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Abstract—This paper discusses the SIRMs (Single-Input Rule
Modules) connected fuzzy inference model with functional
weights (SIRMs model with FW). The SIRMs model with FW
consists of a number of groups of simple fuzzy if-then rules with
only a single attribute in the antecedent part. The final outputs
of conventional SIRMs model are obtained by summarizing
product of the functional weight and inference result from a
rule module. In the SIRMs model of the paper, we firstly clarify
its monotonicity. Secondly, we apply the SIRMs model with FW
to medical diagnosis.

Index Terms—Fuzzy inference, Single Input Rule Modules
(SIRMs) connected fuzzy inference model, functional weight,
monotonicity, medical data.

I. INTRODUCTION

Single Input Rule Modules (SIRMs) connected fuzzy in-
ference model proposed by Yubazaki et al. [1]–[7] consists
of several groups of single-input fuzzy if-then rules. The
advantage of the SIRMs models is computational efficiency.
The number of involved fuzzy if-then rules is significantly less
than the conventional model where each fuzzy if-then rule has
as many inputs as the problem domain at hand. The SIRMs
model has been applied to the automatic control of vehicles
and the stability control of inverted pendulums. Seki et al. [7]–
[9] analyzed the property of the SIRMs inference models and
also proposed extended versions of SIRMs models.

In the standard formulation of SIRMs, the weight for each
rule module is considered to be constant. However, it is often
necessary to have variable weights for connecting rule modules
in order to accommodate high-dimensional problem domains,
which is the case in most of the practical cases. From this
perspective, Yi et al. [5] proposed a new SIRMs model that
introduces dynamic weights for rule modules and showed the
effective ness of the model for control domains.

On the other hand, SIRMs connected fuzzy inference model
with functional weights has been also proposed in [11], [12].
In this model, the weights for connecting rule modules are
variable rather than constant. In order to realize this, funcional
weights such as a linear expression, a square function, etc., are
employed in the model. That is, the SIRMs model with FW is
extended version of the dynamic weigt type SIRMs model.

In this paper, we firstly clarify the monotonicity of SIRMs
model with FW from view of theoretical point. Moreover, the
SIRMs model with FW is compared with the conventional
SIRMs model by applying them to medical diagnosis.

II. A SIRMS CONNECTED FUZZY INFERENCE MODEL

WITH FUNCTIONAL WEIGHTS

In this section, we review the SIRMs connected fuzzy
inference model with functional weights (SIRMs model with
FW) [11], [12] in which the weight for the inference result
of each rule module is generalized to a function, where the
system has n inputs and a single output, and each rule module
corresponds to one of the n input attributes and has only that
input attribute in the antecedent part of fuzzy if-then rules in
the rule module.

The rules of the SIRMs model with FW are given as
follows:

Rules-1 : {x1 = A1
j −→ y1 = y1

j }m1
j=1

...
Rules-i : {xi = Ai

j −→ yi = yi
j}mi

j=1
...

Rules-n : {xn = An
j −→ yn = yn

j }mn
j=1

(1)

where Rules-i stands for the “i-th single-input rule module,”
xi corresponding to the i-th input item is the sole variable
of the antecedent part of Rules-i, and yi is the variable of its
consequent part. Ai

j and yi
j are, respectively, fuzzy set and real

number of the jth rule of the Rules-i, where i = 1, 2, . . . , n,
j = 1, 2, . . . ,mi, and mi stands for the number of rules.

Given an input x0
i to Rules-i, the compatibility degree of

the antecedent part in the j-th rule in Rules-i is given by (2),
and the inference result y0

i of Rules-i is given as in (3).
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Fig. 1. Fuzzy inference method in Rules-i.

hi
j = Ai

j(x
0
i ) (2)

y0
i =

mi∑
j=1

hi
jy

i
j

mi∑
j=1

hi
j

. (3)

Final inference result y0 of the SIRMs model with FW is
given by

y0 =
n∑

i=1

wi(x0
i )y

0
i (4)

where functional weights wi(x0
i )’s stand for the importance

degree for each input item xi (i = 1, 2, . . . , n).
For example, the functional weight in case of using a square

function is as follows [11], [12]:

wi(xi) = cix
2
i (5)

This SIRMs model is reduced to the conventional SIRMs
model when functional weight wi(xi) is replaced to a constant.

III. PROPERTIES OF SIRMS METHOD WITH FW

In this section, we clarify the theoretical property of the
SIRMs method with FW from the point of view of the
monotonicity.

We have the following Theorem on the monotonicity in the
SIRMs method with FW.

Theorem 1: In the SIRMs method with FW, the inference
results have the property of monotonic increase if the an-
tecedent parts, consequent parts and any functional weights
are monotonically increasing. �

Proof: The proof of monotonicity will be enough to con-
sider one of the rule modules, because the inference result of

the SIRMs method with FW is obtained by linear combination
as in (4).

We shall consider the following rule module consisting of
mi rules for input item xi.

Rules-i = {xi = Ai
j −→ yi = yi

j}mi
i=1 (6)

Let xi be an input to the jth fuzzy set Ai
j , and x′i larger

than xi be the input to the kth fuzzy set Ai
k, and the antecedent

parts and consequent parts be monotonically increasing. Then
the inference result y0

i for xi becomes

y0
i =

M∑
p=1

Ai
jp

(xi)yi
jp

M∑
p=1

Ai
jp

(xi)

(7)

M is the number of fired rules for input xi. Similarly, the
inference result y′0i for input x′i is obtained as

y′0i =

N∑
q=1

Ai
kq

(x′i)y
i
kq

N∑
q=1

Ai
kq

(x′i)

(8)

N is the number of fired rules for input x′i. Then, y′0i − y0
i

will be the following equation [10].

y′0i − y0
i =

N∑
q=1

Ai
kq

(x′i)y
i
kq

N∑
q=1

Ai
kq

(x′i)

−

M∑
p=1

Ai
jp

(xi)yi
jp

M∑
p=1

Ai
jp

(xi)

=

M∑
p=1

N∑
q=1

Ai
jp

(xi)Ai
kq

(x′i)(y
i
kq

− yi
jp

)

(
M∑

p=1

Ai
jp

(xi)

)(
N∑

q=1

Ai
kq

(x′i)

) (9)

From yi
jp

≤ yi
kq

for jp < kq and Ai
jp

(xi), Ai
kq

(x′i) ≥ 0, we
have y′0i − y0

i ≥ 0. Moreover, since functional weights are
monotonically incrasesing, the following condition holds:

wi(xi) ≤ wi(x′i) (10)

Final outputs by the SIRMs method with FW are linear
combination of weights wi(x0

i ) and inference results of rule
modules as in (4), so that it is enough to show the monotonicity
for a rule module. Therefore, Theorem 1 holds. �

IV. LEARNING ALGORITHM

This section presents the learning algorithm for the SIRMs
model with FW. The learning algorithm is derived based on
the gradient decent concept where the modification rules for
the parameters of the SIRMs model is construct so that a pre-
defined error is minimized [12]–[19].
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In this paper, the functional weight in case of using a linear
expression is used as follows [12]:

wi(xi) = ci + dixi (11)

Let us assume that we use triangular-type membership
functions for the antecedent parts of fuzzy if-then rules as
follows:

Ai
j(xi) =

{
1 − |xi − ai

j |/bij , ai
j − bij ≤ xi ≤ ai

j + bij ,
0, otherwise,

(12)
where ai

j and bij are the center and the width of the fuzzy
set Ai

j(xi), respectively, and xi is an input value for the ith
attribute. The modification rules for ai

j , bij , and yi
j at the (t+

1)th iteration are defined as follows:

ai
j(t+ 1) = ai

j(t) + α · (yT − y0(t)) · {ci(t) + di(t) · xi}

·y
i
j − y0

i (t)
mi∑
j=1

hi
j(t)

· sgn(xi − ai
j(t))

bij(t)
(13)

bij(t+ 1) = bij(t) + β · (yT − y0(t)) · {ci(t) + di(t) · xi}

·y
i
j − y0

i (t)
mi∑
j=1

hi
j(t)

· |xi − ai
j(t)|

(bij(t))2
(14)

yi
j(t+ 1) = yi

j(t) + γ · (yT − y0(t))

·{ci(t) + di(t) · xi} ·
hi

j(t)
mi∑
j=1

hi
j(t)

(15)

ci(t+ 1) = ci(t) + δ · (yT − y0(t)) · y0
i (t) (16)

di(t+ 1) = di(t) + ε · (yT − y0(t)) · y0
i (t) · xi (17)

where α, β, γ, δ and ε are learning rates, t represents the
number of learning iterations, and sgn is a signum function
that is defined as follows:

sgn =

⎧⎨
⎩

1, if x > 0,
0, if x = 0,
−1, otherwise.

(18)

V. FORMULATION OF A MEDICAL DIAGNOSIS SYSTEM BY

SIRMS METHOD WITH FW

In this section, the SIRMs method with FW is applied to
a medical diagnosis, and we compare the method with the
conventional SIRMs method. 145 real diabetes data are used
[20]. The data have 5 input items and 1 output, and the 5 input
items are constituted as follows.

• Relative weight

TABLE I
ANSWER RATIO(%) FOR MEDICAL DATA

Case SIRMs-FW SIRMs
1 86.3 84.9
2 86.3 84.9
3 91.8 89.0
4 89.0 89.0
5 89.0 89.0
6 91.8 89.0
7 91.8 89.0
8 87.7 86.3
9 95.6 95.6

10 93.2 93.2
Average 90.3 89.0

• Fasting levels of plasma glucose concentrations
• Glucose value
• Insulin value
• SSPG (Steady State Plasma Glucose)

The inputs x1, x2, . . . , x5 are normalized as in [0, 1]. The data
is classified Group 1 (Clinical Diabetes), Group 2 (Chemical
Diabetes) or Group 3 (Soundness). The Group 1, Group 2 and
Group 3 in a desired output which uses to inference are 1,
0.5 and 0, respectively. Moreover, inference result y0 in fuzzy
infernce is classified as follows.⎧⎨
⎩

1 (ClinicalDiabetes) : y0 ≥ 0.75
0.5 (ChemicalDiabetes) : 0.25 ≤ y0 < 0.75
0 (Soundness) : 0.25 < y0

In medical diagnosis, we use four membership functions for
five inputs x1, x2, . . . , x5, where the centers of the membership
functions Ai

1, A
i
2, A

i
3, A

i
4 for i = 1, 2, . . . , 5 are −0.5, 0, 0.5, 1,

and each width of the membership functions is 0.5. Moreover,
all of the consequent parts and importance degree for each
input item are set to be 0 and 0.5, respectively.

In our case, 72 training data are employed from 145 diabetes
data in random order, and 73 checking data are used from the
remaining diabetes data.

In the following, we apply the SIRMs method with FW to
medical data in the case of using the triangular-type member-
ship functions. Moreover, this method is also compared with
the conventional SIRMs method.

For the above, learninig iterations are executed 1000 times,
and 10 simulations are run. Table I shows the answer ratio
using the checking data for medical diagnosis, where SIRMs-
FW and SIRMs stand for the SIRMs method with FW and
conventional SIRMs method, respectively, in the table.

The SIRMs method with FW obtains good results compared
with the conventional SIRMs method in all aspects, from Table
I.

On the other hand, reference [19] has shown that the
conventional SIRMs method is superior to the simplified fuzzy
inference method in the same medical data. From the above
reasons, the SIRMs method with FW will be usefull.

VI. CONCLUSIONS

In the conventional SIRMs model, the final inference result
of the model for an input pattern is calculated as the weighted
sum of the inference result from each rule module. Since the
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weight for each rule module is constant, the SIRMs model
cannot be applied to highly dynamic problem domains.

On the other hand, the SIRMs model with FW employes
functional weights instead of a constant value. Thus the
weight for each rule module is no longer constant but variable
according to input values.

We first crarify the monotonicity of the SIRMs model
with FW. The monotonicity property is very important when
the model is applied to various real systems. The SIRMs
model with FW can easily satisfy the monotonicity condition.
Therefore, the model is useful for monotonicity data.

The learning algorithm for the SIRMs model with FW
is also derived using gradient decent method. The learning
algorithm enables to automatically construct an appropriate
input-output mapping by the SIRMs model with FW from a
set of training patterns.

The inference results of the SIRMs model with square FW
are strongly depended on input. Thus, input values should
be normalized to apply the SIRMs model with FW to real
systems.

Finally, as an example of data depended on input, the
SIRMs model with FW is applied to medecal diagnosis. By
grace of the functional weights for inputs, the model can obtain
good results for medical data. In the well-known simplified
fuzzy inference, ΠM

i=1 rules are involved in a single system
while only

∑M
i=1 rules in the SIRMs model. Therefore, the

SIRMs model is more efficient and more effective approach
than the other fuzzy inference models.

Future works include other data should be evaluated for
functional weights of the SIRMs model with FW.
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