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Abstract—The main problem addressed in this paper is to
handle adequately imprecision of input data by means of a
combination of fuzzy methods with the rough set theory. We will
make use of fuzzy rough sets derived as rough approximations
of fuzzy antecedent sets by non-singleton fuzzy premise sets in a
fuzzy classifier. Adaptation of the parameters of this system will
be done by the standard genetic algorithm.

I. INTRODUCTION

FUZZY systems comprise the following components: fuzzi-
fiers, bases of knowledge, inference modules, aggregation

modules and defuzzifiers. The variety of combinations of meth-
ods for inference, aggregation, fuzzification and defuzzification
lead to numerous practical designs of neuro-fuzzy systems;
however, the fuzzifier is habitually ignored, independently
whether imprecision is present in inputs or not.

In this paper, we intend to apply non-singleton fuzzification
in order to enrich the structure of neuro-fuzzy systems. The
application of the non-singleton fuzzification affects the re-
duction of sensitivity to changes of input values. Nevertheless,
the main motivation to choose the non-singleton fuzzification
arises from taking into consideration the imprecision of the
measurements or from the use of a fuzzy system in the case
of corrupted or noisy data [19], [26], [27].

Generally, fuzzification is a mapping from an input space
to a fuzzy set. When we obtain, as a result of fuzzification, a
fuzzy set 𝜇𝐴′ (𝑥) defined on some set 𝑋 rather than a mem-
bership grade at single point 𝑥, we mean non-singleton fuzzi-
fication. Our approach regards non-singleton fuzzification as
the mapping to a generalized membership function 𝜇𝐴′(𝑥, 𝑥̄)
in order to analyze the whole spectrum of fuzzified 𝑥̄ values
ahead of time of reasoning. A need of an a’priori knowledge
about the imprecision of inputs is crucial to determine an
adequate fuzzification of membership functions.

In [19] (see also [18]), Mouzouris and Mendel have demon-
strated that it is possible to interpret the non-singleton fuzzy
inference system as a singleton fuzzy system by enclosing
fuzzification with antecedents from the rule base. They have
restricted themselves to the so called Mamdani fuzzy logic
systems in which inference relies on fuzzy conjunctions of
antecedents and consequents in the rule base. In this paper,
we will extend this idea in two directions. Firstly, we will
generalize fuzzification of non-singleton types with the use
of rough sets. Secondly, we will equip neuro-fuzzy systems
with genuine implications to achieve so called logical-type
neuro-fuzzy systems. We will prove that the non-singleton
fuzzification in the case of particular logical-type fuzzy system

architectures can be implemented using modified antecedent
fuzzy sets in the classical singleton fuzzification architectures.
Besides, this will allow us to notice unexpected similarities
between the standard formulation of fuzzification and fuzzy
rough sets.

Although, fuzzy sets [38] and rough sets [23] are semanti-
cally different techniques for representation of uncertain data,
they can be used together in two known combinations. As
rough fuzzy sets they have been used in controllers [4], in
classification [31] and in neural architectures for classification
with missing data [20], [21]. As fuzzy rough sets [8], [11], [25]
they have been applied to dimensionality reduction [12], [13],
[32], to neural networks [33], [34], and to neurocomputing
[17].

We will choose the concept of fuzzy rough sets combining
fuzzy sets with fuzzified rough partition that originates from
works of Dubois and Prade [5], [6]. Formally, if Φ is a fuzzy
partitioning of universe 𝑈 , fuzzy sets 𝐹𝑖 are its partitions, and
𝐴 is a fuzzy subset of 𝑈 , i.e., 𝐴 ⊆ 𝑈 . The fuzzy rough set is
defined as a pair (Φ∗𝐴,Φ∗𝐴), where the set Φ∗𝐴 is a Φ–lower
approximation of the fuzzy set 𝐴, and the set Φ∗𝐴 is its Φ–
upper approximation. Accordingly, the membership functions
of fuzzy sets Φ∗𝐴 and Φ∗𝐴 are defined as follows:

𝜇Φ∗𝐴(𝐹𝑖) = sup
𝑥∈𝑈

min (𝜇𝐹𝑖
(𝑥), 𝜇𝐴(𝑥)) , (1)

𝜇Φ∗𝐴(𝐹𝑖) = inf
𝑥∈𝑈

max (1− 𝜇𝐹𝑖
(𝑥), 𝜇𝐴(𝑥)) . (2)

The main problem addressed in this paper is to handle ad-
equately imprecision of input data by means of a combination
of fuzzy methods with the rough set theory. We will make use
of fuzzy rough sets derived as the rough approximations of
fuzzy antecedent sets by non-singleton fuzzy premise sets.

Owing to this alternative, formulas (1) and (2) describe
the broader and narrower fuzzy sets as a composition of a
fuzzification and a fuzzy antecedent set with respect to the
marginal t-norm and conorm, i.e. min and max. Thus the
first of these expressions is a particular case of non-singleton
fuzzification applied to Mamdani fuzzy logic systems, i.e.
relying on conjunction rules. Surprisingly, the second equation
realizes the non-singleton fuzzification in logical-type fuzzy
systems, relying on strong implications. Therefore, a fuzzy
rough set can be viewed as an extension to non-singleton
fuzzification. Besides, we will reveal that the same fuzzy
rough sets can be used both to the conjunction-type and the
logical-type fuzzy systems, which has potential in advance
of the flexible compromise fuzzy systems [28]. However,
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the development of efficient structures of new systems and
neuro-fuzzy rough systems, presented in this paper, is not
straightforward since upper and lower rough approximations
form interval functions.

Our approach differs from the commonly known ap-
proaches to non-singleton fuzzification in matter that sets in the
rule base and fuzzification sets are no longer ordinary fuzzy
sets, but an interpretation of fuzzification in terms of fuzzy
rough approximations lead us to an interval fuzzy inference
system. The interval uncertainty emerges naturally as a result
of the fuzzified rough approximation of fuzzy antecedent
sets. Therefore, the fuzzy-rough fuzzification method, we will
describe in this paper, is well-grounded both in the fuzzy and
the rough set theory. Moreover, this method may be considered
technically as a new generation method for type-2 fuzzy sets
in fuzzy logic systems [1], [2], [10], [14], [35], [37].

The rest of this paper is ordered as follows: In Section II,
preliminaries about fuzzy rough systems applied to classifi-
cation are delivered. Several original formulae to implement
rough fuzzy non-singleton fuzzification in a fuzzy logic sys-
tem are provided. Section III explains details about genetic
optimization of the rough fuzzy system structure. Section IV
supplies application examples, and finally Section V draws
conclusions.

II. FUZZY ROUGH SYSTEMS

The problem of embedding non-singleton fuzzification into
the antecedent part of a fuzzy logic system has been solved in
[22]. In this section, fuzzy rough approach to non-singleton
fuzzification in the fuzzy logic system framework will be
considered.

A. Fuzzy Rough Sets Forming Non-Singleton Fuzzification

Now, we can apply the fuzzy rough approximation of an
antecedent fuzzy set 𝐴𝑘 assuming that the fuzzy partitioning Φ
is determined by imprecision of input data. This imprecision
may be induced by non-singleton fuzzification, such that a
premise fuzzy set 𝐴′ plays a role of a fuzzy partition set 𝐹𝑖
in the definition of the fuzzy rough set given by (1) and (2).

The shape of the membership function of 𝐴′ is specified
by a fuzzification method. In common problems, we have an
a’priori knowledge about the imprecision of input data, so
thus we can assign spreads of a fuzzifying function in each
dimension. Therefore, emphasizing that 𝐴′ is also an explicit
function of x̄, we can involve the information about fuzzifica-
tion by substituting Φ–upper and Φ–lower approximations of
𝐴𝑘, denoted by 𝐴∗𝑘 and 𝐴𝑘∗ , for the conventional compatibility
between a fuzzy premise 𝐴′ and a fuzzy antecedent 𝐴𝑘, i.e.,

𝜇𝐴∗𝑘(x̄) = sup
x∈X

min (𝜇𝐴′(x, x̄), 𝜇𝐴𝑘(x)) , (3)

𝜇𝐴𝑘∗ (x̄) = inf
x∈X

max (1− 𝜇𝐴′(x, x̄), 𝜇𝐴𝑘(x)) . (4)

Considering non-singleton fuzzification as fuzzy partition-
ing, we anticipate that (3) has the same form as the standard
fuzzification [22] if only the strongest t-norm is employed. The
upper approximation together with the lower approximation
may be regarded as an extension of traditional non-singleton

fuzzification in the conjunction-type (Mamdani) fuzzy systems.
Besides, it may seem surprising that if we apply de Morgan
laws, the lower approximation (4) is a particular (the strongest)
form of fuzzification in the logical-type fuzzy systems based
on S- or QL-implications. Although the fuzzy rough lower
approximations of antecedents are convergent with using non-
singleton fuzzification with either strong or quantum logic
implications, the reasoning process is till now based on fuzzy
conjunctions.

To go into details, let us assume that x̄ is independent
of x. In order to find all the supreme minima in equation
(3), we have to vary 𝜇𝐴′(x, x̄) in the whole spectrum of
possible x̄ values. For each x̄, an upper fuzzy rough grade can
be produced. In Figure 1a), the construction of upper fuzzy
rough grades (indicated by squares) is demonstrated for three
exemplary x̄, i.e., x̄1, x̄2 and x̄3.

Similarly, in order to find all the lowest maxima in equation
(4), we have to vary the fuzzy complement of 𝜇𝐴′(x, x̄) in the
whole spectrum of possible x̄ values. The construction of lower
fuzzy rough grades is presented in Figure 1b).
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Fig. 1. Construction of (a) — upper and (b) — lower antecedent fuzzy rough
sets; 𝐴𝑘 — fuzzy antecedent membership function (dashed line), 𝐴′

𝑖 (𝑥) =
𝐴′ (𝑥, 𝑥̄𝑖) — examples of non-singleton fuzzy premise membership functions
(dotted lines) 𝑖 = 1, 2, 3, 𝐴𝑘∗ and 𝐴𝑘∗ — upper and lower antecedent fuzzy
rough membership function (dashed lines)

Figure 2 shows in a concise form examples, in which
antecedent fuzzy sets 𝐴𝑘 are transformed into pairs of upper
and lower membership functions

{
𝐴𝑘∗, 𝐴

𝑘∗}. Gaussian and
triangular fuzzy premises 𝐴′ are combined with Gaussian and
triangular fuzzy antecedents 𝐴𝑘.

It can be immediately observed that upper approximations
in fuzzy rough systems are concurrent to fuzzification in the
conjunction-type fuzzy systems. Unexpectedly, lower approxi-
mations in fuzzy rough systems coincide with fuzzification in
the logical-type fuzzy systems.

1) Gaussian fuzzification of Gaussian antecedents: Sup-
pose we have two Gaussian membership functions, 𝜇𝐴′

𝑖
and

𝜇𝐴𝑘,𝑖
, and assume an aggregating t-norm to be the alge-

braic product. The antecedent membership function embedding
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Fig. 2. Examples of antecedent fuzzy rough sets: (a) — Gaussian fuzzi-
fication, (b) — Gaussian antecedent (dashed line) and its upper and lower
fuzzy rough sets for Gaussian fuzzification (solid lines), (c) — triangular
antecedent (dashed line) and its upper and lower fuzzy rough sets for Gaussian
fuzzification (solid lines); (d) — triangular fuzzification, (e) — Gaussian
antecedent (dashed line) and its upper and lower fuzzy rough sets for triangular
fuzzification (solid lines), (f) — triangular antecedent (dashed line) and its
upper and lower fuzzy rough sets for triangular fuzzification (solid lines)

Gaussian fuzzification by 𝜇𝐴′
𝑖
(x) can be evaluated as follows:

𝜇𝐴𝑘
(𝑥′𝑖) = sup

𝑥𝑖∈𝑋𝑖

(
𝜇𝐴′

𝑖
(𝑥′𝑖, 𝑥𝑖)𝜇𝐴𝑘,𝑖

(𝑥𝑖)
)

(5)

= sup
𝑥𝑖∈𝑋𝑖

⎛
⎜⎜⎝

exp

(
− 1

2

(
𝑥𝑖−𝑥′

𝑖

𝜎𝑖

)2)

⋅ exp
(
− 1

2

(
𝑥𝑖−𝑐𝑘,𝑖

𝜎𝑘,𝑖

)2)
⎞
⎟⎟⎠ (6)

= sup
𝑥𝑖∈𝑋𝑖

exp

⎛
⎜⎝ − 1

2

(
𝑥𝑖−𝑥′

𝑖

𝜎𝑖

)2
− 1

2

(
𝑥𝑖−𝑐𝑘,𝑖

𝜎𝑘,𝑖

)2
⎞
⎟⎠ , (7)

where 𝜎𝑖, 𝜎𝑘,𝑖 define spreads of fuzzy sets 𝐴′
𝑖, 𝐴𝑘,𝑖, 𝑐𝑘,𝑖 defines

centre of fuzzy set 𝐴𝑘,𝑖.

Using differentiation, 𝜇𝐴′
𝑛
(𝑥𝑛, 𝑥

′
𝑛)𝜇𝐴𝑘,𝑛

(𝑥𝑛) attains its supre-
mum at

𝑥∗𝑖 =
(𝜎𝑖)

2
𝑐𝑘,𝑖 + (𝜎𝑘,𝑖)

2
𝑥′𝑖

(𝜎𝑖)
2
+ (𝜎𝑘,𝑖)

2 . (8)

After simple algebra, we obtain the following membership
function which remains Gaussian, i.e.,

𝜇𝐴𝑘
(𝑥′𝑖) = exp

(
−1

2

(
𝑥′𝑖 − 𝑐𝑘,𝑖
𝜎̃𝑘,𝑖

)2
)
, (9)

where

𝜎̃𝑘,𝑖 =

√
(𝜎𝑖)

2
+ (𝜎𝑘,𝑖)

2
. (10)

The lower membership function is approximated
by two pieces of Gaussians interpolated at points
(𝑐𝑘,𝑖 − 𝜎̃𝑘,𝑖, 𝑐𝑘,𝑖, 𝑐𝑘,𝑖 + 𝜎̃𝑘,𝑖), i.e.,

𝜇
𝐴𝑘

(𝑥′𝑖) =

⎧⎨
⎩
exp

(
− 1

2

(
𝑥𝑖−ℳ𝑘,𝑖

𝜎̃𝑘,𝑖

)2)
if 𝑥′𝑖 < 𝑐𝑘,𝑖

exp

(
− 1

2

(
𝑥𝑖−𝒩𝑘,𝑖

𝜎̃𝑘,𝑖

)2)
otherwise.

(11)

where

ℳ𝑘,𝑖 =

𝑐𝑘,𝑖

+𝜎̃𝑘,𝑖

√√√√√√⎷−2 ln
⎛
⎜⎜⎝

1

−
𝜎2
𝑖

𝜎2
𝑘,𝑖(

1+
𝜎2
𝑖

𝜎2
𝑘,𝑖

)(𝜎𝑘,𝑖
𝜎𝑖

)
2
+1

⎞
⎟⎟⎠ (12)

𝒩𝑘,𝑛 =

𝑐𝑘,𝑖

−𝜎̃𝑘,𝑖

√√√√√√⎷−2 ln
⎛
⎜⎜⎝

1

−
𝜎2
𝑖

𝜎2
𝑘,𝑖(

1+
𝜎2
𝑖

𝜎2
𝑘,𝑖

)(𝜎𝑘,𝑖
𝜎𝑖

)
2
+1

⎞
⎟⎟⎠ (13)

2) Triangular Fuzzification of a Triangular FS:
Assuming that both fuzzifying fuzzy sets and sets
to be fuzzified are triangular, the possibility and
necessity fuzzifications remain triangular. Starting
from a symmetric premise membership (fuzzification)
function 𝜇𝐴′

𝑖
(𝑥𝑖) =

/
min

(
𝑥𝑖−𝑥′

𝑖+Δ𝑖

Δ𝑖
,
𝑥′
𝑖−𝑥𝑖+Δ𝑖

Δ𝑖

)/
and an asymmetric antecedent membership function
𝜇𝐴𝑘,𝑖

(𝑥𝑖) =
/
min

(
𝑥𝑖−𝑐𝑘,𝑖+𝛿𝑘,𝑖

𝛿𝑘,𝑖
,
𝑐𝑘,𝑖−𝑥𝑖+𝛾𝑘,𝑖

𝛾𝑘,𝑖

)/
, the

possibility function embedding triangular fuzzification is
triangular as well,

𝜇𝐴𝑘
(𝑥′𝑖) =

/
min

⎛
⎝𝑥′

𝑖−𝑐𝑘,𝑖+𝛿𝑘,𝑖

𝛿𝑘,𝑖
,

𝑐𝑘,𝑖−𝑥′
𝑖+𝛾𝑘,𝑖

𝛾𝑘,𝑖

⎞
⎠/ , (14)

where

𝛿𝑘,𝑖 = 𝛿𝑘,𝑖 +Δ𝑖, (15)
𝛾𝑘,𝑖 = 𝛾𝑘,𝑖 +Δ𝑖. (16)

Further, we recall the triangular necessity function given by

𝜇
𝐴𝑘

(𝑥′𝑖) =

/
min

⎛
⎝ 𝑥′

𝑖−𝑐𝑘,𝑖+𝛿𝑘,𝑖

𝛿𝑘,𝑖
,

𝑚𝑘,𝑖+𝛾𝑘,𝑖−𝑥′
𝑖

𝛾𝑘,𝑖

⎞
⎠/ . (17)

This triangular function has a center 𝑐𝑘,𝑖 calculated by

𝑐𝑘,𝑖 =
Δ𝑖 (𝛾𝑘,𝑖 − 𝛿𝑘,𝑖)
2Δ𝑖 + 𝛿𝑘,𝑖 + 𝛾𝑘,𝑖

+𝑚𝑘,𝑖 . (18)

and a height given by

ℎ𝑘,𝑖 =
𝛾𝑘,𝑖 + 𝛿𝑘,𝑖

2Δ𝑖 + 𝛿𝑘,𝑖 + 𝛾𝑘,𝑖
. (19)

B. Triangular Fuzzification of a Symmetric Triangular FS

If we impose symmetry on the antecedent
membership function, i.e., 𝜇𝐴𝑘,𝑖

(𝑥𝑖) =/
min

(
𝑥𝑖−𝑚𝑘,𝑖+𝛿𝑘,𝑖

𝛿𝑘,𝑖
,
𝑐𝑘,𝑖−𝑥𝑖+𝛿𝑘,𝑖

𝛿𝑘,𝑖

)/
, the possibility function

embedding also symmetric triangular fuzzification is described
as follows:

𝜇𝐴𝑘
(𝑥′𝑖) =

/
min

⎛
⎝𝑥′

𝑖−𝑐𝑘,𝑖+𝛿𝑘,𝑖

𝛿𝑘,𝑖
,

𝑐𝑘,𝑖−𝑥′
𝑖+𝛿𝑘,𝑖

𝛿𝑘,𝑖

⎞
⎠/ , (20)
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and the necessity presents in its form

𝜇
𝐴𝑖
(𝑥′𝑖) =

/
min

⎛
⎝𝑥′

𝑖−𝑐𝑘,𝑖+𝛿𝑘,𝑖

𝛿𝑘,𝑖
,

𝑐𝑘,𝑖−𝑥′
𝑖+𝛿𝑘,𝑖

𝛿𝑘,𝑖

⎞
⎠
/

, (21)

where 𝛿𝑘,𝑖 is given by (15). This triangular function has a
centre at 𝑐𝑘,𝑖 and a corresponding height given by

ℎ𝑘,𝑖 =
𝛿𝑘,𝑖

𝛿𝑘,𝑖 +Δ𝑖
. (22)

C. Fuzzy Rough Classification System

In the case of classification, the membership of an object
𝑥 to a class 𝜔𝑗 (specified by the corresponding consequent) is
fuzzy (𝑧𝑘𝑗 = 𝜇𝜔𝑗

(𝑥)). Consequently, the rules can be written
as [16]

𝑅𝑘 : IF 𝑥1 is 𝐴𝑘1 AND 𝑥2 is 𝐴𝑘2 AND . . .
. . . AND 𝑥𝑛 is 𝐴𝑘𝑛 THEN x ∈ 𝜔1(𝑧

𝑘
1),x ∈ 𝜔2(𝑧

𝑘
2), . . .

. . . ,x ∈ 𝜔𝑚(𝑧𝑘𝑚)
,

(23)
where observations 𝑥𝑖 are independent variables, 𝑘 = 1, . . . , 𝑁
is the number of 𝑁 rules, and 𝑧𝑘𝑗 is the membership degree to
the 𝑗–th class 𝜔𝑗 according to rule 𝑘.

An optimization procedure to obtain the maximal and
minimal centroids for a rough (or interval-valued) fuzzy set on
the assumption that crisp memberships of objects to classes are
given, i.e., the 𝑘-th rule consequent that object either belongs
to the 𝑗-th class or not is binary, 𝑧𝑘𝑗 ∈ {0, 1}, was given in
[20], [21].

Theorem 1 (Rough membership of class, [21]): Let us
consider the neuro-fuzzy classifier defined by the equation

𝑧𝑗 =

∑𝑁
𝑘=1

𝑘 : 𝑧𝑘𝑗=1

𝐴𝑘

∑𝑁
𝑘=1𝐴

𝑘
(24)

where 𝐴𝑘 is a rough approximation of a fuzzy set 𝐴𝑘 given by
its upper and lower approximations, 𝐴𝑘∗ and 𝐴𝑘∗, respectively,
and the single-rule membership of object to the 𝑗-th class is
binary

𝑧𝑘𝑗 =

{
1 if x ∈ 𝜔𝑗
0 if x /∈ 𝜔𝑗 (25)

for all rules 𝑘 = 1, . . . , 𝑁 and all classes 𝑗 = 1, . . . ,𝑚. Then,
the lower and upper approximations of the membership of the
current object to class 𝜔𝑗 is given by

𝑧𝑗∗ =

𝑁∑
𝑘=1

𝑘 : 𝑧𝑘𝑗=1

𝜇𝐴𝑘
L
(x)

𝑁∑
𝑘=1

𝜇𝐴𝑘
L
(x)

(26)

and

𝑧∗𝑗 =

𝑁∑
𝑘=1

𝑘 : 𝑧𝑘𝑗=1

𝜇𝐴𝑘
U
(x)

𝑁∑
𝑘=1

𝜇𝐴𝑘
U
(x)

, (27)

where 𝐴𝑘L and 𝐴𝑘U are defined as follows

𝐴𝑘L =

{
𝐴𝑘∗ if 𝑧𝑘𝑗 = 1

𝐴𝑘∗ if 𝑧𝑘𝑗 = 0
(28)

and

𝐴𝑘U =

{
𝐴𝑘∗ if 𝑧𝑘𝑗 = 1

𝐴𝑘∗ if 𝑧𝑘𝑗 = 0
. (29)

The most useful result concerns the defuzzification in the
case of binary memberships of objects to classes. Conse-
quently, the crucial thing is that this result does not require
any arrangement of 𝑧𝑘𝑗 as the Karnik-Mendel type-reduction
for type-2 fuzzy sets does.

Theorem 2 ([36] based on [20]): Having rough approxi-
mations, the upper 𝐴𝑘𝑗∗ and the lower 𝐴𝑘∗𝑗 , of a binary set
𝑧𝑘𝑗 ∈ {0, 1} representing the single-rule class membership (25),
where 𝑘 is the index for rules 𝑘 = 1, . . . , 𝑁 and 𝑗 is the index
for classes 𝑗 = 1, . . . ,𝑚, the lower and upper approximations
of the membership of an object to class 𝜔𝑗 is given by

𝑧𝑗∗ =

∑𝑁
𝑘=1𝐴

𝑘
𝑗∗𝑧

𝑘
𝑗∑𝑁

𝑘=1𝐴
𝑘
𝑗∗𝑧

𝑘
𝑗 +

∑𝑁
𝑘=1𝐴

𝑘∗
𝑗 ¬𝑧𝑘𝑗

, (30)

𝑧∗𝑗 =

∑𝑁
𝑘=1𝐴

𝑘∗
𝑗 𝑧

𝑘
𝑗∑𝑁

𝑘=1𝐴
𝑘
𝑗∗¬𝑧𝑘𝑗 +

∑𝑁
𝑘=1𝐴

𝑘∗
𝑗 𝑧

𝑘
𝑗

. (31)

For the proof see [36].

Observe that 𝑁 can be extended to 𝑁𝑗 , and in such manner,
the number of rules does not necessarily has to be the same
for each class.

Therefore, the resulting neuro-fuzzy rough architecture for
classification can be seen in Figure 3.

The proper interpretation of defuzzificated values is a
problem of fuzzy rough classification. Let 𝑧𝑗∗ be a lower
membership grade of an object 𝑥 to class 𝜔𝑗 and 𝑧∗𝑗 be its upper
membership grade in the form of equations (26) and (27),
respectively. In this case, we may fix two numbers (thresholds)
𝑧IN and 𝑧OUT such that 1 > 𝑧IN ≥ 𝑧OUT > 0. Consequently, a
crisp decision can be made in the following way⎧⎨
⎩

𝑥 ∈ 𝜔𝑗 if 𝑧𝑗∗ ≥ 𝑧IN and 𝑧∗𝑗 > 𝑧IN

𝑥 /∈ 𝜔𝑗 if 𝑧𝑗∗ < 𝑧OUT and 𝑧∗𝑗 ≤ 𝑧OUT

Perhaps 𝑥 ∈ 𝜔𝑗 if 𝑧IN > 𝑧𝑗∗ ≥OUT and 𝑧∗𝑗 > 𝑧IN

Perhaps 𝑥 /∈ 𝜔𝑗 if 𝑧𝑗∗ < 𝑧OUT and 𝑧OUT < 𝑧∗𝑗 ≤ 𝑧IN

undefined otherwise.
(32)

If we assume for convenience that 𝑧IN = 𝑧OUT = 1
2 ,

formula (32) takes the following form

⎧⎨
⎩
𝑥 ∈ 𝜔𝑗 if 𝑧𝑗∗ > 1

2 and 𝑧∗𝑗 >
1
2

𝑥 /∈ 𝜔𝑗 if 𝑧𝑗∗ < 1
2 and 𝑧∗𝑗 <

1
2

undefined otherwise.
(33)
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Fig. 3. Fuzzy rough system for classification

III. GENETIC OPTIMIZATION

We have solved the problem of structure optimization by
using the standard genetic algorithm with binary coding. The
other methods of optimization as evolutionary learning [7],
particle swarm optimization [24] have been also considered,
and they will be likely applied in the future work. The
algorithm has been employed to find values of the antecedent
set parameters, i.e. centres 𝑐𝑘,𝑖 and spreads 𝜎𝑘,𝑖. The archi-
tecture of the classifier, the number of rules, and the scalar
consequents (0 or 1) have been fixed a’priori. The length of
chromosomes has been steady and depended on the number
of rules and input features. Each parameter of the system
has been coded in 6 bits. The only original element of the
algorithm has been the specific initialization. We have used
the PDS-FCM [9] clustering algorithm to place in the first
population a single super-genotype. The rest of genotypes have
been random. This perhaps surprising strategy has yielded the
most accurate results. As expected, the final winner genotype
has been the descendant of the super-genotype from the
first generation. However, it has been also the result of the
nondeterministic tournament selection together with the gentle
mutation (0.2− 1.0%). Recombination has been performed by
two crossing points. In this way, the genetic algorithm with a
small size of population (10 genotypes) has allowed to tune
the solution obtained from the PDS-FCM algorithm.

IV. SIMULATIONS

In all experiments, we have used 3 Rules per each class.
Individuals have been coded as numeric values using 6 genes
by default and 16 for optdigits and pendigits databases. Pop-
ulations have consisted of 10 individuals.

We have performed 50 iterations of clustering and genetic
algorithm. The mutation level has been equal to 1% for glass,
ionosphere, page-blocks, Wisconsin databases and 0.2% for
the rest of databases. Tests have been elaborated using 10-
folds cross validation. The elaborated fuzzy rough system has
been compared against the standard non-singleton fuzzy logic
system.

The first training set, Dermatology, contains 34 attributes,
33 of which are linear valued and one of them is nominal.
Patients were first evaluated clinically with 12 features. Af-
terwards, skin samples were taken for the evaluation of 22
histopathological features. The values of the histopathological
features are determined by an analysis of the samples under a
microscope.

The Glass benchmark is concerned with determining
whether the glass was a type of ”float” glass or not.

The Ionosphere radar data was collected by a system in
Goose Bay. This system consists of a phased array of 16
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high-frequency antennas. The targets were free electrons in
the ionosphere. Received signals were processed using an
autocorrelation function whose arguments are the time of a
pulse and the pulse number. There were 17 pulse numbers for
the Goose Bay system. Instances in this database are described
by 2 attributes per pulse number, corresponding to the complex
values returned by the function resulting from the complex
electromagnetic signal.

Iris flower is a standard task for classification and pattern
recognition studies. 150 instances are described by four fea-
tures (𝑥1 — sepal length in cm, 𝑥2 — sepal width in cm,
𝑥3 — petal length in cm, 𝑥4 — petal width in cm). All the
flowers are classified into three species: setosa, versicolor, and
virginica. Each species is uniformly represented by 50 flowers.

Optical Recognition of Handwritten Digits Data Set (Opt-
digits) were collected from a total of 43 people. All input
attributes are integers in the range 0...16. The last attribute is
the class code 0...9

In the Page-blocks classification, 5473 examples came from
54 distinct documents. Each observation concerned one block.
All attributes are numeric. Data are in a format readable by
C4.5.

The Parkinsons dataset is composed of a range of biomed-
ical voice measurements from 31 people, 23 with Parkinson’s
disease (PD). Each column in the table is a particular voice
measure, and each row corresponds one of 195 voice recording
from these individuals (”name” column). The main aim of the
data is to discriminate healthy people from those with PD,
according to ”status” column which is set to 0 for healthy and
1 for PD.

The Pen-Based Recognition of Handwritten Digits Data
Set (Pendigits) was collected as 250 samples from 44 writers.
All input attributes are integers in the range 0...100. The last
attribute is the class code 0...9.

The Pima Indians Diabetes data (PID) contain two classes:
healthy (500 patterns) and diabetes cases (268 patterns). All
patients were females at least 21 years old, of Prima Indian
heritage. Each pattern is characterized by 8 attributes such as
number of times being pregnant or oral glucose concentration
etc.

In the Vowel dataset, nine male speakers uttered two
Japanese vowels /ae/ successively. A single utterance by a
speaker forms a time series whose length is in the range
7-29 and each point of a time series is of 12 features (12
coefficients).

The Wisconsin Breast Cancer dataset groups medical cases
into two classes: Benign — consisted of 458 patterns, and
Malignant — 241 patterns. Each pattern is characterized by 10
numerical attributes. The original dataset contains 16 instances
with missing values which have been removed in order to make
the fuzzification of antecedents able.

The proposed method has been evaluated using two mea-
sures. The first one describes how often an sample has been

misclassified into each class.

𝜑 = 1− 1

𝑚 ⋅𝑀
𝑀∑
𝑠=1

𝑚∑
𝑗=1

⎧⎨
⎩

1 if

⎛
⎝ 𝑧∗𝑗,𝑠 > 0.5

∧𝑧𝑗,𝑠∗ > 0.5

∧𝑥𝑠 ∈ 𝜔𝑗

⎞
⎠ ,

1 if

⎛
⎝ 𝑧∗𝑗,𝑠 < 0.5

∧𝑧𝑗,𝑠∗ < 0.5

∧𝑥𝑠 /∈ 𝜔𝑗

⎞
⎠ ,

0 else,

(34)

where 𝑚 is the number of classes, 𝑀 is the number of samples,
𝑥𝑠 is 𝑠-th test sample, 𝜔𝑗 is 𝑗-th class, 𝑧∗𝑗,𝑠 and 𝑧𝑗,𝑠∗ are
respectively upper or lower approximations of membership of
𝑠-th test sample to 𝜔𝑗 .

The second criterion for evaluation is a mean of samples
that has been neither not classified nor classified to a particular
class,

𝜓 =
1

𝑚 ⋅𝑀
𝑀∑
𝑠=1

𝑚∑
𝑗=1

{
1 if 𝑧∗𝑗,𝑠 ≤ 0.5 ∧ 𝑧𝑗,𝑠∗ ≥ 0.5,

0 else.
(35)

The proposed solution has been evaluated with various
spreads for input values

𝜎𝑖 = 𝜎coef ∗ (𝑥𝑖,𝑚𝑎𝑥 − 𝑥𝑖,𝑚𝑖𝑛) ∗ (2 log(2))−0.5, (36)

where 𝜎coef is constant coefficient, 𝑥𝑖,𝑚𝑎𝑥, 𝑥𝑖,𝑚𝑖𝑛 are respec-
tively maximal and minimal value of attribute 𝑥𝑖. It is worth

to mention that 𝑒
−0.5

(
1

(2 log(2))−0.5

)2

= 0.5.

The simulation has been performed assuming three various
levels of input imprecision. It has been reflected in the spread
value. The results are showed in Table I. All the results are
presented both for the non-singleton neuro-fuzzy classifiers
(NF) and the rough neuro-fuzzy classifiers (RNF). In the case
of NF systems, the values express the number of misclassified
samples (in %) from testing sequences. Thus, the rest of
them has been classified correctly. The RNF classifiers have
given not two but three or even five possible answers (see
eq. (33) and (32)). In the test we have used three-valued
version of systems and in the table we have placed the number
of misclassified samples and number of samples with the
classifier answer marked as ”undefined” (see eq. (33)). For
that group samples, accuracy of classification has been deemed
as ”uncertain”. The rest of them has been classified correctly.
When we focus on misclassified samples, we can observe that
in most cases the number of incorrectly classified samples is
lower for the fuzzy rough system than for the standard non-
singleton fuzzy logic system. Thanks to the third output value,
which is available in the RNF system, the classifier can stem
the unequivocal answer, in other words, it can answer ”I don’t
know”. Obviously, it happens at the expense of both incorrect
and correct answers.

V. CONCLUSIONS

Non-singleton fuzzification serves to handle the impre-
cision of input’s measurements or noisy input data. From
the point of view presented in this paper, it is a source
of uncertainty for antecedent membership functions in fuzzy
rough systems.
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TABLE I. CLASSIFICATION ACCURACY

𝜎coef

data base network measure 0.00% 1.25% 3.75%
dermatology NF 𝜑 0.033 0.005 0.004

RNF 𝜑 0.033 0.004 0.002
𝜓 0.000 0.031 0.106

glass (2 classes) NF 𝜑 0.121 0.116 0.135
RNF 𝜑 0.121 0.088 0.107

𝜓 0.000 0.014 0.033
ionosphere NF 𝜑 0.157 0.137 0.128

RNF 𝜑 0.157 0.151 0.066
𝜓 0.000 0.042 0.119

iris NF 𝜑 0.282 0.018 0.009
RNF 𝜑 0.282 0.000 0.000

𝜓 0.000 0.044 0.102
optdigits NF 𝜑 0.014 0.013 0.012

RNF 𝜑 0.014 0.007 0.007
𝜓 0.000 0.121 0.224

page-blocks NF 𝜑 0.041 0.034 0.030
RNF 𝜑 0.041 0.040 0.040

𝜓 0.000 0.000 0.001
parkinsons NF 𝜑 0.217 0.113 0.087

RNF 𝜑 0.217 0.041 0.021
𝜓 0.000 0.293 0.308

pendigits NF 𝜑 0.023 0.023 0.020
RNF 𝜑 0.023 0.017 0.008

𝜓 0.000 0.013 0.041
PID NF 𝜑 0.316 0.320 0.261

RNF 𝜑 0.316 0.305 0.225
𝜓 0.000 0.014 0.111

vowel NF 𝜑 0.091 0.091 0.060
RNF 𝜑 0.091 0.091 0.076

𝜓 0.000 0.000 0.048
wisconsin NF 𝜑 0.043 0.036 0.031

RNF 𝜑 0.043 0.030 0.016
𝜓 0.000 0.014 0.042

We have considered a neural realization of the fuzzy
rough systems dedicated to classification with the original
defuzzification method. Additionally, we have demonstrated
that instead of fuzzifying premises, we can exclusively perform
required changes in antecedent membership functions.

The simulated classification examples have shown that
fuzzy rough systems can even produce no false classification,
performing only certain or possible assignments. It seems
promising that fuzzy rough systems give uncertain answers
rather than wrong answers. Without difficulty, not classified
cases can be redirected to a new more particular investigation.

In the real systems, especially such as medical diagnosis,
no-classification is more dependable than wrong strict clas-
sifications. Our future goal is to optimize the percentage of
correct classifications providing that incorrect classification
rate is always equal zero. We have also high expectations for
applying the rough neuro-fuzzy classifiers in ensemble [15] as
well as for employing some form of flexibility in the rough
neuro-fuzzy systems [3], [29], [30].
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