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Abstract—This paper proposes a combination of fuzzy 
standard additive model (SAM) with wavelet features for 
medical diagnosis. Wavelet transformation is used to reduce the 
dimension of high-dimensional datasets. This helps to improve 
the convergence speed of supervised learning process of the 
fuzzy SAM, which has a heavy computational burden in high-
dimensional data. Fuzzy SAM becomes highly capable when 
deployed with wavelet features. This combination remarkably 
reduces its computational training burden. The performance of 
the proposed methodology is examined for two frequently used 
medical datasets: the lump breast cancer and heart disease. 
Experiments are deployed with a five-fold cross validation. 
Results demonstrate the superiority of the proposed method 
compared to other machine learning methods including 
probabilistic neural network, support vector machine, fuzzy 
ARTMAP, and adaptive neuro-fuzzy inference system. Faster 
convergence but higher accuracy shows a win-win solution of 
the proposed approach.  
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I. INTRODUCTION 
The automatic diagnosis of heart disease and breast cancer 

is an important, challenging medical problem. Heart disease 
affects health and working performance of patients, 
especially old people. The World Health Organization has 
assessed globally that 12 million people lose their lives 
every year because of the heart diseases [1]. The heart 
disease actually can be detected early by performing a 
number of medical tests. However, these tests are usually 
costly and confronted a certain difficulty. An inexpensive 
solution based on medical history of patients and some 
simple tests is commonly proposed by heart disease 
investigators.  

 

 
Fig. 1. Early signs of breast cancer (adapted from [2]) 

Breast cancer is also one of the largest causes of cancer 
deaths among women. Early prediction of the characteristic 
of breast lumps (benign or malignant) occurring in patients 
thus help to determine a suitable treatment for the cancer 
(Fig. 1). 

 There have been a number of studies dealing with 
medical diagnosis in the literature. A comprehensive review 
of machine learning methods was presented in [3]. Recently, 
Akay [4] proposed support vector machine (SVM) method 
combined with feature selection for breast cancer diagnosis. 
Karabatak and Ince [5] introduced another approach to 
detecting breast cancer based on association rules and neural 
network. Alternatively, Marcano-Cedeño et al. [6] presented 
a novel improvement in neural network training for 
classifying the breast cancer tumours as benign or malignant. 
The approach encompasses simulating the biological 
property of metaplasticity on multilayer perceptron with 
backpropagation.  

On the other hand, Dangare and Apte [7] suggested a 
system using medical terms such as sex, blood pressure, 
cholesterol, obesity and smoking attributes to predict the 
likelihood of patient getting a heart disease.  

Bhatla and Jyoti [8] also investigated a number of data 
mining techniques for automated heart disease prediction 
systems. Likewise, Sundar et al. [9] proposed a prototype 
using Naïve Bayes and weighted associative classifier for 
heart disease diagnosis. Similarly, Lakshmi [10] considered 
several data mining techniques and constructed a web based 
user friendly system for predicting heart disease 
survivability. 

Generally, medical diagnosis and prognosis are decision 
making problems that commonly have uncertainty involved 
[11]. The use of fuzzy set theory has been emerged in pattern 
recognition methods for medical diagnosis. To deal with 
uncertain and high-dimensional medical data, this paper 
proposes a method using fuzzy SAM and wavelet features 
for medical diagnosis. To our best knowledge, it is the first 
application of fuzzy SAM method for medical diagnosis and 
also the first combination of wavelet features and fuzzy 
SAM in a classification system. Through this study, we 
examine and compare performance of fuzzy SAM models 
with classification methods frequently applied in literature. 
Experiments are conducted using two medical datasets to 
make sure conclusions driven out of this study are valid and 
general. 

The rest of the paper is organized as follows. The next 
section presents the proposed combination wavelet-SAM 
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method. Other machine learning methods are briefly 
presented in Section III for the sake of comparisons. Section 
IV is devoted for experimental results, which are followed 
by concluding remarks.  
 

II. FUZZY SAM WITH WAVELET FEATURES 
A. Fuzzy SAM 

The fuzzy SAM was introduced by Kosko [12]. The fuzzy 
system F: ܴ → ܴ comprises m if-then rules, which is able 
to universally approximate continuous and bounded 
measurable functions in the compact domain. Any kind of 
the if-part fuzzy sets Aj  Rn can be selected. The same goes 
for the then-part fuzzy sets Bj  Rp because the fuzzy SAM 
employs only the centroid cj and volume Vj of Bj to calculate 
the output F(x) from the vector input x  Rn [13].  
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The graph of an approximand f is covered with m fuzzy 
rule patches. The form of the fuzzy rule is “If X = Aj then Y 
= Bj”. If-part set Aj  Rn has the joint membership function 
aj: Rn → [0, 1] that factors:      n

n
jjj xaxaxa ...1

1 . Then-part 
fuzzy set Bj  Rp has the membership function bj: Rn → [0, 
1] and volume (or area) Vj and centroid cj [14].  

The convex weights:  
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make the SAM output F(x) as a convex sum of then-part set 
centroids.  

 
Fig. 2. (a) A configuration of SAM. Each input fires each 

fuzzy rule to some degree to calculate F(x). (b) Fuzzy rules 
specify patches in the input-output space [15]. 

 Fig. 2 displays the configuration of the additive system 
and its state-space graph cover. The graph cover induces an 
exponential rule explosion. A fuzzy system requires on the 
order of kn+p-1 rules to approximate a function f: ܴ → ܴ in 
a compact domain [15]. 

Learning is an essential process of SAM to construct a 
knowledge base that is a structure of if-then fuzzy rules [13]. 
The SAM learning process includes two basic steps: a) 
unsupervised learning for constructing if-then fuzzy rules 
and b) supervised learning for tuning rule parameters. 

The supervised learning usually starts from a randomly 
initialized set of parameters and ends when it meets the 
predetermined stopping criteria. Proper parameter 
initialization is of paramount importance as training process 
costs much time and is often trapped in local minima. The 
unsupervised learning process helps to initialize parameters 
of fuzzy rules more skilfully. In this paper, we utilize the 
adaptive vector quantization (AVQ) clustering method [12] 
to identify the centres of membership functions (MFs) in the 
antecedent part and the centroids in the consequent part. The 
well-separated distribution of the resulting clusters from the 
AVQ method is useful in identifying the allocation of fuzzy 
rules in the fuzzy SAM. The AVQ clustering method is 
briefly summarized in the next section.  

 
B. SAM Unsupervised Learning by the AVQ Clustering  

The clustering process uses ܭ quantization vectors to 
search for fuzzy classes in the learning dataset that cover the 
unknown function ݂ in the space ܻܺ. The ܭ quantization 
vectors can be initialized randomly. For each data pattern at 
time (ݐ)ݖ :ݐ =  the algorithm searches for a ,[(ݐ)ݕ|(ݐ)ݔ]
fuzzy class that can contain (ݐ)ݖ based on the closest ݍ 
(competitive learning), which is selected based on the 
following conditions: 
ฮ(ݐ)ݖ − ฮݍ = minୀଵ,തതതത‖(ݐ)ݖ −  (3)    ‖(ݐ)ݍ

where ‖ݖ‖ଶ = ଵଶݖ + ଶଶݖ + ⋯+   .ଶݖ
Then ݍ is updated to be closer to (ݐ)ݖ: 
ݐ)ݍ + 1) 	= 	 (ݐ)ݍ 	+ 	௧[(ݐ)ݖ	–	ݍ(ݐ)]  (4) 
Based on the competitive learning, ݍ vectors are updated 

closer to the fuzzy classes covering the graph of the 
unknown function ݂. At the end of training, ܭ quantization 
vectors ݍ obtained reflect the distribution of fuzzy classes 
of the training data. 

Denote the learning dataset as {ݖ௧}, ݐ = 1, … ,ܰ, and the 
local conditional covariance matrix ܳ in pattern class ܦ as 
ܳ(ݐ) = ݖ)]ܧ − ݖ)(ݖ̅ −  ], the algorithm is presentedܦ|்(̅ݖ
as follows: 

Step 1. Initialize ݍ randomly, ܭ = 0, ݆ = 1, …  ܭ,
Step 2. Consider the learning sample at time (ݐ)ݖ :ݐ 	=

 [(ݐ)ݕ|(ݐ)ݔ]	
Step 3. Search for ݍ at time ݐ based on Eq. (3). 
Step 4. Update quantization vectors ݍ and distance vector 

 :ܭ
If ݅ = ݐ)ݍ :݆ + 1) 	= 	 (ݐ)ݍ 	+ 	௧[(ݐ)ݖ	–	ݍ(ݐ)] 
ܳ(ݐ + 1) 	= 	 ܳ(ݐ) 	+ 	௧[((ݐ)ݖ − (ݐ)ݖ	)((ݐ)ݍ −

	–	்((ݐ)ݍ ܳ(ݐ)]  (5) 
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If ݅		݆: ݍ(ݐ + 1) 	= 	  (ݐ)ݍ
ܳ(ݐ + 1) 	= 	 ܳ(ݐ)  (6) 
Step 5. If  ݐ			ܰ then ݐ = ݐ + 1, back to step 2. 
Step 6. End. 
The AVQ clustering method is applied to initialize 

parameters of fuzzy SAM. We organize the corresponding 
input and output data into a unique observation of  + 1 
dimensions where p is the number of inputs and one output 
corresponding to the class being assigned. Denote ݔ is the 
݅th organized observation (݅ = 1, …   is presented asݔ ,(ܰ,
follows: 
ݔ = ଵݐݑ݊݅] , ,ଶݐݑ݊݅ … , ݐݑ݊݅

,  ]  (7)ݐݑݐݑ
where ݅݊ݐݑ

 is the ݆th input of the ݅th observation and 
  is the output of the ݅th observation. By clusteringݐݑݐݑ
the sample of ܰ observations having the above format, we 
are able to derive the ܭ resulting clusters corresponding with 
 fuzzy rules of the fuzzy SAM. Since the AVQ clustering ܭ
is completed, centres of the resulting clusters are assigned to 
centres of the MFs. The centres of the output of each rule 
will be assigned equal to the output value of the 
corresponding cluster. The widths of the MFs of each rule 
are initialized equal to the standard deviation of the data.  

The Sinc membership function sin(x)/x recommended as 
the best shape for a fuzzy set in function approximation is 
used to construct if-then fuzzy rules [15]. The jth sinc set 
function (Fig. 3) centered at mj and width dj > 0 is 
characterized as below:  
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Fig. 3. Sinc membership function in 1-D case with centre 

m = 0 and width d = 0.4 [16] 
 

C. SAM Supervised Learning  
Fuzzy rule parameters are adjusted using a supervised 

learning process. The supervised gradient descent can adjust 
all parameters of the SAM model [13, 17]. The aim is to 
minimize the squared error: 

      2
2
1 xFxfxE    (9) 

of the function approximation. Both the vector function f: Rn 
→ Rp and the approximated function ܨ have  components. 
The ݂ function is the form       Tp xfxfxf ,...,1 . On the 
other hand the ܨ encompasses       Tp xFxFxF ,...,1 . Let 

k
j  denote the kth parameter in the membership function aj. 

Then the chain rule induces the gradient of the error function 
with respect to k

j , with respect to the then-part set centroid 

 Tp
j

i
jj ...,c,cc  , and with respect to the then-part set volume 

Vj [14].  
A gradient descent learning rule for a SAM parameter is 

as follows: 




 Ett t)()1(   (10) 

where t  is the learning rate at iteration t. 
Generally, there are two ways to adjust parameters. Batch 

form refers to the update process that occurred when all 
training samples have completely passed through the system. 
Incremental form refers to the update that occurred as soon 
as a sample was processed. With significantly nonlinear 
data, incremental adjustment often proves effective and more 
stable, and it is therefore applied in this study. 

The momentum technique is also integrated so as to 
enhance the convergent speed of the parameter tuning 
process [18]. The learning expression with momentum is as 
follows: 

)(.)()1( tEtt t 


 

   (11) 

where ε is the momentum coefficent. 
 
D. Wavelet Transformation (WT) Combined with SAM 

Fuzzy systems in general or SAM in particular normally 
faces a big challenge in training if there are many inputs of 
the data. The curses of dimensionality of the fuzzy SAM 
were specifically investigated in [19]. In general, high-
dimensional data would decline convergence speed and thus 
performance of the fuzzy SAM system. Therefore, there 
must be a need of a dimension reduction or feature selection 
tool that may be implemented before the fuzzy SAM is 
executed. This is particularly important as the medical data 
are usually assembled in high dimension.  

WT is one of popular methods for reducing number of 
dimensions in datasets. With datasets having dimensions 
reduced, fuzzy systems would demonstrate more powerful 
ability in function approximation and classification. The 
proposed methodology for medical diagnosis in this study is 
diagrammed in Fig. 4.  

 

 
Fig. 4. The proposed combination between WT and Fuzzy 

SAM 
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The following presents a summary of WT and its usage in 
this paper. WT represents a signal in a time-frequency 
fashion [20]. Once the wavelets (the mother wavelet) ߮(ݔ) 
is fixed, translations and dilations of the mother wavelet can 
be formed ቄ߮ ቀ௫ି


ቁ , (ܽ, ܾ) ∈ Rା × Rቅ. It is convenient to 

take special values for ܽ and ܾ as ܽ = 2ି and ܾ = 2ି݇ 
where ݆ and ݇ are integers. One of the simplest wavelets is 
the Haar wavelet, which has been used in various applied 
mathematics. Haar functions can uniformly approximate any 
continuous function. Dilations and translations of the 
function ߮, which is ߮(ݔ) = ݔ2)߮.ݐݏ݊ܿ − ݇), define an 
orthogonal basis in ܮଶ(ܴ). This means that any element in 
 ଶ(ܴ) may be represented as a linear combination of theseܮ
basis functions. The scaling function in Haar wavelet is 
simply unity on the interval [0,1) as ߶(ݔ) = 1	(0 ≤ ݔ < 1). 
Quiroga et al. [21] employed a four-level decomposition 
using Haar wavelets for spike sorting. The wavelet 
coefficients are then selected by the Lilliefors modification 
of a Kolmogorov-Smirnov test for normality. In this paper, 
we employ the similar WT procedure as in [21] for 
dimension reduction applied to medical data.  
 
III. BRIEF DESCRIPTIONS OF COMPARABLE CLASSIFICATION 

METHODS 
In this section, we briefly describe comparable 

classification methods for the sake of comparisons with the 
proposed wavelet-SAM method. Methods we select as 
benchmarks for comparisons are Probabilistic Neural 
Network (PNN), Fuzzy ARTMAP (FAM), Support Vector 
Machine (SVM) and Adaptive Neuro-Fuzzy Inference 
System (ANFIS). As SVM [22] and ANFIS [23] are well-
known in the literature, we just scrutinize below PNN and 
FAM.  
 
A. Probabilistic Neural Network 

A PNN, which was introduced by Specht in the early 
1990s [24], is a feedforward, one-pass training neural 
network. It was resulted from the Bayesian network along 
with the Kernel Fisher discriminant analysis statistical 
algorithm. A PNN is primarily a classifier that maps inputs 
to numerous classifications. Operations in PNN are 
structured into a multilayered network comprising input 
layer, pattern layer, summation layer and output layer. The 
PNN employs Parzen probability distribution function (pdf) 
estimators. The estimated pdf asymptotically approaches the 
true pdf as the training set size increases given that the true 
pdf is smooth and continuous. The weighting function 
commonly used is the spherical Gaussian radial basis 
functions centred at each training vector. The likelihood of 
an unknown vector pertaining to a given class can be 
formularized as:  

݂(ݔ) = ଵ
(ଶగ)/మఙெ

∑ ݔ݁
ି(௫ି௫ೕ)(௫ି௫ೕ)

ଶఙమ
ெ
ୀଵ   (12) 

where ݅ is the class number, ݆ is the pattern number, ݔ is 
the ݆th training vector from class ݅, ݔ is the test vector, ܯ is 
the number of training vectors in class ݅,  is the dimension 
of vector ߪ ,ݔ is the smoothing factor, and ݂(ݔ) is the sum 

of multivariate spherical Gaussians centred at each of the 
training vectors ݔ for the ݅th class pdf estimate [25].  

Classification decisions are made based on the Bayes 
optimal decision rule as follows: 
(ݔ)݀ = (ݔ) if ݂ܥ > ݂(ݔ) for ݇ ≠ ݅  (13) 

where ܥ is the class ݅.  
 
B. Fuzzy ARTMAP 

FAM is a supervised clustering algorithm, which can be 
regarded as one of the leading neural networks for 
classification [26]. A FAM comprises two fuzzy ART 
modules, i.e. fuzzy ARTa and ARTb, interrelated through a 
map field (Fig. 5).  

The fuzzy ARTa executes clustering in the input space of 
data whilst the fuzzy ARTb carries out clustering in the 
output space of the target data. Each fuzzy ART model 
consists of three layers [27]: 

 

 
Fig. 5. Fuzzy ARTMAP structure [28] 

 
- A normalization layer ܨ that complement-code an M-
dimensional input vector ܽ to a 2M-dimensional vector ܣ: 
ܣ = (ܽ,ܽ) = (ܽଵ, … ,ܽெ , 1− ܽଵ, … ,1 − ܽெ).  
- An input layer ܨଵ which receives A.  
- A recognition layer ܨଶ that encodes prototypes of input 
patterns and is able to create new nodes when necessary.  

By propagating ܣ from ܨଵ to ܨଶ the responses of each 
node ݆ in ܨଶ is calculated based on a choice function. 

ܶ =
ห∧௪ೕห

ఈାห௪ೕห
  (14) 

where ߙ is the choice parameter, ݓ is the weight of node ݆. 
The winning node ܬ is selected with the highest response 
based on the winning-take-all strategy. The winning node is 
then checked with a vigilance threshold by the following 
formula: 

ห∧௪ೕห

||
≥  (15)  ߩ

A map field vigilance test is carried out for the two 
winning nodes from fuzzy ARTa and ARTb to confirm the 
outcomes. If the test is acceptable, parameters are updated:  
௪ݓ = ܣ൫ߚ ∧ ௗ൯ݓ + (1−  ௗ  (16)ݓ(ߚ

where ߚ is the learning rate, ߚ ∈ [0,1]. Otherwise, it implies 
that the prediction of the winning prototype of fuzzy ARTa is 
not matched with the target class in fuzzy ARTb. If this 
circumstance happens, a match-tracking process is 
commenced to obstruct the current winning node and a new 
search loop for other winning prototype is produced in fuzzy 
ARTa. If none of the existing prototypes recognizes the input 
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pattern, a new node is generated, and the input is assigned as 
its prototype pattern [27].  
 

IV. EXPERIMENTAL RESULTS 
Two medical datasets used in this research are breast 

cancer and heart disease datasets. The breast cancer database 
was acquired from the University of Wisconsin Hospitals, 
Madison by Dr. William H. Wolberg [29]. The heart dataset 
was from the M.D. Robert Detrano at V.A. Medical Center, 
Long Beach and Cleveland Clinic Foundation [30]. Details 
of each dataset and its experimental settings and results are 
reported in the following. 
 
A. Breast Cancer Prediction 

The dataset contains 699 cases about patients who had 
undergone surgery for breast cancer. The output values are 
either 2 or 4 indicating that sleeping cancer lump (benign) or 
dangerous lump (malignant). Nine other fields are valued 
from 1 to 10, which are detailed in Table 1. The task is to 
determine if the detected tumour is benign (2) or malignant 
(4) given values of nine attributes described in Table 1. 

 
Table 1. The breast cancer dataset attribute description [31] 

Attribute Domain 
Clump Thickness [1, 10] 
Cell Size [1, 10] 
Cell Shape [1, 10] 
Marginal Adhesion [1, 10] 
Epithelial Size [1, 10] 
Bare Nuclei [1, 10] 
Bland Chromatin [1, 10] 
Normal Nucleoli [1, 10] 
Mitoses [1, 10] 
Class {2,4} 

 
Sixteen cases with missing data in any field are excluded 

from this experiment. In general, the benign cases occupy 
65.5% of the whole dataset whilst the rest 34.5% is of the 
malignant cases. For ease of processing, the output class are 
transformed into 1 or 2 where 1 is represented for benign 
and 2 is for malignant. The output value of fuzzy SAM is 
considered to be benign if it is smaller than 1.5, otherwise it 
is indicated as malignant. Before running the fuzzy SAM, 
wavelet transformation is performed to reduce from original 
9 inputs to only 3 inputs.  

We use five-fold cross validation procedure to deploy the 
experiments where four folds of data are used for learning 
and the last fold is used for evaluating the performance. The 
process is repeated 20 times and the average accuracy is 
reported in Table 2.  

The comparable methods, i.e., PNN, SVM, fuzzy 
ARTMAP, and ANFIS, are also carried out in the same 
settings for the sake of comparisons.  

In the PNN training with the Matlab toolbox, the 
smoothing factor ߪ is set at default value of 0.1. On the other 
hand, the commonly used Gaussian radial basis function 
kernel is selected for the SVM training with the scaling 
factor at 0.5. In the ANFIS, the Sugeno-type inference 
system is used with the fuzzy c-means clustering for 
parameter initialization. The number of fuzzy rules is 

constructed 30 times less than the number of training 
samples as so is the fuzzy SAM. Both SAM and ANFIS are 
trained over 100 epochs.  

 
Table 2. Average results of 20 running times  

Methods Accuracy (%) 
Without Wavelet With Wavelet 

PNN 93.89 93.75 
SVM 93.85 96.01 
Fuzzy ARTMAP 94.91 95.57 
ANFIS 93.11 95.68 
Fuzzy SAM 94.32 97.26 

 
Table 2 reports results of five methods: PNN, SVM, 

Fuzzy ARTMAP, ANFIS and Fuzzy SAM. Each method is 
deployed with and without wavelet features. The column 
“Without Wavelet” shows results obtained when running 
methods on the original 9 features. The column “With 
Wavelet” referred to cases that each method runs with 3 
wavelet features.  

It is seen that fuzzy SAM with wavelet features obtains 
the highest accuracy at 97.26% whilst SAM without wavelet 
features just obtains 94.32% of the accuracy. The wavelet 
transformation obviously boosts the performance of fuzzy 
SAM as it helps SAM to alleviate the curse of 
dimensionality. In general, wavelet features help improve 
accuracy of most of the machine learning methods. 
However, SAM benefits from dimension reduction the most 
with near 3% of improvement. SVM, Fuzzy ARTMAP and 
ANFIS also show a mediocre enhancement in accuracy 
when using wavelet features. In contrast, PNN does not 
show the advantage of using wavelet features.  

 

 
Fig. 6. Box plots for 20 times of trials for each classification 

method 
 

The box plot in Fig. 6 shows graphical comparisons 
among Fuzzy SAM versus other methods when using 3 
wavelet features. The boxes show the median of the 
distribution, which is in line with the mean (average) values 
reported in Table 2. SAM with wavelets demonstrates the 
highest performance compared to the others. SAM obviously 
exhibits a consistent and stable performance with the 
smallest interquartile range (IQR). With the biggest IQR, 
PNN shows the worst performance among five investigated 
methods. 
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Fig. 7. SAM’s performance sensitivity to number of 

wavelet features 
Fig. 7 exemplifies the performance of SAM against 

different number of wavelet features. As we can see, SAM 
performance deteriorates drastically when the number of 
features increases. This fact again confirms the curse of 
dimensionality in SAM processing. It, in another aspect, 
shows the effectiveness of dimension reduction by the 
wavelet transformation technique we applied herein.  
 
B. Heart Disease Prediction  

The dataset comprises 303 cases at the Medical Cleveland 
Centre including 76 variables but only 14 variables are 
actually used. Descriptions of attributes are presented in 
Table 3 whilst the attribute domain is summarized in Table 
4. Six cases with missing values are excluded before 
experiments. The “goal” field indicates the occurrence of 
heart disease in the patient. The task is to detect the 
occurrence of heart disease in the patient. It is an integer 
variables ranged from 0 (no presence) to 4. There is 164 
cases without the heart disease (valued 0) whilst the rest 139 
cases having heart disease with different levels from 1 to 4. 
Experiments with the Cleveland database have focused to 
differentiate presence (values 1, 2, 3, or 4) from absence 
(value 0).  

 
Table 3. Descriptions of attributes of the heart disease 

dataset [32] 
age: age in years thalach: maximum heart 

rate achieved 
sex: sex (1 = male; 0 = female) exang: exercise induced 

angina (1 = yes; 0 = no) 
cp: chest pain type, (1: typical angina, 
2: atypical angina, 3: non-anginal pain, 
4: asymptomatic) 

oldpeak: ST depression 
induced by exercise 
relative to rest 

trestbps: resting blood pressure (in mm 
Hg on admission to the hospital) 

slope: the slope of the peak 
exercise ST segment, (1: 
upsloping,  2: flat, 3: 
downsloping) 

chol: serum cholestoral in mg/dl ca: number of major 
vessels (0-3) colored by 
flourosopy 

fbs: (fasting blood sugar > 120 mg/dl)  
(1 = true; 0 = false) 

thal: 3 = normal; 6 = fixed 
defect; 7 = reversable 
defect 

restecg: resting electrocardiographic 
results, (0: normal, 1: having ST-T 
wave abnormality (T wave inversions 
and/or ST elevation or depression of > 
0.05 mV), 2: showing probable or 
definite left ventricular hypertrophy by 
Estes' criteria)  

num: diagnosis of heart 
disease (angiographic 
disease status), (0: < 50% 
diameter narrowing, 1: > 
50% diameter narrowing) 

 
Table 4 elaborates the noisy nature of the heart disease 
dataset. Fourteen attributes are valued with various ranges.  
 

Table 4. Attribute summary of the heart dataset [32] 
Attribute Domain Attribute Domain 

Age [29.0, 77.0] Thalach [71.0, 202.0] 
Sex [0.0, 1.0] Exang [0.0, 1.0] 
Cp [1.0, 4.0] Oldpeak [0.0, 6.2] 
Trestbps [94.0, 200.0] Slope [1.0, 3.0] 
Chol [126.0, 564.0] Ca [0.0, 3.0] 
Fbs [0.0, 1.0] Thal [3.0, 7.0] 
Restecg [0.0, 2.0] Num {0,1,2,3,4} 

 
Similar to the previous dataset experiment, we also deploy 

five-fold cross validation and replicate the process for 20 
times before reporting the average results. The results of five 
machine learning methods are reported in Table 5.  

 
Table 5. Average results of 20 running times with 5-fold 

cross validation 
Methods Accuracy (%) 

Without Wavelet With Wavelet 
PNN 55.06 73.80 
SVM 57.25 74.27 
Fuzzy ARTMAP 62.58 63.46 
ANFIS 73.10 74.90 
Fuzzy SAM 54.23 78.19 

 
Because of the noisier dataset, all five methods 

demonstrate lower performance compared to the previous 
dataset. In this experiment, it is also seen that SAM benefits 
the most from the dimension reduction. Without wavelet, 
fuzzy SAM just obtains the accuracy at 54.23% although it 
increases to the highest accuracy at 78.19% with 3 wavelet 
features. The SAM performance improvement of 24% when 
using wavelet features shows a vital need of dimension 
reduction for SAM especially in noisy data. Fuzz ARTMAP 
and ANFIS are not benefited much from wavelet features. 
On the other hand, PNN and SVM show a relative 
enhancement by using wavelet features.  

 

 
Fig. 8. Box plot comparisons among five methods 

 
As the IQR of SAM is small, it offers a more consistent 

method compared to the other fuzzy system ANFIS (Fig. 8). 
Fuzzy ARTMAP shows the worst and most unpredictable 
results. SVM with wavelets in this experiment illustrates a 
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stable performance though on average it is still lower than 
the proposed wavelet-SAM.  

 

 
Fig. 9. SAM performance on different number of wavelet 

features 
 

The sensitivity of wavelet-SAM with the number of 
selected features is shown in Fig 9. We see similar results to 
the previous experiment: SAM performance is declined 
when the number of features increases. Obviously, WT does 
alleviate the curse of dimensionality of SAM by reducing the 
number of inputs. SAM needs fewer inputs to achieve higher 
performance. This on the other hand leads to a substantial 
computational complexity reduction. The efficiency of the 
proposed approach wavelet-SAM is thus clearly manifested.  

 
V. CONCLUSIONS 

This paper presents a combination of wavelet features 
with fuzzy SAM for medical diagnosis. Medical data are 
usually noisy and collected in a high-dimensional format. It 
is generally a difficult practice to select the most suitable 
features for a medical diagnosis system. The use of fuzzy 
system helps to handle the noisiness of the medical data. 
SAM however has a computational burden in dealing with 
high-dimensional data. Reducing the data dimensions using 
wavelet transformation enhances the performance of fuzzy 
SAM. Experiments carry out not only for the proposed 
method but also for four other comparable methods, i.e. 
PNN, SVM, Fuzzy ARTMAP, and ANFIS. Through results 
of two experiments, we see the dominance of the proposed 
wavelet-SAM method against the others. Most the 
investigated machine learning methods show an 
enhancement when combining with wavelet features. It is 
thus confirmed that most machine learning methods face a 
challenge of high-dimensional data. In particular, wavelet 
features are found most effective when applied to the fuzzy 
SAM method. Less features but higher performance 
demonstrates a real double-win solution of the proposed 
wavelet-SAM for medical diagnosis.   
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