
data points; in this case, image features into a higher
dimensional space which makes segmentation easy. It is
basically a method in which the lower dimension inner product
space is transformed into a higher dimensional space using
non-linear mapping.

The existing kernel based image segmentation methods work
sufficiently well in case of noisy images but the method
proposed by Chen et. al [16] uses the mean of the surrounding
pixels of a particular image pixel in the objective function as a
measure of the spatial information. This creates a problem
because it puts equal weights on all of the surrounding pixels
of a particular pixel during computation. More importantly,
this method does not take into account the pixel intensity
deviations in a particular window around a pixel of concern.
Gong et. al [17] recently proposed a kernel based fuzzy
clustering scheme that takes into account spatial constraints
and neighbourhood information. But the trade-off weighted
fuzzy factor which changes the contribution of neighbourhood
pixels, as proposed by the authors, is only dependant on local
coefficients of variation and independent noise distributions in
localized windows. Our proposed method incorporates spatial
constraints and local information by calculating the weighted
mean of the surrounding pixels, the weights being reciprocal to
the Cartesian distances between the coordinates of the centre
pixel and that of the surrounding pixels. However, the
foundation of our algorithm lies in extracting the ‘non-
homogeneity’ information from all localized windows and
forming a composite distribution over the entire image. Fuzzy
non-homogeneity coefficients are then derived by transforming
the spatial domain localized ‘non-homogeneity’ values into
fuzzy domain values by utilizing the standard deviation of the
composite distribution. In the point of noise immunity, our
method serves more robustness than the other competing
algorithms as shown by experimental results for different kinds
of noise such as Salt and Pepper, Speckle, Gaussian, Poisson
and Rician noise. A speckle noise ridden Synthetic Aperture
Radar (SAR) [18]-[19] images and a Rician [20]-[21] noise
ridden medical image are considered for testing.



The organization of the paper is as follows:-

Section II provides the framework of the original kernel based
work proposed by Chen et. al. Section III introduces the
weighted neighbourhood information while sections IV and V
introduce the spatial domain and fuzzy domain non-
homogeneity measures respectively. Section VI proposes the
modified kernel based objective function while Section VII
provides experimental results. Applications to SAR and
Medical Images and computational complexities are found in
Sections VIII and IX while section X concludes the
proceedings.

I1. FRAMEWORK OF THE ORIGINAL KERNEL BASED IMAGE
SEGMENTATION

Chen et. al proposed a variant of FCM [16] which takes into
account the spatial constraints of each individual pixel.

a
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Eq. (1) gives the objective function that needs to be minimized
to form the desired clusters.The second term in this objective
function is the metric for the spatial information which is
necessary to overcome the shortcomings of classical FCM. It
tries to maintain homogeneity with the neighbouring pixels.
But this method is computationally complex. In each iteration,
the pixels in a window of size k need to be taken into account.
To tackle this problem, a simple mathematical modification
was made. The term NLRZ, enllxr —v;lI> can be computed
asNiRZTE,\,knxr—x'k||2 + ||% — v;]|> ,where X, is the mean of the
surrounding pixels. This
computationally less expensive as
advance.

Thus the objective function based on spatial constraints
reduced to the form in Eq. (2):

Jm = Tica D= ulp llxe — vill* + a X, Xy uff 1% — vl ()

The parameter @ when set to zero, the objective function
becomes a simple FCM objective function. If ais made infinite,
minimization of the objective function yields the same result as
classical FCM would on the median or mean filtered image.
Chen et.al used this particular method and kernel-induced
distances to better the previous clustering scheme.
®:x € X € R* > ®(x) € F € R¥(d « H) isa non-linear mapping
which transforms a vector to another in a higher dimension as
seen in Eq.(3).

makes the objective function
X, can be computed in

If x =[x x;]" and ®(x) = [x?,vV2x,x,, x7]"then the inner
product can be defined as:

Q)T O(Y) = [xf, V212, X317 [y7, V20172, ¥3] = (XTy)? =
Kx,y) 3)
An improvement of inner product calculation was to use the
kernel function K(X,y) because using the transformation

matrix was not necessary. A typical polynomial kernel is
shown as:

b
K(x,y) = exp <_(le:i=1|xi_yi| ) > @)
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where d is the dimension of the vector and a > 0;1 <b <2;
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K(x, x) =1 for all x. A polynomial kernel of degree p can be
formulated as:

Kxy) = "y +1)? (6))

The kernel functions can be used instead of the inner products
to construct the kernel space.

The clustering was performed by taking the centroids in the
original space instead of taking them in a higher dimension
such that interpretation of results would be easier.
Using the mathematical formulations mentioned before the
objective function was constructed as:

Jm = Eizq Bk ulk 10(x0) — 2(vpII? (6)

Kernelized substitutions yielded Eq. (7).
lo(xi) = DEDIZ = (@(xi0) — (V)" (@(x;) = D(V))
= O(x)" (%) — P(x)"D(vy) — @(v) (%) + P (V) P(V)

= K (X, Xx) + K(vi, vi)
- ZK(xk' vi)
(7
The original kernel based objective function proposed by Chen
et. al is as follows:

c N c N
Js® = Z Z(u%(l —K(xv) + az Z ult(1 = K&y, vy)
i=1k=1 i=1k=1
(®)
The partition matrix values and centroids were presented as in
Eqgs. (9) and 10 respectively.
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This method however does not take into account any spatial
constraint and does not vary the contribution of either the
nucleus or the neighbouring pixels. Thus, we propose a
modification of the objective function in the next few sections.

II1.WEIGHTED NEIGHBOURHOOD INFORMATION

0.707 1 0.707

0.707 1 0.707

Fig.1: 3x3 window showing the weights of contribution of the
neighbours

The information from each neighbourhood pixel is made
dependent on the Cartesian distance of a neighbour from the
nucleus. Fig. 1 shows the weights of contribution of the
neighbours, which are actually the inverse of their respective
Cartesian distances from the center pixel. The weighted mean
of these contributions will be used in place of the arithmetic
mean as an initial modification of the Eq. proposed by Chen et.
al.

The weighted neighbourhood information would be used to
replace the arithmetic mean X, with the Cartesian-distance
induced weighted mean X,,, which is computed as shown in

Eq. (11):
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where [; is the pixel intensity of a neighbouring pixel i € N,
and d; is the Cartesian distance of the /-th neighbour from the
centre pixel or the neighbour.Thus an initial modification of
the kernel-based objective function can be given as:

JS® = Ei; ER=a iR (1 - Koo v) + a Xy TR ufe(1—
K(J_kaivi))

Here, we have not changed the contribution of the
neighbouring pixels except for directly incorporating spatial
constraints in the non-linear kernel mapping. The Cartesian
distances of the neighbours from the nucleus have only been
used to modify the inputs to the kernel mapping function and
have not been used explicitly as damping coefficients. The
next subsections introduce suppressing coefficients which
would be used to further modify the kernel based function.

KXyk =

(12)

IV. AN INITIAL SPATIAL DOMAIN NON- HOMOGENEITY
MEASURE

The deviations of the gray levels of the neighbouring 8
pixelswith respect to the intensity of the centre pixel or the
‘nucleus’ are computed using Eq.(13) and the corresponding
curve is given by Fig 2.

A)-10))?
t )]’
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where ‘7’ is the position of anyneighbouring pixel, ‘ry’ is the
position of the nucleus, /(r) is the intensity of any pixel,
I(ry)isthe intensity of the nucleus and ‘#’ is a control parameter
that controls the range of the output of the equation. The
squared exponentially decaying function is taken to associate
the same value of deviation for pixel intensities that are greater
or smaller than the nucleus intensity by the same amount.

The outputs for the neighbouring 8 pixels from Eq. (13) are
summed up to obtain an initial metric for quantizing the
‘homogeneity information’ or the net pixel intensity deviation
in the window of concern. Eq. (14) represents the sum.

D(r,rg) =%, 6 (r,1,)

As is evident from the equation, if a neighbouring pixel has the
same intensity as the nucleus, the output would be 1. A
perfectly homogeneous region would have all the
neighbourhood pixel intensities equal to the nucleus intensity.
In that case, the sum of the outputs for all of the 8
neighbouring pixels would be 8, with each output being equal
to 1. This is the maximum value of the summed output. The
choice of the parameter ¢ depends on the minimum value of the
output of Eq. (13). The maximum intensity deviation I(r) —
[(1,) can be 255 for a grayscale image and we will limit the
minimum value of the Eq. (13) to 1/8 such that the minimum
value of the summed output of Eq. (14) reduces to 1. Thus the
value of the parameter ¢ can be obtained by solving the

equation in Eq. (15).
-(255)\%] _ 1
e.cp[(((t ))] /8

This yields the value of the parameter ¢ as 176.8344 such that
the summed up output range of Eq. (14) lies within (1, 8).

(14)

(13)

(15)
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Fig 2: The deviation function 0 plotted against intensity deviation
am) —10))
The inverse of this range i.e. [1/8, 1] can be considered as an
initial metric for the ‘non-homogeneity information’ in the

window and we shall call this variable k:%, where we obtained

the values of D using Eq. (14). However, the range of this
metric is small and we shall modify it to arrive at a concrete
expression for suppressing or enhancing the contribution of the
nucleus subsequently.

V. Fuzzy NON-HOMOGENEITY MEASURE

The entire kernel based objective function can be thought of as
a summation of the contribution from the nucleus and the
contribution of its neighbourhood. In case of a perfectly
homogeneous region, the contributions of the neighbouring
pixels have to be taken into account and thus the contribution
of the nucleus needs to be suppressed. With increase in non-
homogeneity, the contribution of the nucleus in the objective
function is increased.

The initial non-homogeneity information proposed in section
IV was in the range [1/8, 1] and it is mapped to the fuzzy
domain values [0, 1] using the Eq. (16) which represents a
Gaussian membership [22]-[24].

where gy, is the standard deviation of the values of all the
spatial domain ‘non-homogeneity’ measure values obtained for
all the localized windows i.e. k and k4, is the maximum
value of the measure globally obtained in an image. Thus
computation of ¢ requires that the values of k for all the
localized windows be recorded such that their standard
deviation can be evaluated. The maximum value of k can be ‘1’
and the minimum value ‘1/8” as mentioned in section IV but it
is dependent on the test image at hand.

The fuzzy mapping of the spatial domain non-homogeneity
values increases the dynamic range of variation of the
suppressing coefficients and associates fuzzy domain values in
the range of [0,1].

(kmax—k)*
202

s(k) = exp (—( (16)

V1. MobIFICATION OF OBJECTIVE FUNCTION

Thus the final modified function incorporates both spatial
constraints by using the Cartesian induced weighted pixel
intensities as input to the Kernel map as well as non-
homogeneity information by using the fuzzified suppressing
coefficients s(k)which increase the contribution of the nucleus
with increasing non-homogeneity. The modified kernel based

equation can be presented in Eq. (17) as:
c N

J5% =" (00 < ufp(1 ~ Kx v) +

i=1k=1

a¥i YR ur(1—KGye,v)) (17

where s(k) is given in Eq. (16).



Similarly, the partition matrix values u;, and the centroidsv;are
modified in Egs. (18) and (19) respectively by incorporating
the weighted mean and the suppressing coefficients. The
values of m, @ and ¢ of the kernel in Eq. (4) has been taken as 2,
3.8 and 150 respectively as proposed by Chen et. alas the
variations of these parameters are not of important concern to
our work.
(st * (1= Ko v) = (1 = Koo v))) ™

Uik 1
¢ (st * (1= Ko v) = a(1 = Ko v))) ™
(18)
o1 Ul (s(k) * K (x, v)xp + aK (X, V1) X))

r1 ul(SC(K) * K Gy, ;) + aK (B, v))

(19)
The entire pseudocode of the algorithm is presented here. The
optimization of the objective function is simply done using
successive iteration method which is present in the pseudocode,
showing necessary termination criterion for the optimization.

PseudoCode of our algorithm

Step 1) Define the number of desired clusters ¢ and
choosecprototype centroids of these clusters and set £=0.001.
Step 2) Compute fuzzy non-homogeneity coefficients to set up
mathematical expressions for the modified objective function,
partition matrix values and centroids.

Step 3) Update the partition matrix values using Eq (17)
Step 4) Update the centroids using Eq (18)

Repeat Steps 3)-4) until the following termination criterion is
satisfied:

‘ ‘Vnew‘ Vold” <g

where V has been defined previously and ¢ has been introduced in
step 1.

VII. EXPERIMENTAL RESULTS

All the test images except for the image of the Cameraman
have been taken from the Berkeley Segmentation Dataset
(BSDS).  (hitp://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds)
The test images taken from BSDS are of size 481x321 while
the image of the Cameraman is of size 256x256.

Fig.

=)

A. Qualitative Analysis

Qualitative Analysis has been shown with the help of three test
images and with respect to the segmented images of the
competing algorithms. The competing algorithms include a
Nystrom method based spectral graph grouping algorithm
NNCut [25], FLICM [10], RFLICM [11], WFLICM [17] and
KWFLICM [17]. Figs. 4(a), 5(a) and 6(a) show a Salt and
Pepper noise added Cameraman image, Gaussian noise added
Zebra image and Poisson noise added Mushroom image.
Poisson noise is generated from the image data instead of
being artificially added.

Figs. 4(b), 5(b) and 6(b) show that the NNCut algorithm
manages to preserve the structure of the image but fails to
remove noiseas can be seen from the noisy pixels left in these
images. The FLICM and RFLICM algorithms only selectively
remove noise and also suffer from blurry edges and distorted
image structure as can be seen in Figs. 4(c)-(d), 5(c)-(d) and
6(c)-(d). The WFLICM and KFLICM perform particularly
well in case of salt and pepper noise as they work mainly on
localized windows but need improvement for distributed noise
such as Gaussian and Poisson as can be seen from Figs. 5(e)-(f)
and 6(e)-(f). Our proposed algorithm not only removes all
types of noise but also preserves the shape of the image and
the structure of the edges in the image as can be seen from Figs.
4(g), 5(g) and 6(g). It is to be noted that 3-level segmentation
has been done for all the test cases.

The original images without noise are in Fig. 3.

Fig. 3: a) Cameraman b) Zebra ¢) Mushroom Images

e

5: a) Gaussian noise (30%) added Zebra b) NNCUT c) FLICM d) RFLICM ¢) WFLICN f) KWFLICM g) Proposed method

.

Fig. 6: a) Poisson noise added Mushroom b) NNCUT c¢) FLICM d) RFLICM e) WFLICN f) KWFLICM g) Proposed method
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B. Quantitative Measures

Quantitative Analysis has been performed and tabulated on the
basis of the metrics discussed in this section. The amount of
Salt & Pepper and Gaussian noise was kept at both 20% and
30% while the Poisson noise, as previously mentioned, is
generated from the image data itself. The results were
averaged after 25 independent runs for all the test images and
for all competing algorithms.

1) Measure dependant on ground truth

Segmentation Accuracy [26] is a metric used to measure the
de-noising capabilities of different algorithms. It gives us an
idea about the fraction of correctly assigned pixels. It is
defined as the sum of the pixels which are correctly assigned
divided by the sum of the total number of pixels and Eq. (20)
shows the mathematical form of SA.

c A;NR;
i=1yc ]
Xj=1Rj

Here ¢ is the number of clustersA;is the set of pixels which

SA =

(20)

forms the i-th cluster in the algorithm and R;represents the

referenced image’s set of pixels which constitute its i-th cluster.

Here, the reference or ground truth images are obtained by
segmenting the images without adding any noise to them using
the conventional FCM algorithm and then using these ground
truths to calculate the segmentation accuracy of all the
competing algorithm for the noisy versions of the images.

Table I shows maximum segmentation accuracy with respect
to all test images for all types of noise and for all competing
algorithms. Higher is the value of SA, the more adequate is the
clustering of pixels. By cluster adequateness, we mean that
despite the presence of noise, the pixels of the noisy image
would be assigned to those clusters which would have been
assigned to the pixels had there been no noise in the image.
Thus, the maximum value of SA achieved by our algorithm
indicates that despite the presence of noise in the images to be
segmented, the noise has been adequately removed and the
pixels have been assigned to proper clusters. The NNCut
algorithm achieves lowest value of SA because it fails to
adequately remove noise, as a result of which many pixels
have been abruptly assigned to different clusters. A qualitative
look at Figs 4(b), 5(b) and 6(b) validate this claim as can be
seen from the speckles in the images that have been assigned
to different clusters with respect to their immediate
background. Similarly, the lower values of SA for the other
algorithms can be attributed to their inadequate removal of
noise in comparison to our algorithm. In addition, the FLICM
and RFLICM algorithms produce blurry edges which indicate
that the edge or contour pixels have been assigned to improper
clusters, a problem which is eradicated completely by our
algorithm.

2) Measure independent of ground truth

In the absence of any ground truth, calculation of
Segmentation Accuracy is impossible. An entropy-based
objective function [27] was developed, minimization of which
would maximize the similarity between the intra cluster pixels
and minimize the similarity between the pixels of different
regions. The region based entropy is defined in Eq. (21).

L;(m)

Sj

Lj(m)l

H(R;) = ~Zmev;

e2))
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where R; denotes the region of the image which makes up the
jth cluster. L;j(m) denotes the number of pixel in the region R;
which have gray level values of ‘m’. V; is the set of all pixel
intensities that are present in the region R;. S;=|R;| denotes the
cardinality, or the number of pixels in the R;region.The
segmented image’s region entropy is given by

S .
H (1) = 25, () H(R) (22)
The entropy for the layout is defined as:
HD = =2 (3) 109 (3) 23)

The combination of the above two entropies leads to the
formation of the final entropy-based objective function in
Eq.(24)

E = H(D) + H,(I) (24)

The lower the value of E, the better is the clustering scheme.

Table 1T shows minimum E with respect to three test images
with different noise types and for all competing algorithms.The
Salt & Pepper noise added Cameraman image has been taken
to represent a standard Salt & Pepper noise added image while
the noisy images of the Zebra and the Mushroom represent
Gaussian noise added and Poisson noise added images

respectively. The lower the value of E', the better is the
clustering of pixels. Our algorithm achieves lowest values of

Ewhich indicates optimal immunity to noise and outliers.
C. Increasing The Number Of Clusters

Increasing the number of clusters exposes intricate details of
the test image. Fig. 7(a) shows a Salt & Pepper noise added
test image while figs. 7(b) and 7(c) present the segmented
images with cluster numbers 3 and 5 respectively. As can be
seen from fig. 7(c), the staircase and the door nearest to it are
properly visible which were not present in the 3-level
segmented image.

(@)
Fig. 7: a) Original Image b) 3-level ¢) 5-level segmentation

(b) ©

D. Extension To Colour Images

All colour images can be visualized as combinations of their
Red, Green and Blue component images. The individual R, G,
B components of the noisy colour image were separately
segmented and concatenation of these separately segmented
images yield the final segmented colour image, shown in Fig.
8(b), where Fig. 8(a) shows the noisy colour image.

(@ )

Fig. 8: a) Noisy colour image b) Segmented image



Table I. Segmentation Accuracy (SA%) for all test images for all competing algorithms

Noise Image NN Cut FLICM RFLICM WFLICM KWFLICM | Proposed
method
20% Salt & Pepper | Cameraman 96.4229 99.5502 99.6610 99.6984 99.7119 99.9080
30% Salt & Pepper 94.0326 99.4221 99.6059 99.6240 99.7080 99.8252
20%Gaussian 92.7009 99.0229 99.2820 99.6815 99.7015 99.8995
30%Gaussian 89.0326 98.7221 98.8059 99.1240 99.5080 99.7015
Poisson 95.0326 97.6651 98.8559 99.5420 99.7080 99.7567
20% Salt & Pepper | Zebra 95.2212 99.2142 99.4620 99.5741 99.6994 99.7180
30% Salt & Pepper 92.0326 99.1992 99.4059 99.6240 99.6221 99.6787
20%Gaussian 91.8884 99.4887 99.5779 99.6848 99.7116 99.7992
30%Gaussian 87.3312 99.4567 99.5112 99.6696 99.7002 99.7676
Poisson 92.2124 98.6651 98.8559 99.5420 99.7080 99.7567
20% Salt & Pepper | Mushroom 95.4229 99.4422 99.5757 99.6232 99.7221 99.9220
30% Salt & Pepper 93.0326 99.3121 99.4332 99.5940 99.7090 99.8796
20%Gaussian 91.7009 99.1228 99.2976 99.6731 99.6991 99.8995
30%Gaussian 88.0326 98.9222 99.1115 99.5240 99.4221 99.7598
Poisson 94.0326 98.1114 98.7665 99.4420 99.6990 99.7212
Table II. Entropy measure for all test images for all competing algorithms
Image Metric NN Cut FLICM RFLICM WFLICM KWFLICM Proposed
with noise method
Cameraman H,(L) 1.8124 1.7932 1.7726 1.7501 1.7291 1.7013
(30% Salt & H][L] 0.4684 0.4894 0.4832 0.4821 0.4795 0.4758
Pepper) E 2.2808 2.2826 2.2558 2.2322 2.2086 2.1771
Zebra H/(L) 1.6394 1.4504 1.4548 1.4448 1.4404 1.4360
30% H[(L) 0.3227 0.3701 0.3798 0.3704 0.3114 0.3003
Gaussian) E 1.9621 1.8205 1.8346 1.8152 17518 1.7363
Mushroom H/(L) 1.5345 15334 1.5307 15316 15304 15279
(Poisson) H[(L) 0.4358 0.4376 0.4404 0.4451 0.4393 0.4388
E 1.9703 1.9710 1.9711 1.9767 1.9697 1.9667

VIII.ApPLICATION TO SAR AND MEDICAL IMAGES

Synthetic Aperture Radar (SAR) images are utilized to
demarcate coastlines and unknown terrain besides other
applications. Speckle noise manifests itself in as apparently
random placement of pixels which are conspicuously bright or
dark. Fig. 9(a) shows a typical speckle-noise ridden SAR
image.Medical images are typically Magnetic Resonance (MR)
images ridden with special Rician type of noise. Fig.
10(a)providesa heavily Rician-noise added MR image. The
segmented images and for our algorithm and other competing
algorithms are presented in Figs. 9(b)-(g) and 10(b)-(g)
respectively. The corresponding entropy measures are
tabulated in Table 3 and our proposed method achieves lowest
entropy as can be seen from the values in Table III. The SAR
image considered here requires only 2 levels of segmentation.

Fig. 9: a) SAR image b)NNCut ¢) FLICM d) RFLICM e¢) WFLICMf) KWFLICM
g)Proposed
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(a)

(b) (©) (d

(e)
Fig. 10:a) MR image b) NNCut ¢) FLICM d) RFLICM e) WFLICMf) KWFLICM g)Proposed

Table III. Entropy measure for SAR and MR images

Image Metric NN Cut FLICM RFLICM WFLICM KWFLICM Proposed
with noise method
SAR H.(L) 0.9112 0.8923 0.8848 0.8730 0.8629 0.8596
(Speckle Hy(L) 0.3778 0.3953 0.3810 0.3862 0.3729 0.3669
noise) E 1.2890 1.2876 1.2658 1.2592 1.2358 1.2265
MR HA(L) 1.6533 1.6397 1.6108 1.6065 1.5878 1.5686
(Rician Hi(L) 0.3734 0.3808 0.3898 0.3867 0.3839 0.3790
noise) E 2.0267 2.0205 2.0006 1.9932 1.9717 1.9476

IX. ABRIEF LoOK AT THE COMPUTATIONAL TIME OF THE
COMPETING ALGORITHMS

Our algorithm serves to accurately extract the accurate
segmentation information from an image while removing noise
and maintaining the unique structural characteristics of the
image. However, when accuracy is the major bottleneck,
computational complexity has to be compromised to a certain
extent. The computational time was evaluated after averaging
through 25 runs for 20 test images, all of sizes 481x321, taken
from the BSDS. Two of these images have been shown in the
experimental section. The others could not be included for
space constraint. For the results provided in Table 1V, the
experiments are carried out on a PC with a second generation
core 15 processor running at 2.66 GHZ and having 4 GB RAM.
The operating system is Windows 7 home basic and the
compiler is MATLAB 7.10.0.

Table IV: Average computational time per image taken by the
competing algorithms

Competing Mean computational
algorithms time in seconds
NNCUT 10.223
FLICM 512.626
RFLICM 456.242
WFLICM 412.123
KWFLICM 650.224
Proposed 330.933

As is evident from the values in the table, the NNCut
algorithm requires minimum computational time since it
involves spectral grouping and does not work on individual
windows. However, the NNCut algorithm is not noise immune
and hence does not serve the purpose of a good noisy image
segmentation. Our algorithm achieves lesser computational
time than the other algorithms which also incorporate spatial
information into account.

X. CoNcLUSION AND FUTURE WORK

The proposed algorithm shows appreciable performance for all
sorts of noises. The method incorporates neighbourhood non-
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homogeneity information based image segmentation involving
kernel mapping. However, the parameter ¢ of the kernel has
not been made adaptive since a variation of ¢ from 5 to 5000
did not reflect any appreciable change in the performance of
the algorithm. We are planning on investing on other Kernel
functions which would require adaptive parameter tuning, for
future work.
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