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Abstract— Quantum-Inspired Computational Intelligence

based on quantum postulates is an emerging research area
that exploit the parallelism of quantum mechanics. However,
existing research efforts are limited to theoretical simulations
and has not been implemented in robot application. With
regards as Human-Robot Interaction, associative memory be-
come essential for mutual communication. However, associative
memory always suffers from limited memory capacity and high
sensitivity to noise and the ability to recall from multi-modal
sensory inputs. In this paper, we propose a Quantum-Inspired
Multidirectional Associative Memory. This is the first attempt to
overcome these two problems effectively with robot application.

I. INTRODUCTION

IN the near future, some countries will be faced with aging

society [1]. In this situation, one of the most critical

problems is the elderly people who are living alone will

be increased. Due to lack of communication, they would

be increased the probability of the cognitive decline, risk

of the dementia and so on. Several communication robots

have been proposed to improve this situation [2]. These

robots, however, have quite limited communication abilities

that compare with human. On the other hand, the robot that

has human-like body has been developed. It has the sufficient

ability to perform active communication like human [3]. It

can be approached the human-like communication.

The issue of social communication has been discussed

in sociology, developmental psychology, relevance theory,

and embodied cognitive science [4]. In the society of mind

theory proposed by Minsky, intelligence is explained as a

being combination of multiple simpler things. Each person

has his/her own cognitive environment. One person can

understand the meaning of an unknown word spoken by

another because the person makes the symbol correspond

to the percept. Such a shared cognitive environment is called

a mutual cognitive environment [3]. Through the commu-

nication with human, the robot can understand personal

preferences, interests and intentions. Conventionally, if the

robot provides a topic, it is selected a suitable one based

on past history of conversation with human, human behavior

or general topics such as weather and news from the Inter-

net. With regards as Human-Robot Interaction, associative

memory become essential for mutual communication. If

we apply multidirectional associative memory under shared
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cognitive environment, however, the robot can provide the

more suitable topic of current content for conversation with

human. As a result, communication with robot and human

will be more mature.

Various types of associative memory have been proposed.

In the early 1980’s, Hopfield proposed an auto-associative

memory model to store and recall information [5]. However,

this model suffers from a lack of memory capacity and

noise tolerance. In the late 1980’s, Kosko extended the

Hopfield model and introduced Bidirectional Associative

Memory (BAM) [6]. However, the original Kosko BAM also

suffers from low storage capacity and poor recall reliability. It

has been shown that with n neurons without noise, BAM’s

memory capacity does not exceed 0.15n. Moreover, BAM

is limited to“one to one” associations. To overcome this

problem, Hagiwara proposed Multidirectional Associative

Memory (MAM) in 1990 [7]. This model has multiple

layers that are all connected. As a result of this layered

architecture, MAM can handle “one to many” associations.

The network structure of MAM is similar to BAM; thus,

MAM also suffers from low memory capacity and poor

noise tolerance. Conventionally, several methods have been

proposed to improve the capacity of the associative memory

model; for example, dummy neurons [8] and hidden layers

[9] have been added, or each layer has been given a defined

weight matrix [10]. Nevertheless, the memory capacity of

these models remains limited. Hattori applied the Quick

Learning algorithm to MAM [11]. This model improved both

memory capacity and recall reliability. The recall process,

however, takes much longer than the basic MAM. In early

2000’s, Rigatos proposed the Quantum Mechanics Inspired

Hopfield model [12]. This model demonstrats that quantum

information processing in neural structures results in an

exponential increase in storage capacity and can explain

the extensive memorization and inferencing capabilities of

humans. However, it is limited to auto-associative memory,

and research efforts are limited to theoretical simulations and

has not been implemented in robot application.

In this paper, we develop a theory for Quantum-Inspired

Multidirectional Associative Memory (QMAM), and apply-

ing it to a interaction system with a robot. In section I

I, first of all, we show the structure of QMAM. Next,

we show similarity between Fuzzy inference and quantum

mechanics in QMAM, and proof fuzzy inference satisfies

two basic postulates of Quantum Mechanics. In section III,

we present simulation experiments about Memory Capacity

and Noise Tolerance.In section IV, we explain computational

intelligence for Robot Partner and the total architecture
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of interaction system using QMAM. Section V presents

the experimental results that communication between Robot

Partner and human.

II. QUANTUM MECHANICS FOR ASSOCIATIVE MEMORY

Superposition and unitarity are the key features of Quan-

tum Mechanics. Superposition can be explained as “multiple

states”, which exist simultaneously in the Quantum System.

The evolution of a closed Quantum System is described

by a unitary transformation. If we apply fuzzy inference

with same width triangular membership functions in weight

matrix, it will be satisfied basic postulates of Quantum

Mechanics as superposition and unitary operation. In QBAM,

Unitarity is satisfied by rotations between spaces that are

spanned by the eigenvectors of weight matrices. Rigatos

showed avobe postulates with Hopfield model [12]. We

extent it to multidirectional model. The mathematical proofs

are presented from sessions C to F .

A. Fundamental Structure of Quantum Associative Memory

Here, we explain the structure of QMAM between α-th

layer and β-th layer. Equation structurs are following:

• α-th layer to β-th layer


X
(k)
j(α)=

M∑
i=1

W
(αβ)T
ij x

(k)
i(α) (1a)

x
(k)
j(β)=sgn




L∑
α=1

α6=β

X
(k)
j(α)


(1b)

• β-th layer to α-th layer


X
(k)
i(β)=

N∑
j=1

W
(αβ)
ij x

(k)
j(β) (2a)

x
(k)
i(α)=sgn




L∑
β=1

β 6=α

X
(k)
i(β)


 (2b)

Let
{
x
(k)
(1) , x

(k)
(2) , . . . , x

(k)
(L)

}
, for k = 1, 2, . . . , be the

bipolar pattern to be stored. k denotes the number of pattern

pairs, L denotes the number of layers in QMAM, M and N
denote the number of neurons in α-th layer and β-th layer,

respectively.

The waight matrix W (αβ)T and W (αβ) are as follows:

• α-th layer to β-th layer

W (αβ)T = 1
k

k∑
g=1

x
(g)T
(β) x

(g)
(α) (3)

• β-th layer to α-th layer

W (αβ) = 1
k

k∑
g=1

x
(g)T
(α) x

(g)
(β) (4)

where, α and β denote the layer number, exponential T
denotes transpose. Here, x is calculated by Gram-Schmidt

orthogonalization that according to a1 = A1/‖A1‖ (p =
1), bp = Ap −

∑k−1
i=p−1 (ai,Ai)ai and ap = bp/‖bp‖

(2 ≤ p ≤ k), where A denotes the vector of performing or-

thogonalization, a and b denote orthonormalized vector and

orthogonalized vector as x, respectively. The each layer will

be continued to cyclic update until it reaches the equilibrium

state.

B. Definision of Weight Matrix Update

Equations (5) and (6) show the update rules of weight

matrix. Here, t denotes time steps, exponential T denotes

transpose. x
(k)
(α-stored) and x

(k)
(β-stored) denote kth stored pattern,

and x
(k)
(α) and x

(k)
(β) denote inner state of α-th layer and β-th

layer, respetively. M and N denote the number of neurons

in α-th layer and β-th layer, respectively. F (0 < F ≤ 1)
denotes variation amount in position for the center of Fuzzy

triangular. The learning algorithm is refered from a general

model for BAM (GBAM) [10]. This model tried to find

a asymptotic stability condition of learning algorithm for

improve its abilities. The fundamental update algorithm is

based on Hebbian learning. Thus, we considered that it can

be applied to proposed model.

C. Similarity of Quantum Mechanics and Fuzzy Inference

In quantum mechanics, the state of an isolated quantum

syste Q is represented by a vector |ψ(t)〉 in a Hilbert space.

This vector satisfies Schrödinger’s diffusion equation [13].

i~
d

dt
|ψ(t)〉 = Hψ(t) (7)

where H denotes Hamiltonian operator that gives the total

energy H =
(
p2/2m

)
+ V(x). The probability to find the

particle between x and x + dx at the time instant t,the

wave function ψ(x,t) can be analyzed as follows in a set

of orthonormal eigenfunctions in a Hilbert space: ψ(x,t) =∑∞
m=1 cmψm. Here, the coefficients cm is an indication of

the probability to describe the particle’s position x at time t
by the eigenfunction ψm. From Eq. (7), the average position

of the particle is found to be

〈x〉 =

∞∑
m=1

‖cm‖2am (8)

with ‖cm‖2 denotes the probability that the particle’s position

be described by the eigenfunction ψm. When the position

x that can be taken is the associated eigenvalue am. The

eigenvalue am is chosen with probability P ∝ ‖cm‖2.

In the same way, the probability to find the particle

between y and y + dy at the time instant t is given by

P(y)dy =
∣∣ψ(y,t)

∣∣2, then derived the following:

〈y〉 =

∞∑
n=1

‖cn‖
2bn (9)

with ‖cn‖
2 denotes the probability that the particle’s position

be described by the eigenfunction ψn.

It is assumed that the Fuzzy variable x and y belong to a

universe of discourse, that is quantized to an infinite number

of Fuzzy sets Ai, A−i (i = 1, 2, . . . ,∞) and Bj , B−j (j =
1, 2, . . . ,∞), e.g. the axis of real number R is partitioned

to an infinite number of Fuzzy sets with the same space and

width. The Fuzzy sets have the following properties:

(a) They satisfy
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• α-th layer to β-th layer

W
(αβ)T (t+1)
ij =




W
(αβ)T (t)
ij +




−F, If x
(k)
(β-stored)

M∑
i=1

W
(αβ)T (t)
ij x

(k)
(α) ≤ 0 and W

(αβ)T (t)
ij ≥ 0

F, If x
(k)
(β-stored)

M∑
i=1

W
(αβ)T (t)
ij x

(k)
(α) ≤ 0 and W

(αβ)T (t)
ij < 0

W
(αβ)T (t)
ij , Otherwise

(5)

• β-th layer to α-th layer

W
(αβ)(t+1)
ij =




W
(αβ)(t)
ij +




−F, If x
(k)
(α-stored)

N∑
j=1

W
(αβ)(t)
ij x

(k)
(β) ≤ 0 and W

(αβ)(t)
ij ≥ 0

F, If x
(k)
(α-stored)

N∑
j=1

W
(αβ)(t)
ij x

(k)
(β) ≤ 0 and W

(αβ)(t)
ij < 0

W
(αβ)(t)
ij , Otherwise

(6)

• α-th layer to β-th layer

∞∑
m=1

µAm(x) = 1
(
WT

ij ≥ 0
)

(10a)
∞∑

m=1

µA−m(x) = 1
(
WT

ij < 0
)

(10b)

• β-th layer to α-th layer

∞∑
n=1

νBn(y) = 1 (Wij ≥ 0)

(11a)
∞∑

n=1

νB−n(y) = 1 (Wij < 0)

(11b)

(b) Each Fuzzy set Am and Bn are described by its center

am, bn and its width F .

(c) The average value of variable x and y will be given by:

• α-th layer to β-th layer

〈x〉 =

∞∑
m=1

µAm(x)am
(
WT

ij ≥ 0
)

(12a)

〈x〉 =
∞∑

m=1

µA−m(x)a−m

(
WT

ij < 0
)

(12b)

• β-th layer to α-th layer

〈y〉 =

∞∑
n=1

νBn(y)bn (Wij ≥ 0) (13a)

〈y〉 =

∞∑
n=1

νB−n(y)bn (Wij < 0) (13b)

D. Hebbian Learning Inspired Fuzzy Inference

• α-th layer to β-th layer

In Fig. 1(a), A1, A2, . . ., Am−1, Am and A−1, A−2,

. . ., A−m+1, A−m are the Fuzzy subsets in which the

universe of discourse of the variable wT
ij . The sets Ai and

A−i are selected to have the same spread and to satisfy

the strong Fuzzy partition equality
∑m

i=1 µAm(x) = 1 and∑m

i=1 µA−m(x) = 1, respectively.

• β-th layer to α-th layer

In Fig. 1(b), B1, B2, . . . , Bn−1, Bn and B−1, B−2,

. . . , B−n+1, B−n are the Fuzzy subsets in which the

(a) α-th layer

(b) β-th layer

Fig. 1: The Fuzzy set in α-th layer and β-th layer.

universe of discourse of the variable wij . The sets Bj and

B−j are selected to have the same spread and to satisfy

the strong Fuzzy partition equality
∑n

j=1 νBn(y) = 1 and∑n

j=1 νB−n(y) = 1, respectively.

The fuzzifier is selected to be a triangular one. The main

t-norm is used for derivation of the Fuzzy relational matrices

Ri
m and Rd

m (α-th layer), Ri
n and Rd

n (β-th layer), where

exponential “i” and “d” denotes ”increase” and ”decrease”,

respectively. These matrices have the following properties: In

α-th layer to β-th layer, Am = Ri
m ◦ Am−1,Am−1 = Rd

m

◦ Am (WT
ij ≥ 0), and A−m = Ri

−m ◦ A−m+1, A−m+1

= Rd
−m ◦ A−m (WT

ij < 0). In β-th layer to α-th layer, Bn

= Ri
n ◦ Bn−1, Bn−1 = Rd

n ◦ Bn (Wij ≥ 0), and B−n

= Ri
−n ◦ B−n+1, B−n+1 = Rd

−n ◦ B−n (Wij < 0).

The max-min inference is used, while the defuzzifier is

a center of average one. The learning algorithm is inspired

from Hebbian learning and in the case of binary memory

vectors xk and yk can be stated as follows:

• α-th layer to β-th layer

IF xk

m∑
i=1

WT
ij x

k
i ≤ 0 and WT

ij < 0, THEN increase WT
ij (14a)
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IF xk

m∑
i=1

WT
ijx

k
i ≤ 0 and WT

ij ≥ 0, THEN decrease WT
ij (14b)

• β-th layer to α-th layer

IF yk

n∑
j=1

Wijy
k
j ≤ 0 and Wij < 0, THEN increase Wij (15a)

IF yk

n∑
j=1

Wijy
k
j ≤ 0 and Wij ≥ 0, THEN decrease Wij (15b)

The weight matrix update with above Fuzzy learning

algorithm results by Fuzzy weight matrices. The latter can

be decomposed into a superposition of associative memories.

The whole associative memories WT and W equals a

weighted averaging of the individual weight matrices W̄T

and W̄ , i.e.

• α-th layer to β-th layer

WT =
2M∑
i=1

µiW̄
T
i (16)

• β-th layer to α-th layer

W =
2N∑
j=1

νjW̄j (17)

where, the non-negative weights µi and νj indicate the

contribution of each local associative memoryW̄T
i and W̄j .

M and N denote the number of neurons in α-th layer to

β-th layer, respectively.

E. Fuzzy Inference is Performed through Unitary Operators

It will be shown that the increase and decrease Fuzzy

operators that were described in the rule-base are unitary.

• α-th layer to β-th layer

The Fuzzy relational matricesRi (WT
ij ≥ 0), R−i (WT

ij < 0)

used by increase and decrease Fuzzy operators satisfy the

following Fuzzy relational equations, respectively:

(1) Increase mode:

(a) WT
ij ≥ 0 :

A2 = Ri
1 ◦A1, A3 = Ri

2 ◦A2, . . . , Am = Ri
m−1 ◦Am−1 (18a)

(b) WT
ij < 0 :

A−2 = Ri
−1 ◦A−1, A−3 = Ri

−2 ◦A−2, . . . , A−m = Ri
−m+1 ◦A−m+1 (18b)

(2) Decrease mode:

(a) WT
ij ≥ 0 :

A1 = Rd
1 ◦A2, A2 = Rd

2 ◦A3, . . . , Am−1 = Rd
m−1 ◦Am (19a)

(b) WT
ij < 0 :

A−1 = Rd
−1 ◦A−2, A−2 = Rd

−2 ◦A−3, . . . , A−m+1 = Rd
−m+1 ◦A−m (19b)

In both cases, “◦” denotes the max-min operation. Substi-

tuting Am−1 = Rd
m−1 ◦ Am in Am = Ri

m−1 ◦ Am−1 one

gets Am = Ri
m−1◦

(
Rd

m−1 ◦Am

)
, in the same way, A−m =

Ri
−m+1 ◦

(
Rd

−m+1 ◦A−m

)
, and using the associativity of

the max-min operator yields Am =
(
Ri

m−1 ◦R
d
m−1

)
◦ Am,

A−m =
(
Ri

−m+1 ◦R
d
−m+1

)
◦A−m, respectively, i.e.{ (

Ri
m−1 ◦R

d
m−1

)
= I (20a)(

Ri
−m+1 ◦R

d
−m+1

)
= I (20b)

Setting Am = Ri
m−1 ◦ Am−1 in Am−1 = Rd

m−1 ◦
Am, A−m = Ri

−m+1 ◦ A−m+1 in A−m+1 = Rd
−m+1 ◦

A−m, and using the associativity of the max-min opera-

tion yields Am−1 =
(
Rd

m−1 ◦R
i
m−1

)
◦ Am−1, A−m+1 =(

Rd
−m+1 ◦R

i
−m+1

)
◦A−m+1, i.e.{ (
Rd

m−1 ◦R
i
m−1

)
= I (21a)(

Rd
−m+1 ◦R

i
−m+1

)
= I (21b)

Furthermore, due to the generation of the matrices Ri
m−1

and Rd
m−1, Ri

−m+1 and Rd
−m+1 using Mandanis inference

system, it holds the following relation:{
Rd

m−1 =
(
Ri

m−1

)T
(22a)

Rd
−m+1 =

(
Ri

−m+1

)T
(22b)

From (21a) and (22a), (21b) and (22b) are deduced fol-

lowing: { (
Rd

m−1

)−1
=

(
Ri

m−1

)T
(23a)(

Rd
−m+1

)−1
=

(
Ri

−m+1

)T
(23b)

Therefore, the increase and decrease operators are unitary.

• β-th layer to α-th layer

In the same way as α-th layer to β-th layer, the Fuzzy

relational matrices Rj (Wij ≥ 0), R−j (Wij < 0) used by

the increase and decrease Fuzzy operators satisfy Fuzzy

relational equations. Therefore, same as α-th layer to β-th

layer, it will be derived following relationships:{ (
Rd

n−1

)−1
=

(
Ri

n−1

)T
(24a)(

Rd
−n+1

)−1
=

(
Ri

−n+1

)T
(24b)

Therefore, the increase and decrease operators are unitary.

F. Existence of Superposition in the Weight Matrix

• α-th layer to β-th layer

Assume that weight element wkm of matrix WT , i.e. the

element of the kth row and the mth column of WT . Due to

strong fuzzy partition, this weight belongs to two adjacent

fuzzy sets Ai and Ai+1. The corresponding centers of the

fuzzy sets are aikm and ai+1
km , and because of the strong fuzzy

partition, the associated memberships will be µkm = µAi

and 1 − µkm = µAi+1
. Therefore wkm is described by

the sets
{
µkm, a

Ai

km

}
and

{
1− µkm, a

Ai+1

km

}
. Taking the

possible combinations of the memberships for each weight,

the matrices that have as elements the memberships µkm,

1 − µkmare generated. Taking the possible combinations

of the projections of each weight to the centers of the

adjacent fuzzy sets, the matrices that have as elements, the

centers aAi

km and a
Ai+1

km are generated. Using the above, the

decomposition of the weight matrix WT into the set of

superimposing matrices W̄T
i

(
i = 1, 2, . . . , 2M

)
.
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TABLE I: Conditions for the Simulation of Memory Capacity.

Number of Pairs k : 300 Pairs (Non Duplicates)

Neuron Representation : Bipolar

Data Set Configuration : Random Pattern

Variation F : 0.005

No. of Layers : [1] [2] [3] [4] [5]

Number of Neurons 5-Layers

condition (I-a) 15 15 15 15 15

condition (I-b) 50 50 50 50 50

condition (II-a) 50 40 30 20 10

condition (II-b) 10 20 30 40 50

(a) condition (I-a) (b) condition (I-b)

(c) condition (II-a) (d) condition (II-b)

Fig. 2: Results of Memory Capacity in 5-Layers with Constant Number of Neurons.

• β-th layer to α-th layer

Assume that weight element wkn of matrix W , i.e. the

element of the kth row and the nth column of W . Due to

strong fuzzy partition, this weight belongs to two adjacent

fuzzy sets Bj and Bj+1. The corresponding centers of the

fuzzy sets are bjkn and bj+1
kn , and because of the strong fuzzy

partition, the associated memberships will be νkn = νBj

and 1−νkn = νBj+1
. Therefore wkn is described by the sets{

νkn, b
Bj

kn

}
and

{
1− νkn, ν

Bj+1

kn

}
. Here, same as X-layer

to Y-layer, the decomposition of the weight matrix W into

the set of superimposing matrices W̄j

(
j = 1, 2, . . . , 2N

)
.

III. SIMULATION EXPERIMENT

In this section, we compare QMAM, MAM [7] and QL-

MAM [11]. MAM is the fundamental model of multi-layer

associative memory. QL-MAM is Quick Learning applied to

MAM. This learning algorithm has improved weight matri-

ces, Memory Capacity and Noise Tolerance. We conducted

simulation experiments for (A) Memory Capacity, (B) Noise

Tolerance and (C) Processing Time. In (A) and (B), we

considered that if the correct recall rate for k pattern pairs

was over 90%, k pattern pairs could be stored in memory.

A. Memory Capacity

Memory Capacity is an important element of associative

memory performance. This ability is affected by the number

of neurons in each layer. In this section, we conducted

experiments under two conditions. The first used the same

number of neurons in each layer, the other used a different

number of neurons in each layer.

Table I shows the experimental conditions. Here, ”No. of

Layers” means not only how many layers there were, but

also represents recall order. These conditions demonstrate

the effect of the number of neurons on Memory Capacity. A

comparison of Figs. 2(a) and 2(b) shows that although the

number of neurons is high, Fig. 2(b) shows a better recall

rate than Fig. 2(a). In every condition QMAM has the highest

recall rate and MAM the lowest. Moreover, a comparison

of conditions (I) and (II) shows that for each condition,

even when the number of neurons is small, QMAM has a

higher recall rate than others. This result demonstrates that

the Memory Capacity of QMAM is more robust than QL-

MAM and MAM from the point of view of the number

of neurons. In other words, QMAM has a relatively large

Memory Capacity compared to QL-MAM and MAM, despite
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TABLE II: SimulationConditions for Noise Tolerance.

Neuron Representation : Bipolar

Data Set Configuration : Random Pattern

Noise Generation Method : Random Generate

Variation Amount F : 0.005

Number of Pairs k 5-Layers

condition (III) 20

condition (IV) 50

condition (V) 150

No. of Layers [1] [2] [3] [4] [5]

Number of Neurons 5-Layers 50 45 40 35 30

(a) condition (III) (b) condition (IV) (c) condition (V)

Fig. 3: Results of Noise Tolerance in 5-Layers with 3 conditions.

the lower number of neurons.

In addition, we conducted an experiment to demonstrate

the effect on Memory Capacity of having different numbers

of neurons in each layer. We anticipated that the magnitude of

the difference in the number of neurons in each layer would

have an effect on Memory Capacity. There is an interesting

comparison with QL-MAM and MAM in Figs. 2(c) and 2(d);

the recall rate is different, although the average number of

neurons is the same. The cause of this effect seems to be

the magnitude of the difference in the number of neurons in

each layer. In both methods, the layer that has larger number

of neurons is able to recall the layer that has the smaller

number of neurons. On the other hand, the layer that has

the smaller number of neurons cannot store the information

contained in the layer that has the larger number of neurons.

Although the same conditions with QMAM, it shows almost

the same results between condition (II-a) and (II-b).

In summary, QMAM has a large Memory Capacity com-

pared to conventional methods, and it remains robust in

conditions where there are differences in the number of

neurons in each layer.

B. Noise Tolerance

Noise Tolerance is another significant function in asso-

ciative memory. We measured Noise Tolerance by randomly

adding noise to Layer No. [1]. We conducted experiments

with different number of neurons in each layer of 3-Layers

and 5-Layers simulations.

Table II shows the experimental conditions for Noise

Tolerance. These conditions made it possible to measure

differences in Noise Tolerance, depending on the number of

stored patterns and layers. Fig. 2 shows that MAM cannot

store any pattern pairs with k = 20 in 5-Layers. Thus, the

MAM results shown in Fig. 3 has already converged to local

minima. Fig. 3(a) shows that with a low noise rate the recall

rate of QL-MAM is over 90%. However, as the noise rate

increases, the correct recall rate decreases. On the other hand,

QMAM has an almost 100% recall rate even when the noise

rate is high.

C. Processing Time

Processing Time is one of the critical problems for real-

time application processing. Table III shows the Processing

Time experimental conditions. QL-MAM and QMAM im-

plement the learning algorithm for weight matrices. Thus,

there are more recall process procedures for QMAM and

QL-MAM than MAM.

Fig. 4 shows that QL-MAM processing time is greater than

MAM. In contrast, QMAM Processing Time is only about

20% of MAM and 25% of QL-MAM. We argue that this is

because of the effect of the superposition of weight matrices.

In summary, the results of our simulations of Memory

Capacity, Noise Tolerance and Processing Time show that

QMAM has outstanding abilities compared to conventional

methods.

IV. SYSTEM ARCHITECTURE AND COMPUTATIONAL

INTELLIGENCE FOR ROBOT PARTNER

A. Communication System for Assocaitive Memory

We developed the interactive communication system with

associative memory. Fig. 5(a) shows structure of the system.

The system is composed of Robot Partner, Microsoft Kinect,

Leap Motion [14], microphone and server PC. Kinect can get

the RGB data and the distance data. Using inputs data that

are received from Kinect, server PC detects the object color

and shape by Steady-State Genetic Algorithm (SSGA), or
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TABLE III: Processing Time Experimental Conditions

Number of Pairs k : 1 to 300 Pairs (Non Duplicates)

Neuron Representation : Bipolar

Data Set Configuration : Random Pattern

Variation Amount F : 0.005

Layer No. : [1] [2] [3] [4] [5]

Number of Neurons 5-Layers condition (VI) 15 14 13 12 11

Fig. 4: Results of Processing Time with condition (VI).

(a) The structure of robot system

(b) Robot Partner behaviors (Lower Bye-
Bye, Upper Bye-Bye and Up & Down).

Fig. 5: System Configuration and Robot Partenr.

recognizes the hand gestures by Spiking Neural Networks

(SNNs) [3]. Moreover, finger gestures are calculated by

3D finger position data from Leap Motion (Fig. 6). For

voice recognition, we apply Julius that is open source large

vocabulary continuous speech recognition engine [15]. It

works in real time, and recognition accuracy shows over

90% in 20,000 words reading test. Microphone collects

human voice for Julius. Server PC also calculates relationship

between color, shape, hand gesture, word and finger gesture

by QMAM. Then, based on the relationship, server PC sends

the utterance or behavior order to Robot Partner by TCP/IP.

Fig. 5(b) shows example of Robot behaviors.

B. Multi-modal Communication with Robot Partner

Robot Partner with a human-like body and human-like

abilities could in principle be capable of intuitive multimodal

communication with human [3]. Moreover, it would be pos-

sible to transfer information while having effectiveness and

robustness. Multiple modalities can be represented several

information. Simultaneously, it can be supplemented such

information with effective.

(a) Object Recogni-
tion

(b) Gesture Recognition

(c) Finger Gesture Recognition

Fig. 6: Example of Computational Intelligence for Recognition.

V. EXPERIMENTAL RESULTS

For this experiment, we defined 6 relationships with Color,

Shape, Hand Gesture, Word and Finger Gesture as Table

IV. Fig. 7(a) shows the sequentially input. Figs. 7(b), 7(c)

and 7(d) show sequentially output of MAM, QL-MAM and

QMAM, respectively. In Figs. 7(b) and 7(c), due to the low

memory capacity, these cannot be stored any pattern pairs. In

contrast, in Fig. 7(d), thanks to the large Memory Capacity

and high recall reliability, output of QMAM shows the

same waveform with input one. It means QMAM performs

association correctly.

Fig. 8 shows the result of recall rate in each layer of

QL-MAM and QMAM. Here, experimental condition is

following as Tables IV and V. These results come from the

first input of Fig. 7(a) (Finger Gesture input as ID 2). In

Fig. 8(a), due to the set number of neurons is too small to

store pattern, QL-MAM is converged to local minima. On

the other hand, QMAM (Fig. 8(b)) shows a superior recall

reliability.

From the results of this section, we can regard that QMAM

is utility and effective method for associative communication

system.
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TABLE IV: Relationships between Color, Shape, Hand Gesture, Word and Finger Gesture information.

ID
Relationship

Color Shape Hand Gesture Word Finger Gesture

0 No Coloer No Shape No Gesture No Word No Finger Gesture

1 Red Circle Upper Right Circle RED CIRCLE Small Circle

2 Green Triangle Lower Bye-Bye GREEN TRAIANGLE Triangle

3 Blue Rectangle Upper Bye-Bye BLUE RECTANGLE Rectangle

4 Yellow Circle Upper Right Circle YELLOW CIRCLE Large Circle

5 Orange Triangle Lower Bye-Bye ORANGE TRIANGLE Triangle

TABLE V: The number of neurons for Color, Object, Hand Gesture, Word and Finger Gesture.

Color Shape Hand Gesture Word Finger Gesture

The Number of Neurons: 6 11 45 10 8

(a) Input ID

(b) MAM

(c) QL-MAM

(d) QMAM

Fig. 7: The input ID and the result of output ID as Relationships.

(a) QL-MAM (b) QMAM

Fig. 8: The result of recall rate in each layer.

VI. CONCLUSION

This paper has proposed a Quantum-Inspired Multidi-

rectional Associative Memory, and discussed the capability

of proposed model for human robot interaction. At first,

We showed the structure of proposed model, and revealed

similarity between Fuzzy inference and Quantum Mechanics,

and proposed model satisfies two basic postulates of Quan-

tum Mechanics. The results of simulation experiment show

the proposed model has a superior ability. Moreover, the

experimental results show proposed model can be applyed

to interaction system with Robot Partner. In this paper, we

defined relationships as arbitrarily.However, if we consider it

with realistic, we regard that human can realize the mature

communication with Robot Partner.

As future works, we will apply Complex-Valued Fuzzy

logic to proposed model. It can be represented a oscillation,

and this property is important factor of Quantum Mechanics.

We expect that it can be extent a Memory Capacity and Noise

Tolerance with Quantum Mechanics postulates.
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