
  

  

Abstract— In this research, we propose a methodology for 
getting joint angles by Kinect sensor for rehabilitation 
evaluation support. We measure the motion of the arm of a 
patient with hemiplegia before and after the rehabilitation, and 
estimate the range of the motion by using genetic algorithm and 
neural network. The range after the rehabilitation is bigger than 
before the rehabilitation. Based on this result, our methodology 
is able to evaluate the change of the motion before and after the 
rehabilitation for patients with hemiplegia. 

I. INTRODUCTION 
ecently, the number of elderly people is increasing in the 
aging society. In addition, the number of hemiplegia 

patients with the aftereffects of Cerebral Vascular Disorder 
(CVD) increase, too. Hemiplegia is paralysis that may occur 
in patients who have a neurological disorder [1]. Until now it 
has been thought that it is impossible to recover from 
hemiplegia. Recently, it turned out that motion measurement, 
motion analysis, and rehabilitation support are very important 
and necessary for patients [2-3]. Although it is really ideal, 
when these tasks are performed by therapists, however the 
number of therapists is not enough in the current situation. 
Hemiplegia is evaluated by Brunnstrom Stage (BS). BS is an 
evaluation criterion of hemiplegia, which classifies six stages 
of paralysis [4]. Nevertheless BS is not suitable for an exact 
hemiplegia evaluation because of the width between stages. 
In addition, therapists cannot evaluate the progress of the 
symptom quantitatively, since they evaluate a reaction of the 
muscular contraction. Thus, it is necessary to measure the 
range before and after the rehabilitation of joint angles for 
quantitative evaluation support. The range of the motion 
(ROM) measurement is often used for evaluation of the 
movement [5] and it is suitable for a quantitative hemiplegia 
evaluation. However since the therapist measures joint angles, 
it will take much time and effort. The definition of the range 
of joint angles is based on the ROM index.  
 The motion capture is often used for movement analysis of 
the person [6-10], however, there are two problems in the 
motion capture. On one hand, it needs the setting of the 
surface marker. On the other hand, it is expensive. Therefore, 
we use 3D distance image sensor to measure human motions. 

In this paper, we focus on a methodology for obtaining 
joint angles by Kinect sensor for rehabilitation evaluation 

 
 

support. We considered that these joint angles could help 
assess the improvement of upper limb movement of the 
patient. At first, we use the 3D distance image sensor to 
measure human motions. In order to perform motion analysis, 
we need the history of joint angles of human poses. We can 
solve the inverse kinematics by using relative position data, 
but the estimation quality is not good owing to the 
measurement noise of the 3D distance image sensor. 
Therefore, we propose an estimation method of time series of 
3D human pose by using Genetic Algorithm (GA) and Neural 
Network (NN). Finally, we show experimental results, and 
discuss the effectiveness of the proposed method. 

This paper is organized as follows. Section II explains 
Kinect sensor, and discusses the positional precision using 
Kinect sensor. Section III proposes a methodology for 
obtaining joint angles by Kinect sensor. Section IV shows 
experimental results of the proposed method, and Section V 
summarizes the paper. 

 

II. MOVEMENT MEASUREMENT 

A. Kinect Sensor 
Figure 1 illustrates Kinect sensor. This 3D distance image 

sensor can measure the distance from the device like a camera 
in real-time. This device includes a 3D distance image sensor, 
microphones, an RGB camera, an accelerometer, and a 
tilting-up mechanism. It can be connected to host PC through 
USB.  

Furthermore, the built-in processor estimates the physical 
joint parts using the information obtained from the sensor and 
builds skeleton data and tracks the skeleton in real time. This 
function is called a joint automatic detection function which 
can obtain the skeleton data of the person as depicted in Fig. 2. 
Kinect sensor directly provides 3D information without any 
markers [11].Table I shows the specification of Kinect sensor 
[12]. 

 

B. Positional Precision 
In this subsection, we compare the estimation to the depth 

data, which are the raw data of the Kinect sensor in order to 
evaluate the precision of the estimation of the joint position.  
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TABLE I 
SPECIFICATION OF KINEC

Size 282

Horizontal field of view 

Vertical field of view 

Physical tilt range 

Measuring range 

Resolution 320×24

Frame rate 

 
 

Fig.3.  Depth d
 

 
TABLE II 

ERROR OF THE JOINT A

Point Movement 
x 

Shoulder 

Flexion 5.21 

Extension -3.24 

Abduction 19.1 

Horizontal 
Flexion -2.84 

Horizontal 
Extension 1.55 

Elbow Flexion 15.42 

 
 
 

Fig.4.  Occlus
 
 
 

 

CT SENSOR 

2×72×72 [mm] 

57 [deg] 

43 [deg] 

±27 [deg] 

1.2 – 3.5[m] 

40, 640×480 [pixel] 

30 [fps] 

 
data 

ANGLES 

Error 

y z 3 axes 

-4.05 9.77 11.78 

-31.53 16.78 35.86 

-6.98 33.73 39.39 

-15.8 4.62 16.7 

-4.64 28.88 29.29 

-14.56 16.05 26.6 
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Fig.5.  Movement of flexion and ext
 

 

Fig.6.  Change of arm length 
 

 

Fig.7.  3D human model 
 

III. JOINT ANGLE ESTIMATIO
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Fig.9.  Model of arm 

 
 

 

 
Fig.10.  Architecture of GA and NN 

 
 

wrist, and hand of right arm (K=3), respectively. Next, NN 
makes outputs its corresponding poses: 

                   
Qm

init = qm,1, qm,2,...,qm,t,..., qm,T( )
qm,t = qm,1,t qm,2,t ... qm,D,t⎡⎣ ⎤⎦

T ,
                     (2)  

 
where D is the degrees of freedom. Next, we obtain the 
positions ( Pm

init ) of body parts calculated by forward 
kinematics model using the time series of poses. The 
difference between two series of positions are calculated by 
                     E = Pm

init − Pm .                                  (3) 
 
At the same time, SSGA generates initial candidate solutions 
of trajectories according to the outputs from NN. Small 
normal random value is added to each input to NN in order to 
generate various candidate solutions. Finally, SSGA outputs 
the best trajectory ( Qm

* ), and simultaneously, the NN is 
trained by the back-propagation algorithm using Qm

* . 
 

C. Human Pose Estimation by Genetic Algorithm  
We apply Genetic Algorithm (GA) to estimate the joint 

position. We use GA to generate candidate solutions of each 
joint angle and search solutions. A candidate solution is 
composed of numerical parameters corresponding to the joint 
angles qm,t : 

gi = θi,1,θi ,2 ,θi ,3,θi,4 ,θi,5 ,θi ,6( )               (4) 

  where ,k hθ  is the h-th joint angle of the k-th candidate 
solution. The worst individual is updated using adaptive 
mutation: 

,
,

,

(0.05 ) (0,1)     if U(0,1)<
(0.1 ) (0,1)       otherwise

rand h i
worst h

best h i

f N
f N

θ γ λ
θ

θ γ
+ + ⋅ ⋅⎧

= ⎨ + + ⋅ ⋅⎩                  
(5) 

where θrand is a random individual; θbest is the best 
individual; γ is a constant; λ is a constant, N(0,1) is a normal 
random number, U(0,1) is a uniform random number. Fitness 
is calculated by 

      
( )

1

S
GA

i j j j
j

f α β
=

= − +∑ p p
                (6) 

where fi is the i-th fitness; S is the number of joints; αj is 
weight coefficient; β is penalty term; GA

jp  is the position of 
body parts calculated by forward kinematics model using 
obtained angles, and pj is the position measured by the Kinect 
sensor. As above, this problem is a minimization problem to 
minimize the fitness.  

 

D. Human Pose Learning by Neural Network  
We apply a neural network (NN) to learn human motion 

patterns, because human motion patterns include specific 
features and structures. The number of layers of NN in this 
study is 3 (l=3).  The output of the i-th neuron in the l-th layer 
can be calculated recursively as follows:  

  yi
l = f zi

l( ) = f wj ,i
l ⋅ xj

l

j=0

n2

∑
⎛

⎝⎜
⎞

⎠⎟
= f wj,i

l ⋅ f wk , j
l−1 ⋅ xk

l−1

k=0

n1

∑⎛⎝⎜
⎞
⎠⎟j=0

n2

∑
⎛

⎝⎜
⎞

⎠⎟
(7) 

where x j
l  is the j-th input in the l-th layer, (j=1,2,···, n2; 

k=1,2,···, n1); wj ,i
l  is the weight parameter from j-th to i-th 

neuron; w0,i
l  is threshold and x0

l = −1  to simplify the 
equation; f (⋅) is a sigmoidal function.  The error function is 
defined as 

                          Ep = 1
2

yp,i
* − yi

l( )2

i=1

o

∑ ,                               (8) 

where yp,i
*  is the teaching signal of i-th output of p-th data; o 

is the number of outputs (o=n3). We can train and update 
weight parameters by using the generalized delta rule: 

                  wj ,i
l ← wj ,i

l + Δwj ,i
l = wj ,i

l − η
∂Ep

∂wj ,i
l

.                    (9) 

If the l-th layer is the output layer (l=3), the partial derivative 
with respect to wj ,i

l  is derived by the chain rule: 

 
∂Ep

∂wj,i
l =

∂Ep

∂yi
l

∂yi
l

∂zi
l

∂zi
l

∂wj,i
l = − yp,i

* − yi
l( ) ′f zi

l( ) x j
l .         (10) 

Here the error signal in the output layer based on 
back-propagation algorithm is defined as  

 δ i
l = −

∂Ep

∂zi
l = −

∂Ep

∂yi
l

∂yi
l

∂zi
l = yp,i

* − yi
l( ) ′f zi

l( ) .         (11) 

Then, the weight is updated according to 
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                Δwj ,i
l = −η

∂Ep

∂wj ,i
l = ηδ i

l x j
l           (12) 

where η is a learning rate. If the (l-1)-th layer is a hidden 
layer, the partial derivative with respect to wk, j

l −1 is further 
derived by the chain rule: 

    
∂Ep

∂wk , j
l−1 =

∂Ep

∂zi
l

∂zi
l

∂x j
l

∂x j
l

∂z j
l−1

∂z j
l−1

∂wk , j
l−1 = − δ i

lwj,i
l

i=1

o

∑ ′f z j
l−1( ) xk

l−1 .    (13) 

Furthermore, the error signal in the (l-1)-th layer is defined as: 

     δ j
l−1 = −

∂Ep

∂z j
l−1 = δ i

lwj ,i
l

i=1

o

∑ ′f z j
l−1( ) .         (14) 

The weight is updated according to 
        Δwk , j

l−1 = −η
∂Ep

∂wk, j
l−1 = ηδ j

l−1xk
l−1 .                   (15) 

The inputs to NN are the position of a pose based on the 
position of shoulder at discrete time step t, 

                      Xm,t = pm,1,t , pm,2,t , pm,3,t( ) ,                        (16) 

where pm,1,t , pm,2,t  and pm,3,t  are the position of elbow, wrist, 
and hand (K=3), respectively; p=t and P=Tm in the learning 
algorithm. The outputs from NN are joint angles of right arm 
composed of 5 DOF; qm,t

* are generated by SSGA. This 
means the trained NN can approximately solve the inverse 
kinematics using position data of a human right arm. 

 

IV. EXPERIMENT 

A. Preliminary Experiment 
In this subsection, we discuss the precision of the joint 

angle estimation using the methodology that we suggested. 
Table III shows the basic axis of the movement to measure. In 
addition, we discuss the precision by comparing the result of 
angle gauge to the joint angle that we estimated. Table IV 
presents the parameter setting. We set the parameters so that 
the error is smaller than 10 degrees. The error of 10 degrees is 
considered to be satisfactory for the error, which arises even if 
therapists actually use an angle gauge. 

 
TABLE III 

BASIC AXIS OF THE MOVEMENT 

Point Movement Base Axis Motion Axis 

Shoulder 

Flexion Normal axis 
to floor  Humerus 

Extension 

Abduction Normal axis 
to floor Humerus 

Adduction 

Horizontal 
Flexion Normal axis 

to sagittal 
plane 

Humerus 
Horizontal 
Extension 

Elbow 
Flexion 

Humerus Radius 
Extension 

 

TABLE IV 
 PARAMETER SETTING 

α0 0 

α1 0.2 

α2 0.3 

α3 0.5 

β 100 

γ 0.001 

λ 0.333 

 
TABLE V 

 ERROR BETWEEN ANGLE GAUGE AND KINECT SENSOR 

Point Movement 
Angle 
gauge 
[deg] 

Kinect 
sensor [deg] Error[deg] 

Shoulder 

Flexion 

0 3.47 3.47 

60 65.56 5.56 

90 80.09 9.91 

120 129.88 9.88 

Extension 30 25.41 4.59 

Abduction 

60 69.15 9.15 

90 80.16 9.84 

120 128.5 8.5 

Horizontal 
Flexion 

60 55.31 4.69 

120 118.46 1.54 

Horizontal 
Extension 30 21.32 8.68 

Elbow Flexion 
60 26.14 33.86 

120 80.09 39.91 

 
In a shoulder joint, Table V shows that the error is smaller 

than 10 degrees without the flexion of the elbow. However, in 
the future we need to improve this system in order to decrease 
the error related to the elbow angle.  

 

B. Experimental Method 1 
In order to examine the effectiveness of the proposed 

method, we measured the motion of the arm of a patient with 
hemiplegia before and after the rehabilitation. We focus on 
showing the joint angle quantitatively. Figure 11 presents the 
experiment environment. Kinect sensor is installed in the 
position which was about 1.8m away from the patient’s front. 
The patient performs the flexion, extension, abduction, 
horizontal flexion and horizontal extension of the shoulder, 
and the flexion and extension of the elbow sitting on a chair 
before and after the rehabilitation (Fig. 12). In addition, we 
use each joint position that we measured, to visualize the 
movement in the 3D human model. Finally, we examine the 
usefulness of the system from the provided result. 
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C. Experimental Results 1 
Figure 13 shows the change of the joint an

of the shoulder, which was estimated usi
method.  Table VI shows the joint angle be
rehabilitation in each movement. We were 
change of the joint angle quantitatively. In
the measurement method of the joint ang
according to each movement, but for the com
hemiplegia independent motion is also d
person performs a synergic movement.  

 
 

Fig.11.  Experiment environmen
 
 

Fig.12.  Before and after the rehabil
 
 

Fig.13.  Change of the flexion of the s
 

 

ngle in the flexion 
ing the proposed 

efore and after the 
able to show the 

n this experiment, 
gle was classified 
mparatively slight 
difficult, and the 

 
nt 

 
itation 

 
shoulder 

TABLE VI 
JOINT ANGLE IN EACH M

Point Movement 
B

Shoulder 

Flexion 75.

Extension 43.

Abduction 69.

Adduction 0

Horizontal 
Flexion 99.

Horizontal 
Extension 33.

Elbow 
Flexion 144.

Extension 0

 

D. Experimental Method 2 
Seven elderly people carried out f

this experiment, and we measured t
every day. We checked the vali
comparing the observations with c
angle of the flexion and abduction 
flexion of the elbow. Experimental 
as shown in Fig. 11.  

 

E. Experimental Results 2 
Figure 14 and 15 show the grap

maximum angle of the flexion and a
and the flexion of the elbow of the e

In this experiment for five days, w
change in each maximum joint an
subjects also showed similar 
improvement of the operation was sh
Therefore we need to do long-term e

 
 

Fig.14.  Change of the joint angl
 
 

 

MOVEMENT  

Range of Angle 

efore After 

54 [deg] 121.92 [deg] 

03 [deg] 60.98 [deg] 

37 [deg] 77.08 [deg] 

0.0 [deg] 0.0 [deg] 

27 [deg] 108.41 [deg] 

88 [deg] 28.29 [deg] 

95 [deg] 149.94 [deg] 

0.0 [deg] 0.0 [deg] 

for 5 days gymnastics in 
the maximum joint angle 
idity of the system by 
hanges in the maximum 
of the shoulder and the 
environment is the same 

ph of the changes in the 
abduction of the shoulder 
elderly people A-B. 
we have hardly seen a big 
ngle (Fig. 14-15). Other 
results. However, the 
hown by the observation. 
experiment.  

 
le of elderly people A  
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Fig.15.  Change of the joint angle of elderly people B  

 

V. SUMMARY 
This paper proposed a measurement system of human 

motions based on 3D distance image sensor for rehabilitation. 
First, we described a human motion analysis method based on  
genetic algorithm and neural network. The experimental 
result shows the effectiveness of the proposed method. 
However, in the future it is necessary to conduct experiments 
with more subjects and for longer term. 
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