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Abstract— This paper investigates the problem of sliding
mode control (SMC) for a class of uncertain Takagi-Sugeno (TS)
fuzzy descriptor systems with time-varying delay. An integral-
type sliding function is proposed and a new delay-dependent
stability criterion, in terms of linear matrix inequality(LMI), is
derived which guarantees to the sliding mode dynamics to be
regular, impulse free and stable for all admissible uncertainties
and time-varying delay. Moreover, a SMC law is synthesized
to ensure the reaching condition. A numerical example is given
to demonstrate the effectiveness of the proposed method SMC
scheme.
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I. INTRODUCTION

To properly describe the behavior of some practical sys-

tems, it is interesting to consider the nature of their dynamic

and static states at the same time. Singular systems are also

referred to as implicit systems and are those dynamics of

which are governed by a mixture of algebraic and differential

equations [11], [5]. On the other hand, time delay often

occurs in various complex engineering systems such as

communications systems, long transmissions lines, chemical

processes, etc. Many problems for the class of singular

delayed-systems either in continuous-time and discrete-time

have been tackled and interesting results have been reported

in the literature [15], [17], [8], [3], [10].

Recently, the (TS) fuzzy model has been extended to deal

with descriptor nonlinear systems with time delay [16], [1],

[7]. The stability problem of this class of system is more

complicated than that for regular systems because it requires

considering not only stability but also regular and impulse

free.

Over the past two decades, the study on sliding mode

control (SMC) has increased considerably owing to its vari-

ous attractive features such as fast response, good transient

performance, and insensitiveness to the uncertainties on the

sliding surface [13], [6], [4], [9]. Recent research [4], [14]

has studied a control scheme called integral sliding mode

control in which an integral controller is added to a sliding

mode controller. The main advantages of integral SMC are

that it offers the robustness of system’s stability and can

eliminate the steady-state error under step input.

In this paper, a SMC approach is proposed to address the

problem of stabilizing for a class of uncertain (TS) descriptor
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time-delay systems. First, we develop a delay-dependent suf-

ficient condition, in term of linear matrix inequality (LMI),

which ensures to the sliding mode dynamics to be robustly

admissible. Second, we investigate the synthesis of SMC law

to drive the system trajectories onto the predefined Integral

sliding surface. This paper is organized as follows: Section

2 formulates the system descriptions and presents some

preliminaries. The main results are presented in section 3. An

illustrative example is given in section 4. Section 5 provides

a conclusion.

Notations. Throughout this paper, X ∈ R
n denotes the

n−dimensional Euclidean space, while X ∈ R
n×m refers to

the set of all n×m real matrices. The notation X > 0 (re-

spectively, X ≥ 0) means that the matrix X is real symmetric

positive definite (respectively, positive semi-definite). The

symbol (∗) stands for matrix block induced by symmetry,

sym(X) stands for X + XT . Matrices are assumed to be

compatible for algebraic operations if their dimensions are

not explicitly stated. If not explicitly stated, all matrices

are assumed to have compatible dimensions for algebraic

operations.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

The (TS) fuzzy dynamic model is described by fuzzy

IF-THEN rules, which locally represent linear input-output

relations of nonlinear systems. A continuous fuzzy descriptor

model with delay and parameter uncertainties can be de-

scribed by :


Eẋ(t) =

r∑
i=1

µi(θ)
{
Ai(t)x(t) +Ahi(t)x(t− h(t))

+B(u(t) + f(t, x(t))
}

x(t) = ϕ(t), t ∈ [−hM , 0].
(1)

where µi(θ) =
∏

s

j=1
F i

j
(θj)

∑
r

i=1

∏
s

j=1
F i

j
(θj)

, i = 1, 2, · · · , r, are

the normalized weight functions, x(t) ∈ R
n is the state,

u(t) ∈ R
m is the control input, f(t, x(t)) represents the

system nonlinearity and any model uncertainties in the sys-

tem including external disturbances or unknown input. F i
j

(j = 1 . . . s) are fuzzy sets, θ = [θ1, . . . , θs] is the premise

variable vector. The delay h(t) is time-varying and satisfies

0 ≤ h(t) ≤ hM , ḣ(t) ≤ hd. (2)

where hM is constants representing the bounds of the delay,

hd is a positive constant. ϕ(t) is a compatible vector-valued

initial function in [−hM , 0] representing the initial condition

of the system. The matrix E ∈ R
n×n may be singular and
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assume that rank(E) = q ≤ n. Ai(t) = Ai + ∆Ai(t) and

Ahi(t) = Ahi +∆Ahi(t) are time-varying system matrices.

Ai, Ahi and Bi are constant matrices with appropriate

dimensions. Note that the normalized weights µi(θ) satisfy

µi(θ) ≥ 0, i = 1, 2, · · · , r
r∑

i=1

µi(θ) = 1. (3)

Without loss of generality, we introduce the following as-

sumption for technical convenience.

1) ∆Ai(t) and ∆Ahi(t) are the unmatched uncertainties

satisfying

[
∆Ai(t) ∆Ahi(t)

]
= MiF (t)

[
Ni Nhi

]
, (4)

where Mi, Ni and Nhi are known real constant matri-

ces and F (t) is unknown time-varying matrix function

satisfying FT (t)F (t) ≤ I .

2) The matched nonlinearities f(t, x(t)) satisfies the in-

equality

f(t, x(t)) ≤ η(t, x(t)) (5)

where η(x) is a positive known vector-valued function.

First of all, we recall some definitions.

Consider an unforced linear descriptor system with delay

described by

Eẋ(t) = Ax(t) +Ahx(t− h(t)), 0 ≤ h(t) ≤ hM

x(t) = ϕ(t), t ∈ [−hM , 0].
(6)

Definition 1: [5] System (6) is said to be admissi-

ble if it is regular (det
(
sE −A

)
6= 0), impulse-free (

deg
(
det

(
sE −A

))
= rank(E)) and stable.

Lemma 1: [12] For given real matrices Q, a and b with

appropriate dimensions such that Q > 0, the following

statements are equivalent

1)

[
Q a
aT 0

]
+ sym

{[
F
G

] [
bT −I

] }
< 0 (7)

is feasible in variable F and G
2) Q, a and b satisfy

Q+ sym(abT ) < 0 (8)

III. MAIN RESULTS

SMC design involve two basic steps. The first one is

to design an appropriate switching surface such that the

sliding mode dynamics restricted to the surface is admissible.

The second step consists to synthesize a variable structure

controller to guarantee that the system state trajectories

converge to the predefined sliding surface and maintain them

there for all subsequent time.

A. Integral sliding mode surface

The integral sliding-mode control completely eliminating

the matched-type nonlinearities and uncertainties of (1) while

keeping s = 0.

In this work, the following integral sliding surface is consid-

ered:

s(x, t) = MEx(t)−MEx0

+

∫ t

0

r∑
i=1

µi

{(
Ai +BKi

)
x(θ) +Ahix(θ − h(θ))dθ

}

(9)

where Ki ∈ R
m×n is real matrix to be designed and

M ∈ R
m×n is designed to satisfy that MB is nonsingular.

According to SMC theory, when the system trajectories reach

onto the sliding surface, it follows that s(x, t) = 0 and

ṡ(x, t) = 0. Therefore, from ṡ(x, t) = 0, the equivalent

control law can be established as

us = (MB)−1M
r∑

i=1

µi

{(
∆Ai(t) +BKi

)
x(t)

+ ∆Ahi(t)x(t− h(t)))
}
− f(t, x(t)) (10)

Substituting (10) into (1), we obtain the following sliding

mode dynamics:

Eẋ(t) =
r∑

i=1

µi(θ)
{
Ai(t)x(t) +Ahi(t)x(t− h(t))

}

(11)

where M = I −B(MB)−1M and

Ai(t) = Ai +∆Ai(t), Ai = Ai +BKi,

Ahi(t) = Ahi +∆Ahi(t), M i = MMi,
(12)

[
∆Ai(t) ∆Ahi(t)

]
= M iF (t)

[
Ni Nhi

]
. (13)

B. Sliding Mode Dynamics synthesis

We focus on this section to determine the gain Ki in the

switching surface function of (9) such that the sliding mode

dynamics (11) is robustly admissible.

Theorem 1: For given hM and hd, sliding mode dynam-

ics (11) is regular, impulse free and robustly stable, if there

exist positive-definite matrices P , Q1, W , and matrices Fl,

l = 1, 2, 3 and V =
[
V1 V2

]
of appropriate dimensions,

and a positive scalar ε such that the following conditions:

M(Ai, Ahi) =


Ψ11 Ψ12

√
hMV T

1 0 X − F1 +A
T

i F
T
3 NT

i εF1M i

∗ Ψ22

√
hMV T

2 0 −F2 +AT
hiF

T
3 NT

hi εF2M i

∗ ∗ −W 0 0 0 0
∗ ∗ ∗ −W

√
hMW 0 0

∗ ∗ ∗ ∗ − sym(F3) 0 εF3M i

∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ −εI



< 0

(14)

are feasible.
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where

Ψ11 = sym(V T
1 E + F1Ai) +Q1, X = ETP + SRT ,

Ψ12 = −V T
1 E + ETV2 + F1Ahi +A

T

i F
T
2 ,

Ψ22 = Φ22 + sym(F2Ahi)
(15)

and R ∈ R
n×(n−q) is any matrix with full column rank and

satisfies ETR = 0.

Proof: For more details see [2].

For the controller synthesis purpose, we introduce some

auxiliary variables Ks and Kds in sliding mode dynamics

(11). We get

Ai = Asi +B(Ki −Ks), Ahi = Ahsi −BKs,

Asi = Ai +BKs, Ahsi = Ahi +BKds.
(16)

Based on the result in Theorem 1, sliding mode dynamics

(11) is regular, impulse free and robustly stable, if there exist

matrices P > 0, Q1 > 0, W > 0, Fl, l = 1, 2, 3 and

V =
[
V1 V2

]
of appropriate dimensions, and a positive

scalar ε such that the following condition holds:

M(Ai,Ahi) < 0 (17)

Inequality (17) may be also written as

M(Asi, Ahsi) + sym(FK) < 0 (18)

where

K =
[
(Ki −Ks) −Kds 0 0 0 0 0

]
F =

[
BTFT

1 BTFT
2 0 0 BTFT

3 0 0
]T

By applying Lemma 1 to (18), we obtain the following result.

Theorem 2: Let hM and hd be given positive scalars, and

Ks and Kds given matrices with appropriate dimensions.

Sliding mode dynamics (11) is regular, impulse free and

robustly stable, if there exist symmetric positive-definite

matrices P Q1, W , matrices Fl, l = 1, 2, 3 and V =[
V1 V2

]
of appropriate dimensions and a positive scalar

ε such that the following conditions hold:

Υi =

[
M(Asi, Ahsi) F

∗ 0

]
+ sym(IYi) < 0 (19)

i = 1, 2, · · · , r

where

Yi =
[
Yi −GKs −GKds 0 0 0 0 0 −G

]
I =

[
0 0 0 0 0 0 0 I

]T
The gain matrices Ki is given by :

Ki = G−1Yi (20)

C. SMC law synthesis

Now, we are in position to synthesize a SMC law, by which

the trajectories of the uncertain fuzzy singular time-delay

systems (1) can be driven onto the pre-specified switching

surface s(t) = 0 and then are maintained there for all

subsequent time.

Theorem 3: Consider the uncertain singular time-delay

system (1). Suppose that the switching surface function is

given by (9), then the trajectories of system (1) can be driven

onto the switching surface s(t) = 0 by the following SMC

law:

u(t) =

r∑
i=1

µi(θ)
(
Kix(t)− αi

s(t)

‖s(t)‖

)
(21)

where

αi = λ+ η(t, x(t)) + ‖
(
MB

)−1
MMi‖(

‖Nix(t)‖+ ‖Nhix(t− h(t))‖
) (22)

Proof: Choose M under the condition of MB is

nonsingular. Consider the following Lyapunov function:

Vs(t) =
1

2
sT (t)

(
MB

)−1
s(t) (23)

According to (9), we have

ṡ(t) = M

r∑
i=1

µi

{(
∆Ai(t)−BKi

)
x(t)

+ ∆Ahi(t)x(t− h(t)))

+B
(
u(t) + f(t, x(t))

)}
(24)

Thus, taking the derivative of Vs(t) and considering the

above equation, we have

V̇s(t) =sT (t)
(
MB

)−1
ṡ(t)

=sT (t)
(
MB

)−1
M

r∑
i=1

µi

{
∆Ai(t)x(t)

+ ∆Ahi(t)x(t− h(t)))
}

+ sT (t)
(
u(t) +

r∑
i=1

µi

(
f(t, x(t))−Kix(t)

))

≤‖s(t)‖

r∑
i=1

µi

{
‖
(
MB

)−1
MMi‖

{
‖Nix(t)‖

+ ‖Nhix(t− h(t))‖

}
+ ηi(x)

}

+ sT (t)
(
u(t)−

r∑
i=1

µiKix(t)
)

(25)

Substituting (21) into (25), we have

V̇s(t) =− λ‖s(t)‖ < 0, ∀‖s(t)‖ 6= 0 (26)

Then the system trajectories converges to the predefined slid-

ing surface and is restricted to the surface for all subsequent

time.
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IV. NUMERICAL EXAMPLE

In this section, a numerical example is provided to show

the effectiveness of the proposed methods. Consider the

nonlinear time delay system borrowed from [16](
1 + (a+ δa) cos(θ(t))

)
θ̈(t) = −bθ̇3(t)

+ (c+ δc)θ(t) + (ch + δch)θ(t− h(t))

+ d(u(t) + f(t, x(t)))

(27)

where the range of θ̇(t) is assumed to satisfy |θ̇(t)| < φ,

φ = 2, ch = 0.8, h(t) = 1.1 + 0.15 sin(t) (thus hM =
1.25, hd = 0.15), u(t) being the control input. For simulation

purposes, we set a = b = d = e = 1, c = 1. As in [16], time-

delay system (27) can be expressed exactly by the following

fuzzy descriptor form :

Eẋ(t) =

3∑
i=1

µi

{
Ai(t)x(t) +Adi(t)x(t− h(t))

+B(u(t) + f(t, x(t)))
} (28)

where

E =


1 0 0
0 1 0
0 0 0


 , A1 =


0 1 0
0 0 1
c −b(φ2 + 2) a− 1


 ,

A2 =


0 1 0
0 0 1
c 0 −a− 1− aφ2


 , A3 =


0 1 0
0 0 1
c 0 a− 1


 ,

Ahi


 0 0 0
0 0 0
ch 0 0


 , B =


00
d


 ,

µ1 =
x2
2(t)

φ2 + 2
, µ2 =

1 + cos(x1(t))

φ2 + 2
,

µ3 =
φ2 − x2

2(t) + 1− cos(x1(t))

φ2 + 2

Assume that δa(t) = β∆(t)ā, δc(t) = β∆(t)c and δch(t) =
β∆(t)ch, the uncertain matrices can be described as (4) with

Mi =


00
β


 N1,3 =

[
c 0 ā

]
N2 =

[
c 0 −ā(φ2 + 1)

]
,

Nhi =
[
ch 0 0

]
Nwi = 0, i = 1, 2, 3.

In this example we choose R =
[
0 0 I

]T
, Ks =[

−4.5 −5.5 −1
]
, Kds

[
−0.1 −0.1 −0.03

]
and M =[

0.3 0.1 1
]

According to Theorem 3, a feasible solution

is obtained and the associate controller gains are

K1 =
[
−4.5754 −5.2778 −1.7405

]
,

K2 =
[
−4.5739 −6.3750 −0.6305

]
,

K3 =
[
−4.5823 −6.3835 −1.7364

]
.

Set λ = 0.65, β = 2, ā = 0.2a, ∆(t) = cos(0.1t) and

f(t, x(t)) = 1.5sin2(x1(t))x
3
1(t) then the sliding surface and

the SMC law can be designed according to (9) and (21)-(22),

respectively. To prevent the control signals from chattering,

we change sign
s(t)

‖s(t)‖ with
s(t)

0.06+‖s(t)‖ .
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Fig. 1. State trajectories.
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Fig. 2. Control input trajectory
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Fig. 3. Switching surface trajectory
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Fig. 4. States trajectories without sliding mode term
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Figures (1)-(4) illustrate the simulation results using the

initial conditions x(0) =
[
−0.75 0.5 1

]T
. Figure (1) plots

the evolution of the system outputs and Figure (2) depicts

the control input vector. The response of s(t) is given in

Figure (3). From Figure (1), we see that the SMC achieves

asymptotic stability of states in spite presence of uncertainty,

time delay and mismatched disturbance. Figure (4) shows

the state responses of the closed-loop system without sliding

mode term. From this figure, we can see the effectiveness of

the sliding mode term to compensate the effect of unknown

input.

Assume now that f(t, x(t)) = 0 and for time t ≥ 15s the

model parameters a, c and ch abruptly change. For β = 3 and

∆(t) = sin(10t), applying control law (21) to the system,

one gets the state trajectory evolutions shown in Figure (5).

However, when the control law is applied to the system

without sliding mode term, the stability of the uncertain

system with poor performance is shown in Figure (6). It is

clearly that the proposed SMC scheme effectively eliminates

the effects of parameter uncertainties and guarantees the

asymptotic stability of the closed-loop systems.
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Fig. 5. State trajectories for β = 3.

0 5 10 15 20 25 30 35
−8

−6

−4

−2

0

2

4

6

8

 

 

x1
x2
x3

Fig. 6. State trajectories without sliding mode term for β = 3.

Regarding this results, we conclude that the proposed SMC

law yields a good performance and stabilizes the nonlinear

system with time varying delay, unknown parameters uncer-

tainties and nonlinear input.

V. CONCLUSION

In this paper, SMC design for (TS) fuzzy descriptor time-

delay models is reported. The major theoretical findings are

as follows. First, the delay-dependent sufficient condition is

developed to guarantee that the sliding mode dynamics is

robustly admissible. Then by synthesizing a SMC law it has

been shown that the system trajectories can be driven onto

the predefined switching surface. The illustrative example

validates the reported method.
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