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Analyzing Fuzzy Association Rules with Fingrams in KEEL
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Abstract— This work presents the full integration of fuzzy
inference-grams (Fingrams) in KEEL to visual analysis of
fuzzy association rules. Fingrams graphically represent fuzzy
rule-based systems (FRBSs) in 2D graphs that illustrate the
interaction among fuzzy rules in terms of rule cofiring, i.e.,
paying attention to rule pairs simultaneous fired by a given
input. The new module allows to generate Fingrams for fuzzy
association rules created in the suite KEEL, that can be
afterwards analyzed to comprehend the system behavior and
improve it. We sketch the use and potentials in an illustrative
example built in KEEL over a real-world dataset including
qualitative assessments of a set of design chairs.

I. INTRODUCTION

UZZY ASSOCIATION RULES [1] permit the uncove-

ring of dependencies among items in datasets. They have
been successfully applied to a wide variety of problems [2]
such as, effective fuzzy associative classification [3], mining
of medical databases [4], and so on. Unfortunately, systems
made up of automatically extracted fuzzy association rules
are rarely as interpretable as desired [3]. A crucial problem
is the often huge number of rules that can be found from a
database, making quite hard to understand and analyze this
obtained systems.

Fingrams have arisen as a powerful and very useful tool
for analyzing fuzzy systems [5]. We have designed them
for dealing with fuzzy rule-based classifiers, regressors and
fuzzy associate rules. Fingrams facilitate the analysis of those
fuzzy systems at inference level from a comprehensibility
viewpoint. With that aim, fuzzy rule bases are graphically
represented in the form of social networks that display the
interactions among rules. Experts can comfortably analyze
Fingrams to understand the structure and behavior of the
represented fuzzy system, even for large systems. Moreover,
they support an interpretability-driven design of fuzzy sys-
tems [6].

Fingrams can be built and analyzed in the software tools
GUAIE [7] and KNIME [8]. Also, a stand alone software
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tool, Fingrams Generator!, allows to construct them inde-
pendently of the fuzzy design tool used [9].

This contribution presents the improved Fingram module
for the software suite KEEL presented in [9]. The new
implementation permits the complete creation of Fingrams
in SVG format without additional software. It allows an easy
visualization, analysis and interpretation of fuzzy association
rules generated with algorithms provided by KEEL. We use
it to generate Fingrams in a real world problem and analyze
the behavior of the system according to them.

The rest of the manuscript is structured as follows. Section
IT introduces some preliminaries about fuzzy association
rules, Fingrams and KEEL. Section III describes the new
Fingram module implemented in KEEL. Its use in an illustra-
tive but real example is given in Section IV. Finally, Section
V points out some conclusions and future work.

II. PRELIMINARIES

This section introduces the basic definitions and measures
of fuzzy association rules; the basic aspects and methodology
of Fingrams; and the data mining suite KEEL emphasizing
its main features.

A. Fuzzy Association Rules

Association rules uncover and represent dependencies
among items in a dataset [10]. These are represented like
X =Y, where X and Y areitemsetsand X NY = ¢ [11].
We should understand them as if X appears in a pat-
tern is highly probable that Y appears there as well.
For instance, in market basket analysis the association
{computer, keyboard, screen} — {mouse} points out that
when you buy a computer, a keyboard and a screen you also
order a mouse.

Although many works in the field of association rules
focus on discrete or binary datasets, quantitative datasets
turned out as highly interesting due to its appearance in
real-world applications. Thus, fuzzy set theory appeared as
a profitable solution in order to represent associations. It
avoids unnatural boundaries in the partitioning and improves
linguistic interpretability of the rules. In recent years, many
methods have been proposed to mine fuzzy association rules
from quantitative datasets [2], [3], [12], [13].

Let us show an example of fuzzy association rule from
a dataset with three attributes (A;, As and As) and three
linguistic terms each one (Low, MEDIUM, and HIGH):

{A; is LoW and As is HIGH }— {A3 is MEDIUM}.

! Available in: http://sourceforge.net/projects/fingrams/
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Support and Confidence are well known measures used to
assess fuzzy association rules. Considering the rule R : X —
Y, they are defined as:

Support(F) E%e'D;'R(W M
. Z%GD MR(xp)
Con fidence(R) = > ep tx (@) ?

being p1x (z,) the matching degree of the pattern x,, with the
rule antecedents; ptr(x,) the matching degree of the pattern
xp, with the rule antecedents and consequent; and | D | the
cardinality of the dataset used D.

Most of the classic algorithms to generate fuzzy associa-
tion rules attempt to mine rules whose Support and Confi-
dence are greater than a minimum Support and a minimum
Confidence. Though this framework is the most employed in
the literature it is well known that it has many drawbacks. In
particular, if the Support of the consequent of a rule is very
high the Confidence of that rule will be very high despite
the combinations of items in the antecedent [14], [15]. For
instance, let us consider a rule A — B with Confidence 0.9
and a rule C — E with Confidence 0.7. If the Support of
B is 0.95 and the Support of E is 0.1, the rule C — FE
will be better than the rule A — B since in this case the
first rule corresponds to a negative dependence (observing A
reduces the probability of B), whilst in the second case the
probability of F increases significantly when we observe C.
For this reason, several authors have arisen some measures
for the selection and ranking of patterns according to their
potential interest to the user [16]. One of them is the measure
Lift [17], which represents the ratio between the Confidence
and the expected Confidence of the rule. This measure is
defined as:

Confidence(R)
>, o (@)/1 D]

being py (z,) the matching degree of the pattern z, with
the rule consequent. This measure obtains values in [0,00),
detecting negative dependence (Lift < 1), independence (Lift
= 1) or positive dependence among items (Lift > 1).

Lift(R) = 3)

B. Fingrams

Usually, FRBSs heavily cover the input space, i.e. a
given input can fire simultaneously (co-fire) various rules.
Taking advantage of this quirk, Fingrams show graphically
the interaction among rules at the inference level in terms of
co-fired rules.

Fingrams represent fuzzy systems as social networks made
out of rules that collaborate/compete to produce a final
behavior. Nodes represent fuzzy rules and their relations
represent the interaction among rules. These relations are
computed using a specific metric, usually a rule co-firing
metric, that gives weighted links between nodes.

We have proposed a methodology for visual representation
and exploratory analysis of the fuzzy inference process in
FRBSs based on Fingrams [5]. The procedure to build

Fingrams is as follows: (1) create the network; (2) scale it
while keeping the most important information; and finally (3)
display the network using an appropriate drawing algorithm.

1) Fingram generation: The original network is built
by means of a dataset, a rule base, a fuzzy reasoning
mechanism and a rule co-firing metric. This complete
set of relations is formalized in a square matrix and
represented by a graph.

Web social networks usually use the friendship or the
mentions as metric to construct a network. Fingrams
relate rules according to the instances they cover.

2) Fingram scaling: The complete network is usually
very dense and complex to analyze, therefore, a scaling
process is demanded. As result, we obtain a simplified
social network that keeps all the nodes but just the
most relevant relations among them.

Given a network, the scaling algorithms look at pro-
ximity information and yield structures uncovering
the underlying organization. They consider similarities,
correlations or distances in order to prune the initial
network regarding the proximity between pairs of
nodes.

Fingrams remove the less important relations among
rules by means of Pathfinder algorithm [18]. This algo-
rithm preserves the most important relations, producing
no new unconnected nodes and keeping the backbone
of the network.

3) Fingram drawing: A layout algorithm automatically

places the nodes and links of the scaled network guided
by aesthetical criteria.
Force-based or force-directed algorithms are widely
used for drawing networks in the area of information
science [19], [20]. Their purpose is to locate the
elements of a graph in a 2D or 3D space so that all the
links are approximately of equal length and there are
as few crosses as possible, trying to obtain the most
aesthetically pleasing view.

Fingrams deal, so far, with fuzzy rule-based classifiers and
regressors [5] and fuzzy association rule systems [9], so-
called FAR-Fingrams. Fig. 1 shows two illustrative examples
of Fingrams. The picture on the left (Fig. 1(a)) represents a
fuzzy rule-based classifier and the one on the right (Fig. 1 (b))
a fuzzy rule-based regressor, both formed by 5 rules®. Each
node represents a rule enriched with information of the
rules (identifier, coverage, and so on). The size of the
nodes is proportional to the coverage, i.e. the number of
examples covered by the rule. A link shows relation between
a rule pair and its thickness is proportional to the level of
interaction between them. You can find more details about
the representation in [5].

Fingrams were firstly implemented into the fuzzy mode-
ling tool GUAIJE [21], [7] to deal with fuzzy rule-based
classifiers and regressors. Then Fingrams Generator [9], a
stand alone command line software, was developed to create

2 An example of FAR-Fingram will be explained in detail in Section III-B.
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(a) Classification Fingram.

Fig. 1.

and visualize any of the three types of Fingrams from a
configuration file. Later, we integrated them into the data
mining framework KNIME [8]. Finally, we implemented a
module in KEEL [9] to obtain a configuration file with the
information of fuzzy association rules that can be afterwards
used by Fingrams Generator.

C. KEEL

The suite KEEL? is aimed to assess computational in-
telligence algorithms for Data Mining problems including
regression, classification, clustering, association rule learning
and so on [22], [23]. The last version of KEEL consists of
five parts (Fig. 2):

@ Keel = = |

KEEL Tool 2.0

Ser*s

Software

® Modules

Data Management

Experiments

Educational

Help

Fig. 2. Screenshot of the main window of KEEL.

3 Available in: http://www.keel.es/
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(b) Regression Fingram.

Examples of Fingrams.

Data Management: It consists of a set of tools which
allow us to export/import datasets in KEEL format
or other formats, to edit and apply transformations
to datasets, to make partitions for different kinds of
validation models, etc.

Experiments: This block has two main objectives. On
the one hand, you can use the software as a test and
evaluation tool during the development of an algorithm.
On the other hand, it is also a good option in order to
compare new developments with standard algorithms
already implemented and available in KEEL. To do so,
this block provides a Graphical User Interface (GUI)
based on data flow that allows us to easily design
our experiments considering the available datasets,
algorithms, visualization and analysis tools into KEEL.
Then, this GUI generates a directory structure with all
the necessary files needed to run our experiments in
the local computer. Thus, users can forget scripts and
other parameter files that made arduous the design of
an experiment.

Educational: The main objective of this block is
provide to the user a visual feedback of the learning
progress of relevant algorithms in different areas (clas-
sification, regression, unsupervised learning) in order
to make the evaluation and understanding of their
behavior easier. This block has a similar structure to the
previous, allowing us to easily design our experiments
from a reduced set of relevant algorithms and datasets
and run them on-line in order to display the learning
process of the algorithms. Moreover, these experiments
can be halted and resumed.

Modules: In this block we can access to several
modules that extend KEEL, including an imbalan-



ced learning module [24], a non-parametric statistical
analysis module [25], and a multiple instance learning
module [26].

5) Help: It informs about the KEEL possibilities and how
to use the graphic environment.

These blocks allow KEEL to be useful for different kinds
of users. In what follows, we comment the main characteris-
tics of KEEL:

o This suite contains a large number of evolutionary
learning algorithms (supervised and unsupervised) for
predicting models, preprocessing and postprocessing.
Moreover, it also presents many algorithms for different
areas of data mining such as fuzzy rule based systems,
association rules, and so on.

o KEEL is aimed to design experiments with different
algorithms and datasets using a simple GUI based
on data flow in order to analyze the behavior of the
algorithms. These experiments can be designed with
a double goal, research and educational, being these
experiments run off-line or on-line respectively.

o It contains a statistical analysis library to perform pa-
rametric and nonparametric analysis of the obtained
results by the analyzed algorithms.

o KEEL provides a friendly GUI focused on the analysis
of algorithms.

Finally, KEEL presents an environment where the interes-
ted developers can contribute with their own methods. The
modular development of KEEL allows to easily integrate
these new methods. The format of configuration files, data
files, an API dataset and more resources are available for the
support of developers®*.

III. FINGRAMS IN KEEL

We have designed and developed a new KEEL module that
permits the creation of FAR-Fingrams. This module takes as
input the fuzzy association rules generated by an algorithm
into KEEL and constructs FAR-Fingrams in vectorial SVG
format. Notice that the previous version of this module,
presented in [9], required the use of additional software to
obtain FAR-Fingrams.

A. FAR-Fingrams module requirements

Fingrams module can be used over fuzzy association
rules created by the algorithms Alcalaetal-A, FuzzyApriori-
A, GeneticFuzzyAprioriDC-A, and GeneticFuzzyApriori-A.
Fig. 3 illustrates a possible use of the new module. The blue
nodes in background create fuzzy association rules, while the
brown ones construct FAR-Fingrams. The dialog presented in
the foreground of the figure shows the possibilities Fingram
module provides.

Fingrams module requires some software libraries insta-
lled in the computer. Graphviz is demanded for Fingrams
drawing. Thus, a pop-up warning message turns up when
first use of the module.

4 Available in: http://sci2s.ugr.es/keel/development.php

B. FAR-Fingrams module options

We will overview here the possibilities the Fingram mo-
dule provides and how the different parameters should be
selected (see Fig. 3).

0) Rule selection: This option allows selecting those
rules with a value for the Lift measure higher than
a threshold. This reduces the number of rules and
allows the user to focus his/her attention in those more
relevant.

1) Fingram generation: Two parameters can be selected
in the dialog for this step. Fingrams Generation —
Blank threshold (BT) lets the user to discard ins-
tances that fire rules below a threshold. A parameter
(Fingrams Generation — Metric) permits constructing
FAR-Fingrams through two different co-firing metrics.
We can select the desired one in the pop-up dialog of
the module.

o Symmetric relation: It reflects how related the rules
are according to the number of instances they
cover.

|D R;R; |
|D R; | ’ ID R; |

mij =

with DR]. the sets of instances firing rule R, i.e.
Dgr; = {x, € D | ur, > BT}; and Dg,g, the
sets of instances firing both rules R; and R;, i.e.
Dg,r; ={zp € D | pr,(xp) > BT & pg,(xp) >
BT'}. More instances covered in common means
higher relation, with 1 if both rules cover exactly
the same instances.
The symmetry of this metric produces undirected
networks.

o Asymmetric relation: It characterizes
generalization/specialization relations between
rule pairs [27].

_ ZmpeDRi (|N’R1 (xp) — MRy (mp)l)
2eyeDp, MR: (k)

Note that rule R; is highly related with R;, i.e.
R; il» R;, when R; is fired at similar degrees
by the same set of examples that fires R;.

It yields a directed network, i.e., each link has
associated two possible arrows (one per direction).
In case both links between two nodes have the
same weight, they are substituted by an undirected
link.

2) Fingram scaling: This option allows us to create the

original and scaled FAR-Fingrams, allowing the user
to study both in detail.
Pathfinder algorithm [18] requires a ¢ parameter that
constrains the number of indirect proximities examined
when generating the network. It must be an integer
value between 2 and N — 1, where N is the number of
nodes to take into account. The configuration window
of the module allows changing that value.

“

mij =
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Fig. 3. Experiments window of KEEL.
3) Fingram drawing: Fingrams can be displayed using
Kamada-Kawai [28] and Fruchterman-Reingold [29], o h
(sup=Sk) mkh (sup=Sh)

two of the most representative and used methods of

force-directed algorithms. As result, we obtain SVG

images enriched with additional information. The use

of this vectorial format permits a confortable analysis,

zooming and moving around the interesting zones.
Fig. 4 shows an example and legend of FAR-Fingram crea-
ted with KEEL. The legend shows the info FAR-Fingrams
provide. Each fuzzy association rule is represented by a
node that shows rule identifier, Support, Confidence and Lift.
Node sizes and colors are proportional to Support and Lift,
respectively. Moreover, the number of borders indicates the
number of attributes compounding the rule. A link indicates
level of relation between rules according to the metric
used, arrowed if we used an asymmetric relation. The link
thickness is proportional to the related weight m; ;, whereas
its absence means no interaction or a link pruned.

This illustrative example is made by more than one hun-
dred fuzzy association rules and at first hand it seems hard
to understand. However, the structure of the representation
gives very valuable information about the system. We can
detect highly related rules (as the ones marked inside the
dotted blue ellipse), or more disperse ones (as the highlighted
inside the red solid ellipse). Note that related rules cover
parts of the input space in common, and a relation of 1
means that two rules are covering exactly the same set
of instances. Moreover, FAR-Fingram reveals rules with
lower/higher Support and Lift thanks to the use of sizes and
colors, which can be appreciated by zooming the SVG image.
Hence, the rules marked inside the red ellipse have higher
Support and lower Lift than those inside the blue one.

IV. CASE STUDY

Here we present the use of FAR-Fingrams to analyze a
set of fuzzy association rules created from real data. We
deal with a dataset including qualitative assessments of a

(conf=CK)

(if=Lk) (ift=Lh)

Fig. 4. Illustrative example and legend of FAR-Fingrams built with KEEL.

set of design chairs. Namely, we analyze how a set of users
evaluated the degree of femininity of the considered set of
chairs. We focus on finding out the physical characteristics
of the chairs that influence the collected evaluations.

The dataset comes from a research project’ where 28 users
(11 males and 17 females) evaluated the degree of femininity
of 23 chairs models. The users gave their appreciations in
a fuzzy scale (as presented in Fig. 5). Trapezoidal fuzzy
sets represent the degree of femininity from 0% to 100%
with high semantic expressivity in this scale. The models are
shown sequentially and in different random order for each

SMore information in: http://bit.ly/18ZsEt7
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Fig. 5.

Example of the chairs in the poll.

user, trying to avoid bias and conditioned responses. We used
a reduced version of the dataset with just male responses.

It is possible to relate the degree of femininity associated
to each chair with its physical properties. To do so, we first
induced fuzzy association rules and then we analyzed subsets
of them from an expert analysis viewpoint.

We used a learning algorithm [30] that extracts both
membership functions (MFs) and fuzzy association rules
for the given dataset. It tackles with quantitative values
by means of a genetic learning of the MFs based on the
2-tuples linguistic representation model and the use of a
basic method for mining fuzzy association rules. The initial
linguistic partitions comprised 3 linguistic terms with uni-
formly distributed triangular MFs. We used the recommended
default parameters proposed by the authors plus a minimum
Support of 0.25 and a minimum Confidence of 0.9. As result,
the algorithm produces 53 rules involving a subset of all
the variables, namely, Femininity, Distance between legs,
Distance between armrests, Distance from the seat to the
ground, Type of base, and Type of structure.

Then we constructed the asymmetric FAR-Fingram related
to this system, showed in Fig. 6. We can observe at first
sight that there were different levels of Support and Lift in
the rules as we saw different sizes and darkness in the nodes
respectively. The left branch of the FAR-Fingram shows rules
with the highest Support, namely, the biggest nodes. We
studied the differences in detail and we decided to maintain
those rules with higher values of Lift, more valuable ones.
We used the dialog shown in Fig. 3 to discard rules with Lift
below 1.3. Hence, a new FAR-Fingram was constructed with
the remaining 28 rules (Fig. 7).

Analyzing the FAR-Fingram of Fig. 7 we detected dif-
ferent subsets of nodes mutually related by 1.0 links. This
means that the corresponding rules are covering the same
set of examples at equal level. They are highlighted with
red rectangles. The 4 most left nodes being a subset, the
second line of nodes another subset and so on. Moreover,
the corresponding rules are quite similar, adding no valuable

Fig. 6.

Original FAR-Fingram of 53 rules.

attributes. For the first set of rules, we have:

R1: {Femininity is MEDIUM} — {Distance between legs is LOW}

R9:  {Femininity is MEDIUM and Type of base is TRADITIONAL} — {Distance
between legs is LOW}

R11: {Femininity is MEDIUM and Type of structure is GEOMETRIC LINES} —
{Distance between legs is LOW }

R31: {Femininity is MEDIUM and Type of base is TRADITIONAL and Type of
structure is GEOMETRIC LINES} — {Distance between legs is LOW }

Therefore, we can get these subsets of rules and just

maintain one rule per each, the most representative and
general one. We filtered all but the rule with less antecedents
(and when tie, the one with higher Liff), and so for, the more
general. In the previous example we kept R1. Again, and
supported by the FAR-Fingram representation, we filtered
the entire FAR-Fingram obtaining a final set of 5 rules. We
can see the FAR-Fingram associated to this system and the
textual description of these rules in Fig. 8. They suggest that
the distances between legs and armrests are relevant for the
degree of femininity medium. The associated FAR-Fingram
shows that rules R8 and R14 are covering the less number
of examples (smaller nodes) but with higher Lift (darker
nodes). In fact, these two rules have two antecedents, so are
more specific than the other three rules that just have one
antecedent. On the contrary R1 and R3 are covering much
more examples (bigger nodes) but with not that high Lift
(lighter nodes). Notice that rule pairs R1-R3, R4-R14 and
R8-R14 are highly related and with the same link weight in
both directions (m173 = mg1 = 0.985, My 14 = Mig4 =
0989, mg 14 = Mi4,8 = 0991)

V. CONCLUSIONS AND FUTURE WORK

We have presented the full integration of FAR-Fingrams in
the software suite KEEL to deal with fuzzy association rules.
The new module permits the use of different parameters such
as metrics, scaling parameters or layout algorithms.
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Fig. 7. FAR-Fingram built with the 28 rules of the highest Lift.
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R1: {Femininity is MEDIUM} — {Distance between legs is LOW }

R3:  {Femininity is MEDIUM} — {Distance between legs is MEDIUM }

R4:  {Femininity is MEDIUM} — {Distance between armrests is MEDIUM }

R8: {Distance between legs is LOW and Femininity is MEDIUM} — {Distance between armrests is MEDIUM }
R14: {Distance between legs is MEDIUM and Femininity is MEDIUM} — {Distance between armrests is MEDIUM }

Fig. 8. FAR-Fingram constructed with the 5 selected rules.
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We constructed a set of fuzzy association rules from real
data to exhibit some of the potentials of FAR-Fingrams. Their
analysis allows us to understand them focusing our attention
in those more valuable rules.

The possibilities of Fingrams in the expert analysis of
fuzzy rules is undoubtable. We will make an effort to
collect common cases and situations, and annotated with
descriptions that explain the situation and possible actions.
This will allow us to systematically understand and improve
fuzzy systems.

The concept of Fingram can be extended to relate not only
fuzzy rules, but also attributes/fuzzy terms appearing in the
fuzzy rules. So for, new metrics will be proposed to produce
complementary information about the system to the designer.
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