
 
 

 

  

Abstract— Computational tasks involving intelligent agents 
often need to process complex structured information. The way 
of describing this information greatly influences the 
performance of the agent. Therefore, a big issue is how the 
complex data describing that valuable information is not lose 
while it can also be processed in tractable time. Fuzzy 
signatures and their multidimensional geometric extension, 
fuzzy situational maps, are used to describe such complex 
structured data. These problems are examined in the context of 
a cooperative mobile robot task and a new method is developed 
for the simplified describing and processing of the complex 
inner relations in fuzzy situational maps. This paper mainly 
deals with the fundamentals of this method. 

 

I. INTRODUCTION 
Computational tasks involving intelligent agents often 

need to process complex structured information. The way of 
describing this information greatly influences the 
performance of the agent. In certain cases, e.g. intelligent 
robot tasks, logistic processes, etc., the decision making 
would be made in real-time whit limited computational 
capacity. Therefore, a big issue is how the complex data 
describing that valuable information is not lose while it can 
also be processed in tractable time.  

The second problem in an information system is the lack 
or distortion of data. The goal is that the system remain in 
the state of decision-making capability even if some data are 
missing. 

These problems are examined in a cooperative mobile 
robot task. The basic idea of this system inherited from a 
partly unpublished research project at LIFE [1]. There is a 
cooperation system where a group of autonomous intelligent 
mobile robots is supposed to solve logistic problems 
according to the exact instruction given to the Master Robot 
(R0). The other assistant robots have no direct 
communication links with R0 and all others, but can solve 
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the task by intention guessing from the actual movements 
and positions of other robots, even though they might not be 
unambiguous. 

Fuzzy signatures and their multidimensional geometric 
extension, fuzzy situational maps, are used to describe such 
complex structured data. We have developed a method for 
the simplified describing and processing of the complex 
inner relations in fuzzy situational maps. This paper mainly 
deals with the fundamentals of this method. 

II. FUZZY SIGNATURES 
The original definition of fuzzy sets [2] 

was : [0,1]A X →  , and was soon extended to L-fuzzy sets by 
Goguen [3].  

This definition is :LA X L→ , L being an arbitrary 
algebraic lattice. A practical special case, Vector Valued 
Fuzzy Sets was introduced in [4], where [ ], : 0,1 k

V kA X →  , 
and the range of membership values was the lattice of k-
dimensional vectors with components in the unit interval. A 
further generalization of this concept is the introduction of 
fuzzy signatures and signature sets, where each vector 
component is possibly another nested vector (Fig. 1). 
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Fig. 1.  Example for Fuzzy Signature Structure 
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III. FUZZY SITUATIONAL MAPS 
We propose a novel approach to support difficult 

decision-making and to depict situation or context dependent 
structured data. A special form of fuzzy signatures [5-8] 
with a spatial structure is used, namely the Fuzzy Situational 
Map (FSM). 

Fuzzy situational maps as multidimensional extended 
fuzzy signatures (FS) are suitable to describe complex 
multidimensional system conditions in cases where the 
information is fragmented, distorted or noisy [9-12]. 
The FSM can be two-, three- or even n-dimensional. Let us 
see the simplest case, two-dimensional fuzzy situational 
maps (Fig. 2). 

A. Two-dimensional Fuzzy Situational Maps 
Two-dimensional FSM may be considered as a 

geometric lattice, where each node has a fuzzy value or a 
whole fuzzy set, in extended case. 
FSM can be represented as lattices or in matrix form as 
shown in Fig. 2 and in (1). 
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Fig. 2.  Fuzzy Situational Map 

The values in the individual nodes can be interpreted as 
elements of a fuzzy signature, so fuzzy situational maps can 
be described as multidimensional spatially structured fuzzy 
signatures, see Fig. 3.  

In the example a very simple case of “refining” the 
situational map by 2x2 grids is presented. 
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Fig. 3.  FSM as multidimensional Fuzzy Signatures 

Following this interpretation, it can be said that each 
node in a FSM can be a further nested FSM and continued 
iteratively, this extension may go to depth z (applying 
increased resolution). The approach can lead to a fine 
structured FSM in each node as Fig. 4 shows. The 
resolutions of nodes are independent of each other.  This 
depth extension operation of FSM is called “zoom-in”. 

The individual nodes and the corresponding sub-lattices 
(high-resolution lattices) are related in the sense that the 
subgroups of sub-lattices jointly determine the features of 
the higher (parent) level. This structure, each node can store 
significant amount of additional information which 
processed only in the necessary resolution depth, can greatly 
reduce the computational requirements. FSM can describe 
hierarchically structured multidimensional data in a more 
concise way than simple fuzzy signatures. 
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Fig. 4.  Sub-lattices of a Fuzzy Situational Map 

IV. THE INTERNAL RELATIONS OF NODES IN FUZZY 
SITUATIONAL MAPS 

So far fuzzy situational maps were considered as extended 
multi-dimensional fuzzy signatures. The further advantage 
of fuzzy situational maps is not only to be able to sort out the 
external information in a hierarchical structured form, but to 
be able to take into account the effects of the individual 
nodes on each other, as well. This means each node is in 
relation with the adjacent nodes and its actual value, change 
this value, may have impact on their neighbor nodes. These 
effects can be directed or mutual (bidirectional) and may 
affect the whole situational map or only some sub-lattice of 
the map. 

The description of the interrelation in fuzzy situational 
maps is built up on the theoretical foundations of fuzzy 
graphs [13-22], taking into account these dependencies, 
mainly due to their mutuality, may be very complex and 
require high processing capacity. To solve this problem, we 
worked out a method that creates appropriate, easy to 
compute fuzzy vectors and fuzzy signatures from the actual 
sub-lattice of the fuzzy situational map. 

In the next sections the essence of this method will be 
introduced. 

A. Fuzzy graphs 
The foundations of fuzzy graphs were laid down by 

Rosenfeld in 1975 [13]. Some structures and concepts which 
are known in traditional graph theory have been 
incorporated in the field of fuzzy graphs later [15-22]. We 
showed a set of theoretical frameworks and application 
possibilities of fuzzy vertex graphs in [14]. The internal 
relations of fuzzy situational maps are described by such 
graph structure or, with certain restrictions, some 
combination of fuzzy edge and vertex graphs. 

Essentially there are two main groups of fuzzy graphs: the 
fuzzy edge graphs and fuzzy vertex graphs. 

The fuzzy edge graph is defined as a fuzzy graph F is 
taken in a complete graph G, so that each edge has a fuzzy 
membership value in [0, 1] interval. 

The μe gives the membership value (presence) of the edge 
e in fuzzy graph F. So if μ = 0 then the edge is not in F, if 

μ = 1, then the edge is crisp in graph F, the other values of 
the interval mean real fuzzy edges. Fig. 5 shows examples 
for fuzzy edge graphs (F1). 
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Fig. 5.  Fuzzy edge graph 

In case of fuzzy vertex graphs an arbitrary (crisp) 
reference graph G is given. In the fuzzy graph F a fuzzy 
membership value is assigned to each vertex of G and 
indicate the strength of belonging to the graph. Each edge 
that connects two points (V1, V2) gets a calculated 
membership value. This membership value is calculated by 
the formula ( ) ( )1 2@V Vμ μ , where @ is a connecting 
operator, in majority it is some of t-norm or averaging 
aggregator. A fuzzy vertex graph is shown in Fig. 6. 
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Fig. 6.  Fuzzy vertex graph 

The combination of fuzzy vertex and edge graphs is also 
conceivable, where both the edges and the vertex are 
assigned with fuzzy membership values. These kind of 
models are quite complicated, and thus rarely used in 
practice. 

B. The description of the relations between the fuzzy 
situational map nodes 
The inner relations of the fuzzy situational map nodes are 

described by modified fuzzy edge and vertex graphs. 
Consider the simple two-dimensional fuzzy situational 

map A, which could be a reduced map as well. Each node in 
A has fuzzy membership value, these nodes are leaf-nodes. 
The nodes are denoted by ijx  simplified membership value 

notation in the lattice (Fig. 2), where 1, , ;  1, ,i h j w= =… …   
are lattice point indexes. 

Consider the connection possibilities of node ijx  to the 
adjacent nodes. Fig. 7.a shows that the four possible edges of 
the actual node may have dissimilar membership values. The 

1,i j
ijν −  membership value means the directed edge 

membership value between nodes ijx  and 1,i jx − , 
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where 2, , ;  1, ,i h j w= =… … . The membership values of the 
other three edges can be given in the same way. 

The edge membership value between two adjacent nodes 
can be interpreted as follows (Fig. 7.b): 

• if , 1 0i j
ijν + =  and , 1 0ij

i jν + =  then between nodes ijx  

and , 1i jx +  there is no any connection, there is not 
edge, 

• if , 1 0i j
ijν + ≠  and , 1 0ij

i jν + =  then there is a directed 

edge (path) between the nodes ijx  and , 1i jx + , which 

is passable only the , 1ij i jx x +→  direction ( ijx  has 

impact to , 1i jx + , but , 1i jx +  has not any impact to 

ijx ), 

• if , 1 0i j
ijν + ≠ , , 1 0ij

i jν + ≠  and , 1
, 1

i j ij
ij i jν ν+

+≠  then there 

are two directed edges or paths between nodes ijx  

and , 1i jx + , which is passable in both directions 

( ), 1 , 1 or ij i j i j ijx x x x+ +→ →  , the usage of edge 

membership values depends on the traversal 
direction, 

• if , 1 0i j
ijν + ≠ , , 1 0ij

i jν + ≠  and , 1
, 1

i j ij
ij i jν ν+

+=  then there 

are mutual connections between nodes ijx  and 

, 1i jx + , which can be described with single one edge 
membership value.  
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Fig. 7.  a) FSM edge membership value on a node, b) edge membership 
values between two nodes 

The inner connection graph of an h x w sized fuzzy 
situational map is shown in Fig. 8. Rather complicated 

relationship graphs may be written down in the case of a not 
so large fuzzy situational map too, which can be processed 
with difficulties, especially in case of mutual relationship 
between the nodes.  

Because an effective description of complex data 
relationship is the goal of our algorithm, so for simplifying 
the processing tasks the following restrictions and structure 
reformatting are proposed: 

• simple graphs are used, there are not loops and 
parallel edges, 

• in each test step a root-node is selected, then the 
whole graph is re-described about this reference 
node, 

• the direction of edge membership values are 
preserved, but the paths starting from the reference 
node are taken into account, 

• the edges with 0ijν =  membership value are erased 
from the graph. 
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Fig. 8.  Inner connection graph of the fuzzy situational map 

On the base of above described, consider node ijx  as the 
root-node of the actual investigation. Suppose it is known 
that certain edges have 0 membership values, then the 

ijx centered graph is obtained as Fig. 9 shows. For each node 
a similar graph can be got, which are sub-maps of the 
original fuzzy situational map. Thus, each node can be 
represented by its vertex membership value ijx  and its edge 

membership vector ije which is formed from the four edge 

membership values (2). 
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From the connection graph, which has been created in this 

way, a descriptive structure, more precisely, an extended 
fuzzy signature can be clearly defined. Considering the 
connection graph in Fig. 9 the ijx  root-node can be 
described by the next fuzzy signature: 
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This signature uniquely describes the effect of the 

surrounding nodes to the actual root-node ijx  in a particular 

structure. The edge membership values ijν  play crucial role 

in formatting inner structure of the fuzzy situational map and 
in the mediation of the nodal effects. 

V. CONCLUSION 
In this paper we described the inner relations of fuzzy 

situational map nodes, for which fuzzy vertex and edge 
graphs were used. The paths may be very complex on the 
graph. To avoid complicated calculations, we proposed a 
transformation method by which the situational map could 
be examined node by node. In a properly constructed graph, 
nodes are selected as the root step by step, and they 
respective dependency can be written by fuzzy signature 
which is processed by the already well-known signature 
operators. 

Fuzzy signatures expressed in such a way are well usable 
in practice. This method has been successfully tried out in a 
mobile robot cooperative task for describing the complex 
environment. 
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Fig. 9.  Connection graph on xij root-node 
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