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Abstract— Recently, clustering has been used for 
preprocessing datasets before applying classification algorithms 
in order to enhance classification efficiency. A strong clustered 
dataset as input to classification algorithms can significantly 
improve computation time. This can be particularly useful in Big 
Data where computation time is equally or more important than 
accuracy. However, there is a trade-off between speed and 
accuracy among clustering algorithms. Specifically, general type-
2 fuzzy c-means (GT2 FCM) is considered to be a highly accurate 
clustering approach, but it is computationally intensive. To 
improve its computation time we propose here a hybrid 
clustering algorithm called KGT2FCM that combines GT2 FCM 
with a fast k-means algorithm for input data preprocessing of 
classification algorithms. The proposed algorithm shows 
improved computation time when compared with GT2 FCM as 
well as KFGT2FCM on five benchmarks from UCI library. 

Keywords- General tye-2 fuzzy, k-means, clustering, input data 
preprocessing, classification 

I.  INTRODUCTION  

Classification is a common problem data mining [2] where 
datasets are mapped into predefined groups called classes. 
Classes are defined according to the similarity of 
characteristics or features of data [1]. Because, the classes are 
determined before applying the real data, this method is 
known as a supervised learning algorithm. Classification is 
used in many fields and sciences such as, bio-informatics [15], 
genetics [14], biology [16] and healthcare [17].  

 Several researches have shown that the computational 
efficiency of classification is enhanced if the input data is first 
clustered before for classification. This is particularly 
applicable when handling big data, where low computation 
time is equally or more important than classification accuracy. 
The class information also improves the accuracy of clustering 
[12]. To have the advantages of both clustering and 
classification, many existing algorithms have been developed 
in a sequential hybrid way [12]. For example in both [11] and 
[12], first the criterion is preprocessed and optimized by a 
clustering algorithm and then in the next step the classification 
criterion is connected with the achieved clustering results to 
enhance the accuracy of classification algorithms. Generally, 
there is a trade-off between accuracy and computation time of 
clustering algorithms, i.e. the higher the accuracy, the more 
the computation time. One of the better known clustering 
algorithms is k-means. K-means is fast but has low accuracy 
[1]. On the other hand, general type-2 fuzzy clustering (GT2 

FCM) is a new method that has high accuracy but is 
computationally intensive. In [4], a general type-2 fuzzy 
clustering algorithm is introduced that is based on α-planes. 
This algorithm has high accuracy and can deal with the 
uncertainty in datasets, while k-means and FCM, which are 
fast clustering algorithms, cannot handle the uncertainty in a 
dataset. 

There are several works that focus on enhancing the speed 
issue of type-2 fuzzy clustering.  A modified version of type-2 
fuzzy system was proposed in [6] to improve the speed 
(computational time) of type-2 fuzzy clustering. Also, in [7]- 
[9] interval type-2 fuzzy is used instead of general type-2 
fuzzy for clustering, because interval type-2 is faster than 
general type-2 fuzzy.  

In addition Yang worked on similarity measurements of 
type-2 fuzzy clustering algorithms on fuzzy datasets [19]-[22]. 
In these work, they redefined new similarity measurements 
based on union, maximum. These new similarity measures 
affect type-2 fuzzy clustering performance. 

In this paper, we propose a hybrid clustering algorithm for 
data input preprocessing of classification algorithms to address 
the high computation time of general type-2 fuzzy clustering 
algorithm. The proposed hybrid method is based on a 
combination of general type-2 fuzzy, which is an accurate 
algorithm and k-means, which is a fast algorithm. We call the 
proposed approach KGT2FCM. KGT2FCM has the 
advantages of both general type-2 fuzzy and k-means 
clustering algorithms, i.e. it has high accuracy and low 
computational time. The results are compared with GT2 FCM 
and KFGT2FCM clustering algorithms for different datasets. 
Unlabeled datasets are used for clustering algorithms; 
however, labeled datasets are used for classification 
algorithms. Since, we use classification datasets in our 
experiments; we can measure the accuracy of our clustering 
algorithm. The paper is organized as follows: section II 
discusses the proposed hybrid algorithm. The results and 
conclusion are presented in sections III and IV, respectively. 

II. PROPOSED METHOD 

Our method is based on k-means and general type-2 fuzzy 
clustering. General type-2 fuzzy clustering was presented in 
[4]. First, a general overview of type-2 fuzzy is given, and 
then the proposed method is described. 
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A. General Type-2 Fuzzy Clustering 

There are two kinds of type-2 fuzzy sets which are often 
used in clustering algorithms: 1) interval and 2) general. In 
interval type-2 fuzzy, the secondary membership function is 
always one, while in general type-2 fuzzy it is a value in range 
of [0,1]. 

General type-2 fuzzy clustering is based on FCM (Fuzzy 
C-Means) algorithm. So, the same as FCM, it initializes the 
centers randomly. The FCM algorithm uses linguistic terms 
such as “Small”, “Medium” or “High”, modeled by type-1 
fuzzy sets for the fuzzifier parameter M (Fig.1). The FCM 
algorithm is used by the GT2 FCM cluster membership 
functions. The general type-2 fuzzy clustering proposed in [4] 
uses α-planes. α-planes manage the uncertainty of general 
type-2 fuzzy sets. The GT2 FCM algorithm exploits the 
linguistic fuzzifier M for its secondary membership functions 
of the general type-2 fuzzy partition matrix ju~  as shown in 

(1). Equation (2), that is a membership grade )(~
ixju   

expressed as type-1 fuzzy sets, is used to describe the 

membership degree of pattern  ix  to cluster jv .  
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According to [4], centroid 
j

uC~ can be calculated as a 

weighted composition of the interval centroids of individual α-
planes using (5). The input of (5) is ju~ . Here, ijd  is the 

distance of ith data from jth centroid. Initial centroids are used 

for the first iteration.  R

M
s  and L

M
s  are obtained as shown in 

Fig.2 for each α-planes and c is the number of clusters. 

 
Fig. 1.  Linguistic variables for initializing the membership functions [4] 

To compute the precise cluster position, (6) is used to 
defuzzify the cluster centroid
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In (6), K is the number of steps that the domain of the 

centroid has been discretized into and iy  is the position vector 

of ith discretized step. In this algorithm the hard-partitioning is 
done based on the defuzzified value of the type-1 fuzzy 
membership grade. So, the following rule is used for hard-
partitioning: 

jkckixkuixjuIf  ,,...,1)),(~)(~(
    (7) 

jClusterxThen i   

But in [4] formula (8) is used for hard-partitioning instead 
of (7). In (7), since the Euclidian  distance  norm  is used to 
calculate the membership of pattern  ix to cluster  j  in  the  

multidimensional  space ,  it  seems  redundant  to  separately 
aggregate  identical  membership  values  for  each  
dimension. So in [4] the authors use (8) for hard-partitioning: 

 
    jkckixkucixjucIf  ,,...,1),)(~)(~(  

jClusterxThen i      (8) 

 
The centroid of the type-1 fuzzy membership 

grade  )(~
ixjuc  can be calculated using (9): 
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In this equation, K and iy  have the same definitions as in 

(6), where  )(~
ixjuc  is the centroid of the jth cluster. 
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Schematic view of GT2 FCM is depicted in Fig.2. Random 
selection of initial centroids causes the algorithm to have more 
iterations, hence, more computation time (lower speed). So, if 
a clustering algorithm, such as k-means, finds the centers one 
step before GT2 FCM and passes them to GT2 FCM, the 
computation time of GT2 FCM will be reduced. 

 

B. K-means 

K-means is one of the most common algorithms in 
clustering. In this method, k denotes the number of clusters. 
K-means algorithm has three steps including: 

 Step 1) k cluster centers are specified, randomly i.e. one 
center for each cluster, step 2) for each input, distance from 
each cluster center is calculated. The data belongs to the 
cluster which has the closest distance from the center. This 
step is repeated for all input data, and step 3) the barycenters 
of clusters (which are generated in step 2) are calculated and 
considered as new cluster centers and then the algorithm goes 
to step 2 [1]. These steps are repeated until centers do not 
change for the two consecutive iterations. The goal of this 
algorithm is to minimize its cost function denoted as (10) 
[1],[3]. 
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Here, n is the number of samples, K is the number of 

clusters, jc  shows the jth cluster and ix  shows ith sample of 

pattern.   
In this paper we use Euclidian distance which is a 

traditional metric for distance measurement of k-means. 
Following equation presents the Euclidian distance [10]: 
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In this equation ),( yxd  is the Euclidean distance between 

sample x with cluster y.  

C. Previous work  

To improve the computation time of GT2 FCM, the 
algorithm at [10] uses the output of k-means algorithm as the 
input for FCM. Then, the outputs of FCM are used as the 
initial cluster centroids for GT2 FCM. In the following the 
details are discussed. In the conventional FCM, the initial 
values of membership functions are random numbers in the 
range of [0, 1]. However, if the initial values of membership 
functions are selected more wisely, it is expected to need less 
number of iterations by FCM, hence, the computation time is 
improved. To do so, the authors of [10] use k-means to 
determine the centroids of input data and then calculate the 
distances of each data from all centroids.  

The normalized distances are assumed as initial values of 
membership functions of input data of FCM. By doing so, 
FCM would have a better starting point and it helps to reduce 
the execution time and iterations of FCM. This algorithm is 
called KFGT2FCM. However, using both k-means and FCM 
clustering algorithms for initializing GT2 FCM causes almost 
a large overhead. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Schematic view of GT2 FCM [4] 

D. Proposed Method 

To make the algorithm even faster, we can omit one of the 
k-means or FCM algorithms which generate initial centroids 
for GT2 FCM. We omit FCM algorithm from the flow 
because k-means is faster than FCM. Also, clusters’ centroids 
detected by FCM and k-means clustering algorithms are close 
to each other. However, the complexity time of k-means and 
FCM are O(ncdi) and O(ndc2i),respectively [23], where, n 
denotes number of dimensions, i is the number of iterations, n 
shows the number of sample of dataset and c is the number of 
clusters.  According to [23], for n=100,  d=3, i=20 and for a 
constant number of dataset’s samples, the elapsed time for k-
means and FCM are 0.443755 and 0.781679 seconds, 
respectively. Also, if we assume the number of clusters as a 
constant and assume n=150, d=2, c=2 and i=20, then the time 
complexity of k-means and FCM are 12000 and 24000, 
respectively [23]. So, FCM needs more computation time than 
k-means.  Hence, in the revised version just k-means is 
employed to find the centroids of GT2 FCM. This change 
improves the computation time of the algorithm and 
consequently, the new algorithm is executed much faster than 
KFGT2FCM. This new algorithm is called KGT2FCM. 

The flowchart of KGT2FCM is depicted in Fig.3. As 
depicted in Fig.3, first of all the input dataset are applied to the 
k-means algorithm. Then, k-means clusters input dataset and 
finds their centroids. After that, these centroids are used by 
GT2 FCM as the initial centroids. In the next step, the type-2 
fuzzifier function calculates the secondary membership 
functions based on α-planes and using (3), (4) and “Medium” 
linguistic term for secondary membership function as depicted 
in Fig.1. We use 10 α-planes. Then, EKM1 algorithm [13] is 
used for type reduction and finding the centroids of α-planes. 
EKM introduced by Mendel and Wu to enhance the 
computation time of KM. EKM is 39% faster than KM 
algorithm and can save  about two iterations while KM find 
the answer usually between two to six iterations  [13]. In our 
proposed method, for type reduction we use (5) which are 
based on EKM algorithm, to find the centroids of 10 α-planes.  
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Doing so, the type-2 fuzzy membership function reduces to 
type-1 fuzzy which is a primary membership function. To find 
the precise center of each cluster, the centroids should be 
determined using (6).  The centroids calculated by (6) are 
checked with previous centroids of each cluster. If they are 
different, the algorithm recalculates the secondary 
membership function using new centroids and then the 
following steps are repeated. Otherwise, the algorithm finishes 
(Fig. 3). 
 
 

 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Flowchart of proposed KGT2FCM 

III. SIMULATION RESULTS 

In this section the experimental setup and simulation 
results are presented. 

A. Experimental Setup 

In this paper, five standard datasets of UCI are selected, 
including Iris, Wine, Pima Indians, Shuttle and Magic which 
have been listed in table I [18]. The Shuttle data has been 
divided into two classes. One class (class 1) includes  the  

most numerous data class which is 80% of data and the second 
class (class 2) contains the remaining less numerous data 
classes which is the 20% of data. All of the datasets of table I 
are applied to GT2 FCM, KFGT2FCM and KGT2FCM 50 
times. The machine used for doing the experiments and 
simulations is an Acer 5750G system with an Intel Core i7-
2630QM@2.00GHz and 6.00 GB RAM and running Windows 
7. MATLAB software has been used for implementing the 
algorithms. For fair comparisons of computation time of the 
three algorithms, the target accuracy has been assumed the 
same for all the three algorithms in all the experiments. All of 
the three algorithms (i.e. GT2 FCM, KFGT2FCM and 
KGT2FCM) are based on GT2 FCM [4], and use the same 
membership functions (i.e. the same initial conditions). 

Since initial centroids of k-means and GT2 FCM are 
selected randomly, we run each algorithm for 50 iterations, i.e. 
with 50 sets of random initial centroids, to show that the 
random initial centroids have trivial effects on the results. The 
computation time improvement (speedup) of KGT2FCM 
compared to GT2 FCM and KFGT2FCM is calculated using 
equation (12). Therefore, when the speedup is greater than one 
the computation time of KGT2FCM is less than GT2 FCM or 
KFGT2FCM and when the speedup is less than one the 
computation time of KGT2FCM is greater than GT2 FCM or 
KFGT2FCM. 
Computation time improvement (speedup) = 

KGT2FCM of time Run

KFGT2FCM) or (GT2FCM of time Run
  (12) 

 

B. Experimental Results 

The 30% of Wine dataset which have been selected 
randomly is applied to the three algorithms while the target 
accuracy is assumed to be 66% for all three. The computation 
time of three algorithms are shown in Fig.4, Fig.5, Fig.10 and 
Fig.11.  

 
Fig. 4. Comparison of computation time for 50 iterations of three algorithms 

with a target accuracy of 66% for 53 data of Wine dataset 

Initialize centroids with k-means clustering algorithm 
and use its output as initial centroids of GT2 FCM 

Type-2 fuzzifier and prepare secondary 
membership function with 10 α- planes.  

GT2 FCM 

Is the new 
centroid 

equal to last 
centroid? 

Yes 

No 

End 

Load Dataset 

Start 

For type reduction compute the 
centroid of α- plane (10)  

Find jv  as the centroid of thj  cluster. 

Classification algorithm 

TABLE I 
LIST OF DATASETS THAT USED FOR EXPERIMENTS 

Dataset Clusters Size 
Attributes  

Iris 3 150 4  
Wine 3 178 13  

Pima Indians 2 768 8  
Shuttle 2 43,500 9  
Magic 2 19,020 10  
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In another experiment, 70% of Iris dataset which have 
been selected randomly is applied to the three algorithms 
while the target accuracy is assumed to be 70% for all three 
algorithms. Comparing table II and table III, reveals that 
KGT2FCM outperforms GT2 FCM and KFGT2FCM 
significantly for low target accuracies. For the experiments 
performed for generating results of table II and III, 70% of 
each dataset which selected randomly, were used. However, 
for the experiments done for generating results of Fig.4 and 5, 
30% of each dataset, which selected randomly, were exploited. 

Since, in this paper we focus on computation time 
reduction and not accuracy, the target accuracies are selected 
close to the maximum accuracy. 

 
 

 
Fig. 5.  Comparison of computation time for 50 iterations of three 

algorithms with a target accuracy of 70% for 105 data of Iris dataset 

 
 

 

As illustrated in Fig.4 and Fig.5, the computation time of 
KFGT2FCM and KGT2FCM enhanced significantly 
compared to GT2 FCM. The average speedup of KGT2FCM 
compared to GT2 FCM and KFGT2FCM are 15880× and 
1.004× respectively for Fig. 4 and are 15029× and 1.04×, for 
Fig. 5, correspondingly. Because the computation time of GT2 
FCM is much larger than the two others, the differences of 
KFGT2FCM and KGT2FCM computation time is not seen in 
these figure. Therefore, two other Fig. 6 and 7, which are 
zoomed in of Fig. 4 and 5, have been added for comparing 
only KFGT2FCM against KGT2FCM. 

The same as Fig.4 and 5, in Fig. 6 and 7 the results of 
KFGT2FCM and KGT2FCM are very similar.  Therefore to 
clarify the difference of these clustering algorithms, in Fig. 7 
and Fig.8, the same results are redrawn just for 35 iterations.  

 

 
Fig. 6.  Comparison of computation time for 50 iterations of two algorithms 

with a target accuracy of 70% for 105 data of Iris dataset 

 
 

 
TABLE II 

COMPARING COMPUTATION TIME (IN SECONDS) OF THREE 

ALGORITHMS WITH LOW TARGET ACCURACY 

Method 
Iris  

Acc a: 
50% 

Wine  
Acc: 
50% 

Pima 
Indians 

Acc: 
65% 

Shuttle 
Acc: 
70% 

     
GT2FCM 

(in seconds) 
 

0.2138 0.51 1.68e-5 2.32e-4 

KFGT2FCM 
(in seconds) 

 

9.76e-5 1.7e-5 1.72e-5 2.37e-4 

KGT2FCM 
(in seconds) 

 

2.51e-5 1.5e-5 1.67e-5 2.31e-4 

Speedup of 
KGT2- FCM 

vs. GT2 –
FCM 

 

 

8518× 

 

34000× 

 

1.005× 

 

1.004× 

Speedup of 
KGT2- FCM 

vs. 
KFGT2FCM 

 

3.888× 

 

1.13× 

 

1.03× 

 

1.026× 

a
 Target accuracy  

 

TABLE III 
COMPARING COMPUTATION TIME OF THREE ALGORITHMS (IN 

SECONDS) ON DIFFERENT DATASETS WITH DIFFERENT TARGET 

ACCURACY 

Method 
Iris  

Acc a: 
86% 

Wine  
Acc: 
71% 

Pima 
Indians 

Acc: 
68% 

Shuttle 
Acc: 

74.7% 

     
GT2FCM 

(in seconds) 
 

1.1 3.55 2.32e-4 1.63e-5 

KFGT2FCM 
(in seconds) 

 

0.04 0.278 2.33e-4 1.75e-5 

KGT2FCM 
(in seconds) 

 

0.11 1.53e-5 2.30e-4 1.67e-5 

Speedup of 
KGT2- FCM 

vs. GT2 –
FCM 

 

 

10× 

 

232026× 

 

1.008× 

 

0.97× 

Speedup of 
KGT2- FCM 

vs. 
KFGT2FCM 

 

0.36× 

 

18170× 

 

1.013× 

 

1.05× 

a
 Target accuracy  
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Fig. 7. Comparison of computation time between two algorithms to reach 
to the 66% accuracy in 50 times iterations for 53 data of Wine dataset 

 

 
Fig. 8.  Comparison of computation time for 35 iterations of two 

algorithms with a target accuracy of 70% for 105 data of Iris dataset 

 
Fig. 10 shows the computation time for GT2 FCM, 

KFGT2FCM and KGT2FCM, when the accuracy is 60% and 
30% of Pima Indians dataset is selected. The average 
computation time improvement of KGT2FCM compared to 
GT2 FCM and KFGT2FCM for this dataset are 32244× and 
12911×, respectively. 

The same experiments have been done using 70% of Iris 
dataset assuming 75% target accuracy. The results have been 
depicted in Fig. 11. The average computation time 
improvement of KGT2FCM compared to GT2 FCM and 
KFGT2FCM for this dataset are 11.68× and 0.55×, 
respectively. The reason for performance degradation of 
KGT2FCM compared to KFGT2FCM is due to the last five 
runs of KFGT2FCM which have long runtime.  

 

 
Fig. 9. Comparison of computation time between two algorithms to   

reach to the 66% accuracy in 35 times iterations for 53 data of Wine dataset 

 

 
Fig. 10.     Comparison of computation time for 50 iterations of three 

algorithms with a target accuracy of 60% for 230 data of Pima Indians dataset 

Due to the large differences between execution time of the 
last 15 runs of KFGT2FCM and the other 35 runs, it seems 
that curves of KFGT2FCM and KGT2FCM are very close to 
each other for the first 35 runs. However, the real differences 
of KFGT2FCM and KGT2FCM computation time are not 
illustrated in Fig. 11, clearly.  

To clarify this, Fig. 12, which is zoomed in of Fig. 11, has 
been added for comparing KFGT2FCM and KGT2FCM for 
the first 35 runs. Considering only the first 35 runs, the 
average execution time improvement of KGT2FCM compared 
to KFGT2FCM for this dataset is 1.05×. 

The averages of computation time (in seconds) of 50 
iterations of each algorithm on a specific dataset with specific 
target accuracy are available in table II and table III. Also, 
table II and III show the speedup of KGT2FCM compared to 
KFGT2FCM and GT2 FCM for each specific dataset with 
specific target accuracy. The input data used for these tables 
are 70% of data of each dataset that were selected randomly.  
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According to table II the maximum speedup for 
KGT2FCM vs. KFGT2FCM is 3.888× and for KGT2FCM vs. 
GT2 FCM is 34000× and for table III are 18170× and 
232026×, respectively. Totally, we tried all of these datasets 
for five different accuracies. But, due to page limitation we 
only presented two groups of the results in tables II and III and 
the rest of the results were not presented. The average speedup  
for all of the results obtained for KGT2FCM vs. KFGT2FCM 
and GT2 FCM, are 1818× and 27456×, respectively. 

According to table II and table III, KFGT2FCM obtains 
better results for Iris dataset. The reason is that the 
combination of k-means and FCM produces better initial 
centroids compared to k-means, which shortens GT2 FCM 
execution time. However, the combination of k-means and 
FCM produces worse initial centroids compared to the 
proposed method for Wine dataset which lengthens GT2 FCM 
execution time. The proposed method obtains better results for 
80% of case studies used for tables II and III. The best results 
are bolded in table II and table III.  

 

 
 

Fig. 11.     Comparison of computation time for 50 iterations of three 
algorithms with a target accuracy of 75% for 105 data of Iris dataset 

 

 
Fig. 12.     Comparison of computation time for 35 iterations of two 

algorithms with a target accuracy of 75 % for 105 data of Iris dataset 

 

In table III, for the Shuttle dataset, the GT2 FCM performs 
better compared to KFGT2FCM and KGT2FCM. The reason 
is that GT2 FCM reaches to the target accuracy, in the first 
iteration. So, in both KFGT2FCM and KGT2FCM algorithms, 
k-means and FCM algorithms which are used to initialize the 
centroid of GT2 FCM, results in longer computation time for 
KFGT2FCM and KGT2FCM. Therefore, these algorithms run 
slower than GT2 FCM. Also, in table III, for Iris dataset, 
KFGT2FCM is faster than KGT2FCM. The reason of this 
phenomenon is that four iterations from 50 iterations of 
KGT2FCM are very time consuming. The effects of these 
slow iterations causes the average time of KGT2FCM 
algorithm to be lower than KFGT2FCM. Considering k-
means, in which its initial centroids are selected randomly, 
reveals that if the random centroids are not selected properly, 
it results in poor accuracy and therefore causes GT2 FCM to 
need more iteration and hence, makes KGT2FCM slower. The 
same problem happens in figures 6 and 7. 

According to table II and III, although, in several cases 
KGT2FCM is slower than GT2 FCM and KFGT2FCM, the 
computation time differences of  KGT2FCM in these cases is 
very small and are approximately 4.0e-7 seconds compared to 
GT2 FCM  and KFGT2FCM. 

IV. CONCLUSION 

Recently, several works have used clustering and 
classification in sequential structures to improve the 
performance of classification algorithms. As they indicated, 
the efficiency of classification learning is enhanced if the input 
data is first clustered and then used for classification. 
However, there is a trade-off between computation time and 
accuracy of clustering algorithms. In this paper, a new 
clustering method is introduced to improve the computation 
time of a classification algorithm by preprocessing 
classification dataset. To address the conflict of high 
computation time and high accuracy of clustering algorithm, 
we propose a hybrid clustering algorithm called KGT2FCM. 

 This algorithm is a combination of high accuracy general 
type-2 fuzzy C-means (GT2 FCM) that can deal with 
uncertainty via using α-planes with low computation time k-
means algorithm for input data preprocessing of classification 
algorithms. The proposed algorithm improves the speed of 
GT2 FCM and run on five datasets of UCI for clustering with 
different target accuracy.  

KGT2FCM has better efficiency compared to GT2 FCM 
for almost all cases. The reason is that KGT2FCM produces 
better initial centroids for GT2 FCM. The average speedup of 
KGT2FCM compared to GT2 FCM on five datasets including 
Iris, Wine, Pima Indians, Shuttle and Magic, is 27456×. 

In 86% of case studies; KGT2FCM is faster than 
KFGT2FCM.  The reason is that for these cases combination 
of k-means and FCM takes long time to converge to good 
initial centroids for GT2 FCM, however KGT2FCM does not 
have the overhead of FCM. In the remaining 14% cases, 
because the combination of k-means and FCM produces better 
initial centroids for GT2 FCM, KFGT2FCM has better 
speedup compared to KGT2FCM. Finally, the average 
speedup of KGT2FCM compared to KFGT2FCM on five 
datasets including Iris, Wine, Pima Indians, Shuttle and 
Magic, is 1818×. In conclusion, the proposed method 
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(KGT2FCM) is faster than GT2 FCM and KFGT2FCM by 
27456× and 1818×, respectively. 
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