
 
 

 

 

 
 

Abstract—In this paper, a line-integral fuzzy Lyapunov 
function is proposed for stability and stabilization of 
continuous-time Takagi-Sugeno descriptor models. The scheme 
enhances the relaxation due to the Lyapunov function by 
combining it with an application of the Finsler's lemma which 
allows an independent controller design up to second order 
systems. The proposed approach includes and outperforms 
former results on the same subject as shown both theoretically 
and via illustrative examples. 

I. INTRODUCTION 
S a result of their ability to exactly represent nonlinear  
models in a compact set of the state space,  
Takagi-Sugeno (TS) models [1] have attracted many 

researchers from the control community, which have taken 
advantage of their convex structure for stability analysis and 
controller design. A TS model can be obtained via the sector 
nonlinearity approach [2]; the representation thus obtained is 
a convex sum of linear models blended together with 
membership functions (MFs) which contain the nonlinearities 
of the system [3]. In order to obtain linear matrix inequality 
(LMI) conditions for stability analysis, controller or observer 
design, the direct Lyapunov method is used altogether with 
the convex structure of the TS models [4], [5]. Expressing 
results as LMI constraint problems is an essential feature of 
this framework, since they can be solved by efficient 
algorithms already available in software implementing 
convex optimization techniques [6]. 

Sufficient conditions are derived when a common 
quadratic Lyapunov function is used. There exist several 
works to deal with the inherent conservativeness of the 
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LMI-TS approach; they can be classified into three 
categories. First, in order to obtain LMI conditions, MFs 
should be removed from nested convex sums; some strategies 
have been proposed in [7], [8], and [9]: they are referred to as 
sum relaxations. Second, different types of Lyapunov 
functions may produce more relaxed conditions; among 
others, the following have been proposed: piecewise [10], 
[11], fuzzy (also known as non-quadratic) [12], [13], and 
line-integral [14]. Third, other convex models besides the TS 
ones have been used: polynomial [15] and descriptor [16]. 
This work focuses in the latter case as well as in the use of a 
line-integral Lyapunov function. 

The descriptor structure appeared in [17] with the main 
interest of describing nonlinear families of systems in a more 
natural way than the standard state-space one. In [16], 
stability and stabilization of fuzzy descriptor systems have 
been presented under a quadratic scheme; this work takes 
advantage of the descriptor structure to reduce the number of 
LMI constraints, thus reducing the computational burden.  

The use of non-quadratic Lyapunov functions in 
continuous time faces the designer with the time-derivatives 
of the MFs, a problem that has been considered in several 
works [18], [19], [20], [21] for standard models and in [22], 
[23] for descriptor models. In order to avoid the 
time-derivatives of the MFs, the line-integral approach has 
been proposed for controller design, resulting in bilinear 
matrix inequalities (BMIs), which are no longer as efficiently 
solved as LMIs [14]. LMI constraints were found for the 
two-rule second-order case in [24]. 

This work proposes an approach for stability analysis and 
controller design based on the Finsler's lemma [25] and a 
line-integral Lyapunov function [14], [24]: it breaks the link 
between controller gains and the Lyapunov function; 
Moreover, it offers parameter-dependent LMI conditions  
instead of BMI constraints. The result for stabilization is 
guaranteed for the second-order case. 

The paper is organized as follows. Section II presents the 
TS descriptor model, provides basic notation and useful 
lemmas. In section III the main result is developed: it 
combines a Finsler-based approach with line-integral 
Lyapunov functions for TS controller design; the two-rule 
second-order case is analyzed in detail. Section IV gives 
some examples to illustrate the effectiveness of the proposed 
approach. Finally, section V briefs the paper results. 
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II. DEFINITIONS AND NOTATIONS 
Consider the following continuous-time TS model in the 

descriptor form: 
( ) ( ) ( )v h hE x t A x t B u t= +� , (1) 

where ( ) nx t ∈\  is the state vector, ( ) mu t ∈\  is the control 

input, the sums ( )( )1

r
h i ii

A h z t A
=

=∑ , ( )( )1

r
h i ii

B h z t B
=

=∑ , 

and ( )( )1
er

v k kk
E v z t E

=
=∑  depend on iA , iB , { }1, ,i r∈ … , 

as matrices of appropriate dimensions, and kE , 

{ }1, , ek r∈ … , as matrices of adequate size, with vE as a 
regular matrix. Two sets of MFs 

( )( )0 1ih z t≤ ≤ , { }1, ,i r∈ … , and ( )( )0 1kv z t≤ ≤ , 

{ }1, , ek r∈ … , holding the convex sum property 

( )( )1
1r

ii
h z t

=
=∑  and ( )( )1

1er
kk

v z t
=

=∑  in a compact set of 

the state variables are defined: they depend on a premise 
vector ( ) pz t ∈\  which depends on the state ( )x t . Note that 
model (1) might arise from a wide variety of nonlinear 
models in the descriptor form via the sector nonlinearity 
approach [2]. 

An asterisk ( )∗  for inline expressions denotes the 
transpose of the terms on its left-hand side; for matrix 
expressions denotes the transpose of its symmetric 
block-entry. The standard notation for the Lie-derivative of 

( )V x  on the vector field ( )g x  is adopted, i.e., ( )gL V x . 
When convenient, arguments will be omitted. 

LMI-based controller design in the TS context requires 
MFs to be removed from nested convex sums via different 
schemes which differ in generality and complexity. A good 
compromise between effectiveness and computational burden 
is given by the following result: 

Relaxation lemma [7]: Let k
ijϒ  be matrices of appropriate 

dimensions. Then 
1 1 1

0er r r k
i j k iji j k

h h v
= = =

ϒ <∑ ∑ ∑  holds if 

0, ,
2 0, , , ,

1

k
ii

k k k
ii ij ji

i k

i j k i j
r

ϒ < ∀ ∀

ϒ + ϒ + ϒ < ∀ ∀ ≠
−

 (2) 

for { }1, ,i r∈ …  and { }1, , ek r∈ … . 
The next lemma has been useful in many recent results on 

LMI-based controller and observer design for TS models 
[25], [26]: it increases the design flexibility by allowing the 
Lyapunov function and the controller/observer gains to be 
designed independently as well as with progressively more 
relaxed results via controllers/observers with nested convex 
sums: 

Finsler’s Lemma [27]: Let ,nx ∈\  T n nQ Q ×= ∈\ , and 
m nR ×∈\  such that ( )rank R n< ; the following expressions 

are equivalent: 
a) 0Tx Qx < , { }: 0, 0nx x x Rx∀ ∈ ∈ ≠ =\ . 

b) : 0n m T TM Q MR R M×∃ ∈ + + <\ . 

The following line-integral Lyapunov function candidate 
will be considered [14]: 

( ) ( )
( )0,

2
x

V x f dψ ψ
Γ

= ∫ , (3) 

where ( )0, xΓ  is any path from the origin to the current state 

x , nψ ∈\  is a dummy vector for the integral, ndψ ∈\  is an 
infinitesimal displacement vector. 

While ( )V x  is a continuously differentiable function, its 

dependency on path ( )0, xΓ  obliges to consider the 
following lemma in order to impose path-independency on 

( )V x , thus satisfying positive-definiteness as well as radially 
unboundedness [14]: 

Lemma 1: Let ( ) ( ) ( )1 , ,
T

nf x f x f x= ⎡ ⎤⎣ ⎦… . A necessary 

and sufficient condition for ( )V x  to be a path-independent 
function is 

( ) ( )ji

j i

f xf x
x x

∂∂
=

∂ ∂
 (4) 

for , 1, ,i j n= … . 
Proof: It is the condition for a line-integral to be 

path-independent [28]. 
In [14], a solution satisfying (4) and leading to LMIs (for 

stability analysis) or BMIs (for stabilization) in ordinary state 
space, i.e., ( ) ( ) ( )z zx t A x t B u t= +� , has been proposed as 
follows: 

( ) ( )( )
1

r

i i
i

f x h x P D x
=

⎛ ⎞= +⎜ ⎟
⎝ ⎠
∑ , (5) 

with 
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0
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⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎣ ⎦

"
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"
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i
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d
d

D

d

α

α

α

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"

# # % #
"
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( ) ( )
1

ij
n

i j j
j

h x w xα

=

= ∏  where ( )ij
j jxαμ are the 

weight-functions, and  ( ) 0
T

i iP D P D+ = + > . 

III. MAIN RESULTS 

Let ( ) ( )
( )

x t
x t

x t
⎡ ⎤

= ⎢ ⎥
⎣ ⎦�

 so (1) can be written as: 

( )( ) ( )hv hEx t A x t B u t= +�  (6) 

with 
0

0 0
I

E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,  
0

hv
h v

I
A

A E
⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, and 

0
h

h

B
B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

Consider the following control law as in [25]: 
( ) [ ] ( ) ( )1 10hv hhv hv hhvu t F Y x t F Y x t− −= =  (7) 

where 
1 2

3 4
hv hv

hhv
hh hh

Y Y
Y

Y Y
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, with 
1 1

er r
hv i k iki k

F h v F
= =

=∑ ∑  and 
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1 1 1
er r r

hhv i j k ijki j k
Y h h v Y

= = =
=∑ ∑ ∑ formed by matrices ikF , 1

ikY , 
2

ikY , 3
ijY , and 4

ijY , { }, 1, ,i j r∈ … , { }1, , ek r∈ … . 
Substituting (7) in (6) and properly grouping terms, the 

closed-loop TS model constraint equality is obtained: 
1 0hv h hv hhv

x
A B F Y I

Ex
− ⎡ ⎤⎡ ⎤+ − =⎢ ⎥⎣ ⎦ ⎣ ⎦�

. (8) 

A. Stability 
Considering 0u = , (6) yields 
( ) ( )hvEx t A x t=�  (9) 

Lemma 1: The function ( )f x  satisfies path-independent 
conditions in (4) if it has the next structure:  

( ) hf x EP x= ; T
h hEP P E= , (10) 

where 
1

3 4

0h
h

h h

P
P

P P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, ( )1 1

1

r

h i i
i

P h x P
=

=∑ , ( )1 1 0
T

i iP P= > , 

1
i iP P D= +  as in (5), ( )3 3

1

r

h i i
i

P h x P
=

=∑ , ( )4 4

1

r

h i i
i

P h x P
=

=∑ . 

Proof:  From (10), the following expression 

( ) ( )
( )

1 1
1

3 4
2

0 0
0 0 0

h h

h h

f xI xP P x
f x

f xxP P
⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦�
, (11) 

leads to ( ) 1
1 hf x P x=  (this has the same structure than (5)) 

and ( )2 0f x =  (this plays no role). In order to satisfy 
path-independency for function (10), it is necessary that 

( )1f x  holds conditions in (4). Due to ( ) ( )1 5f x ⇔  it 
satisfies path-independency condition (4). 

Theorem 1: The TS descriptor model (1) with 0u =  is 

asymptotically stable if there exist matrices ( )1 1 0
T

j jP P= > , 
3
jP , and 4

jP , { }1, ,j r∈ … , such that: 

( ) ( )
( ) ( )( )

3

1 3 4 4

T
i jk

Tij T T
j k j j i k j

A P

P E P P A E P

⎡ ⎤+ ∗ ∗
⎢ ⎥ϒ =
⎢ ⎥− + − + ∗⎣ ⎦

. (12) 

Proof: The time-derivative of the Lyapunov function 
candidate in (3) is: 

( ) ( ) ( ) ( ) ( ) ( )T T
gV x L V x f x g x g x f x= = +� , (13) 

where ( )g x x= � . Using (10) and (9), (13) yields 

( )
( ) 0.

T T T T
h hv hv h

T T T
h hv hv h

V x x P A x x A P x

x P A A P x

= +

= + <

�
 (14) 

Then 
0T T

h hv hv hP A A P+ < . (15) 

Recalling the definitions of hP  and hvA , (15) is rewritten 
as: 

1 1

3 4 3 4

0 00 0
0

T T
h h

h v h vh h h h

I IP P
A E A EP P P P

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
+ <⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

, (16) 

which is equivalent to: 

( ) ( )
( ) ( )( )

3

1 3 4 4
0

T
h h

TT T
h v h h h v h

A P

P E P P A E P

⎡ ⎤+ ∗ ∗
⎢ ⎥ <
⎢ ⎥− + − + ∗⎣ ⎦

. (17) 

By relaxation Lemma in (2), the previous conditions are 
implied by (12), thus concluding the proof.,  

B. Stabilization 
Consider the following path-independent function  
( ) hhvf x EZ x= ; T

hhv hhvEZ Z E= , (18) 

with block-matrix 
1

3 4

0h
hhv

hhv hhv

Z
Z

Z Z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

( ) ( )11 1 1

1

r

h h i i
i

Z P h x P
−

=

= =∑ , ( )1 1 0
T

i iP P= > , 1
i iP P D= + , 

( ) ( )1 13 4 3 1
hhv hhv hhv hZ P P P

− −
= − , and ( ) 14 4

hhv hhvZ P
−

=  where 
3 3

1 1 1
er r r

hhv ijki j k
P P

= = =
=∑ ∑ ∑  and 4 4

1 1 1
er r r

hhv ijki j k
P P

= = =
=∑ ∑ ∑ , 

with 4
hhvP  as a regular matrix. 

The inverse matrix of hhvZ  is 
1

1
3 4

0h
hhv

hhv hhv

P
Z

P P
− ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. (19) 

From [24], it is known that for a 2nd-order case, the 
Lyapunov function is path independent if and only if 

( )
1

2

11 11

22

i

ih
d q

P
q d

α

α

− ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, (20) 

where ( )1
11 1 1 1 11id w d w dα = + −  and ( )2

22 2 2 2 21id w d w dα = + − , 

with 1d , 1d ,  2d , 2d , and q  being constants. Thus, the 
following inverse can be directly obtained: 

1 2

1 22 1

1

1 11 22
2

11 2222 11

1i i

i ii ih
d q d q

P
d d qq d q d

α α

α αα α

−
⎡ ⎤ ⎡ ⎤−

= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
. (21) 

For convenience, expression (21) will be written as follows:  

( )
1

1
11

h
h

h

XP
P

−
= , (22) 

where 
2

1

1 22

11

i

ih
d q

X
q d

α

α

⎡ ⎤−
= ⎢ ⎥−⎣ ⎦

 and ( ) 1 2
11 2

11 22
i i

hP d d qα α−
= − . 

Theorem 2: The TS descriptor model (1) under the control 
law (7) is asymptotically stable if for a given 0ε > , there 

exist matrices ( )1 1 0
T

j jX X= > , 3
ijkX , 4

ijkX , jkK , 1
jkQ , 2

jkQ , 
3
ijQ , 4

ijQ , { }, 1, ,i j r∈ … , { }1, , ek r∈ … , such that (2) holds 
for: 

( ) ( ) ( )
( ) ( )

( )

11

21 22

31 32 33

41 42 43 44

ij

ijk ijkk
ij

ijk ijk j

ijk ijk ijk ijk

G
G G
G G G
G G G G

⎡ ⎤∗ ∗ ∗
⎢ ⎥∗ ∗⎢ ⎥ϒ = ⎢ ⎥∗
⎢ ⎥
⎢ ⎥⎣ ⎦

, (23) 

with ( )11 3
ij ijG Q= + ∗ , ( )21 1 3 4 T

ijk i jk k ij i jk ijG AQ E Q KB Q= − + + , 
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31 1 1 3
ijk jk j ijG Q X Qε= − + , ( )42 4 4 2 4

ijk ij ijk i jk k ijG Q X AQ E Qε= − + − , 

( )33 1
j jG Xε= − + ∗ , 32 2 4

ijk jk ijG Q Qε= + , ( )44 4
ijk ijkG Xε= − + ∗ , 

( )41 3 3 1 3
ijk ij ijk i jk k ij i jkG Q X AQ E KQ Bε= − + − + , 43 3

ijk ijkG Xε= − , 

( )22 2 4
ijk i jk k ijG AQ E Q= − + ∗ . 
Proof: The time derivative of the Lyapunov function 

candidate (3) with (11) and 1 0hP > can be rewritten as: 

0
0

0

T T
hhv

hhv

x xZ
Ex ExZ

⎡ ⎤⎡ ⎤ ⎡ ⎤
<⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦� � . (24) 

Using Finsler's lemma, the next inequality guarantees 
( ) 0V x <�  along the trajectories of the systems (1) restricted 

by (8): 

( )10
0

0

T
hhv

hv h hv hhv
hhv

UZ
A B F Y I

WZ
−⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ + − + ∗ <⎢ ⎥ ⎢ ⎥ ⎣ ⎦

⎣ ⎦⎣ ⎦
. (25) 

Multiplying the previous expression by 1

0
0

T
hhv

hhv

Y
Z −

⎡ ⎤
⎢ ⎥
⎣ ⎦

 on 

the left-hand side and by its transpose 
0

0
hhv

T
hhv

Y
Z −

⎡ ⎤
⎢ ⎥
⎣ ⎦

 on the 

right-hand side, gives 

( )1

0
0

0

T T
Thhv hhv

hv hhv h hv hhv
hhv hhv

Y Y U
A Y B F Z

Y Z W
−

−

⎡ ⎤ ⎡ ⎤
⎡ ⎤+ + − + ∗ <⎢ ⎥ ⎢ ⎥ ⎣ ⎦

⎣ ⎦ ⎣ ⎦
(26) 

and selecting T
hhvU Y −= , hhvW Zε= , 0ε > , and recalling (19), 

renders: 
( ) ( )

( ) ( )1 1 0hv hhv h hv

T
hhv hv hhv h hv hhv hhv hhv

A Y B F

Y A Y B F Z Z Zε ε− − −

⎡ ⎤+ + ∗ ∗
<⎢ ⎥

+ + − − +⎢ ⎥⎣ ⎦
. (27) 

Recalling (21) with 
( )

3
3

11

hhv
hhv

h

XP
P

−
= , 

( )
4

4
11

hhv
hhv

h

XP
P

−
= , 

( )
1

1
11

hv
hv

h

QY
P

−
= , 

( )
2

2
11

hv
hv

h

QY
P

−
= , 

( )
3

3
11

hh
hh

h

QY
P

−
= , 

( )
4

4
11

hh
hh

h

QY
P

−
= , 

( ) 11

hv
hv

h

KF
P

−
= , and after some operations, (27) can be 

rewritten as: 

( )

( ) ( ) ( )
( ) ( )

( )

11

21 22

31 32 3311

41 42 43 44

1 0

hh

hhv hhv

hhv hhv hh

hhv hhv hhv hhv

G
G G
G G GP
G G G G

−

⎡ ⎤∗ ∗ ∗
⎢ ⎥∗ ∗⎢ ⎥ <
⎢ ⎥∗
⎢ ⎥
⎢ ⎥⎣ ⎦

, (28) 

with ( )11 3
hh hhG Q= + ∗ , ( )33 1

h hG Xε= − + ∗ , 43 3
hhv hhvG Xε= − , 

( )42 4 4 2 4
hhv hh hhv h hv v hhG Q X A Q E Qε= − + − , 32 2 4

hhv hv hhG Q Qε= + , 

( )21 1 3 4 T

hhv h hv v hh h hv hhG A Q E Q KB Q= − + + , ( )44 4
hhv hhvG Xε= − + ∗ , 

( )22 2 4
hhv h hv v hhG A Q E Q= − + ∗ , 31 1 1 3

hhv hv h hhG Q X Qε= − + , 

( )41 3 3 1 3
hhv hh hhv h hv v hh h hvG Q X A Q E KQ Bε= − + − + . 

Due to the fact that 
( ) 11

1 0
hP

−
> , (28) can be written as: 

( ) ( ) ( )
( ) ( )

( )

11

21 22

31 32 33

41 42 43 44

0

hh

hhv hhv

hhv hhv h

hhv hhv hhv hhv

G
G G
G G G
G G G G

⎡ ⎤∗ ∗ ∗
⎢ ⎥∗ ∗⎢ ⎥ <
⎢ ⎥∗
⎢ ⎥
⎢ ⎥⎣ ⎦

. (29) 

Applying (2) to the previous expression gives the desired 
result, thus concluding the proof.,  

Remark 1: If 1 1
hP P= , then LMI conditions in (27) are the 

same in Theorem 1 of [25], i.e., under this assumption [25] is 
a particular case of conditions in (27) until second-order 
systems. 

Remark 2: Conditions in (23) are parameter-dependent 
LMIs; they are LMIs up to the choice of ε . Nevertheless, it 
has been proved in [29] and [30] that a logarithmically spaced 
family of values, for instance { }6 5 610 ,10 , ,10ε − −∈ … , is 
adequate to avoid an exhaustive search of feasible solutions. 

IV. EXAMPLES 
The proposed results are illustrated via the following two 

numerical examples.  

A. Example 1 
Consider the following TS descriptor model:  

( )( ) ( ) ( )( ) ( )
1 1

er r

k k i i
k i

v z t E x t h z t A x t
= =

=∑ ∑� , (30) 

with model matrices 1

4.3 4.8
1.7

A
a

−⎡ ⎤
= ⎢ ⎥−⎣ ⎦

, 2

4.6
1.9 3.9
b

A
−⎡ ⎤

= ⎢ ⎥− −⎣ ⎦
, 

1

0.8 0.5
0.21 1.3

E
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2

0.8 0.7
0.5 0.68

E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

; number of rules 

2er r= = ; MFs 
2
1

1 4
xh = , 2 11h h= − , 

2
2

1 4
xv = , 2 11v v= − ; and 

parameters [ ]100,5a ∈ −  and [ ]120,0b∈ − . 
Figure 1 shows the fact that solutions of [16] are all included 
in those of (12). 
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Figure1. Stability: "*" from (12) and " o " from [16]. 
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Figure 2. State-trajectories for 5a = −  and 25b = − . 

Selecting 5a = −   and  25b = − , a Lyapunov function of 
the form (3) can be found via Theorem 1. The Lyapunov 
matrices are 

1

9.0426 5.8869
5.8869 9.0211

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 2

4.2679 5.8869
5.8869 9.0211

P
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

Figure 2 illustrates the state-trajectory from four different 
initial conditions: as expected, they all converge towards the 
origin. 

B. Example 2 
For the sake of comparison, consider the following TS 

fuzzy model (Example 1 in [25]): 

( )( ) ( ) ( )( ) ( ) ( )( )
1 1

er r

k k i i i
k i

v z t E x t h z t A x t B u t
= =

= +∑ ∑� , (31) 

where 1

4.3 4.8
1.7 1

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

4.6
3.9 1.9
a

A
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 1

5.6
0.9

B
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

2

8.1
B

b
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 1

0.8 0
0.21 0.03

a
E

b
+⎡ ⎤

= ⎢ ⎥+⎣ ⎦
, 2

0.8 0.7
0.5 0.68

E
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

2er r= = , 
2
1

1 4
xh = ,  2 11h h= − , 

2
2

1 4
xv = , 2 11v v= − , with 

[ ]7,4a ∈ −  and [ ]0.4,2b∈ . 
Figure 3 shows that all the solutions from [25] and 

Theorem 2 in [23] are included in those of (23). 
 Conditions in Theorem 2 are able to found a controller for 

cases where the previous approaches in [25] and [23] do not: 
for instance, when 2a = −  and 1.8b =  with 1ε = , Theorem 
2 finds a stabilizing controller of the form (7) with the 
following gains and Lyapunov matrices: 

1

5.5431 1.2761
1.2761 0.3003

P
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 2

22.7103 1.2761
1.2761 0.3003

P
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 

11

21.0092
117.3489

T

F
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 12

22.3257
114.7307

T

F
−⎡ ⎤

= ⎢ ⎥−⎣ ⎦
, 21

0.1825
0.9114

T

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, 

and 22

0.2059
0.8113

T

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

.  
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Figure 3. Stabilization: "x" from (23), "+" from [25]  and " o " from Th. 2 

in [23] with 1,2 1φ = −  and 1,2 1θ = − . 
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Figure 4. Time evolution of the state. 

The simulation in Figure 4 has been performed from the 
initial condition ( ) [ ]0 0.5 0.7 Tx = − . 

V. CONCLUSIONS 
New stability and stabilization schemes via line-integral 

fuzzy Lyapunov functions and Finsler's lemma for 
continuous-time Takagi-Sugeno descriptor models have been 
presented. The new approach cut the link between the 
Lyapunov function and the controller gains; it also offered 
less conservative LMI conditions instead of BMIs. Some 
examples were given to show that the previous results on the 
same subject were outperformed. 
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