
 
 

 

  

Abstract—In this paper, a fuzzy synergetic control (FSC) 
scheme is proposed for a class of nonlinear systems with system 
uncertainties and external disturbances. The control law is 
introduced by using methods of synergetic control theory and 
fuzzy logic control technique. The simulations results of the 
proposed scheme are compared with those of the conventional 
sliding mode control and synergetic control. All the simulation 
results demonstrate the effectiveness and feasibility of the 
proposed control. 

I. INTRODUCTION 
ASICALLY, the synergetic control theory (SCT) [1-3] is 
beginning by defining a macro-variable to construct a 
manifold, and then an associated self-convergence 

evolution constraint is given to design the desired controller. 
From the inherent behavior, the synergetic control can govern 
the system states of the controlled system to be converged to 
the manifold smoothly. With the given evolution constraint 
function, it can guarantee that the system states will be 
attracted toward the manifold theoretically and retained 
hereafter. To date, the synergetic control approach has been 
successfully applied to power converters for pulse current 
charging [4], nonlinear power system stabilizer [5], DC-DC 
boost converter [6], synergetic optimal controllers [7], and 
robot manipulators control [8].  

Fuzzy Logic Control (FLC) has been extendedly studied 
and successfully applied in various fields for decades since 
Zadeh [9] introduced the fuzzy set theory. Basically, human 
control expertise is emulated fuzzy control schemes; 
therefore, complicated mathematical theories are not required 
in designing Mamdani-type fuzzy control [10]. Sometimes, 
tuning the parameters of the FLC can achieve better system 
performance, so, the FLC is credited as one of the 
methodologies in designing robust controllers when system 
uncertainties and external disturbances are existed. But, to 
select proper fuzzy rules and the membership functions is 
crucial in fuzzy controller design. In order to overcome these 
drawbacks of choosing associated parameters, it is necessary 
to integrate fuzzy logic control and other methodologies [11]. 

SMC techniques [12-13] provide discontinuous control 
laws to drive the system states to a specified sliding surface 
and to retain them on the sliding surface. The control 
command is adequately designed such that the states will 
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move toward the neighborhood of a switching boundary zone 
and reach on the sliding surface, if the states reach on the 
sliding surface then the system is said to be in the sliding 
mode. During the sliding mode, the system possesses some 
invariance properties, such as robustness, order reduction and 
disturbance rejection. But, one of the drawbacks of using 
SMC is the high frequency switching control input. Because a 
discontinuous switching control is applied to the plant, 
chattering always appears as a source to excite the 
un-modeled high-frequency dynamics of the controlled 
system. One commonly used method to eliminate the 
chattering is to replace the relay control by a saturating 
approximation [14]. Another method is to apply fuzzy logic 
control to the SMC system  

 
such that a smooth and reasonable hitting control can be 

generated to reduce the chattering effect.  
Fuzzy sliding-mode control (FSMC) [15-16], a hybrid of 

the SMC and FLC, gives a simple way to design the controller 
systematically and provides the asymptotical stability of the 
system. In general, the FSMC can also reduce the rule number 
in the FLC and still possess robustness in the face of model 
uncertainties and external disturbances. 

In this paper, we propose a fuzzy synergetic control 
scheme for controlling a class of nonlinear systems with 
system uncertainties and external disturbances. This 
technique inherits the merit of synergetic control theory and 
fuzzy control to overcome the major deficiency of the 
synergetic control which only can be applied to well-defined 
systems. 

This paper is organized as follows. In Section II, synergetic 
control theory is reviewed briefly. Next, based on the 
synergetic theory and fuzzy logic control, the design 
procedure of the fuzzy synergetic controller for a class of 
nonlinear systems is addressed in Section III. In Section IV, 
computer simulations are performed to examine the 
feasibility and effectiveness of the proposed scheme. The 
conclusions are drawn in Section V. 

II. A BRIEF REVIEW OF SYNERGETIC CONTROL THEORY  
Basic SC theory will be reviewed here before the proposed 

fuzzy synergetic control scheme is introduced. 
Consider a class of nonlinear system as following: 

( ) ( ) ( )t = +x f x b x u  (1) 

where 1nR ×∈x is the states vector, 1( ) nR ×∈f x is some 
nonlinear  function, ( ) n mR ×∈b x  is the control matrix, and 

1mR ×∈u is the control input. 
Basically, the design procedure of synergetic controller for 

well-defined system is very similar to that of the sliding-mode 
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control controller. To design the synergetic controller, a 
macro-variable σ  is defined to construct a manifold as: 

{ }1: ( ), ( ) mM R ×= = ∈x s x s xσ  (2) 

where 1 2[ ]T
mσ σ σ=σ  is function of system states x . 

Sometimes, for design simplicity, the macro-variable σ  is 
constructed by a linear combination of system states with 
weighting factors, and this scheme is very similar to 
constructing the sliding function in the sliding-mode control. 
Then, an evolution constraint law is given to create the 
dynamical system with attractors at 0=σ  which will 
automatically govern the system states of the controlled 
system to converge to the specified manifold M  
exponentially. 

The evolution constraint law can be stated as 

( ) ( ) 0+ =τ s x s x  (3) 

where 1 2( )mdiag τ τ τ=τ  is a strict positive real value 
diagonal matrix which will affect the speed of convergence 
the system states directly. 

Next, by solving the nonlinear system (1) with the 
evolution constraint (3), then, the resulting synergetic control 
law SCu  can be obtained as 

( ) ( )1 1
SC

eq sy

( ) ( ) ( ) ( ) ( ) ( ) ( )
     

− −= − −
= +

x x xu s x b x s x f x s x b x s x
u u

τ
 (4) 

where ( ) 1
eq ( ) ( ) ( ) ( )−= − x xu s x b x s x f x  is the equivalent 

control term of the SC which is identical to that of the SMC in 
nominal system, and ( ) 1

sy ( ) ( ) ( )−= − xu s x b x s xτ  is the 
synergetic term of the synergetic control.  

Unlike the conventional SMC, the synergetic control 
provides a smooth and continuous term syu  instead of a 
switching term. This controller can force the system 
trajectory to exponential approach the manifold smoothly. As 
the trajectory reaches the manifold, the synergetic controller 
will also maintain it there thereafter. The synergetic controller 
prevails over the sliding-mode controller is that the former is 
smoothly continuous while the latter is discontinuous with 
abrupt change resulting the chattering phenomena. 
Theorem 1. Consider the nonlinear system (1). The states 
and their rates will converge exponentially to zero with the 
speed of convergence depending on the selected parameter 
matrix τ , if the control law is exerted as (4). 
Proof. A Lyapunov candidate function is selected as 

0.5 ( ) ( )TV τ= s x s x , then one can have  

( )0.5 ( ) ( ) ( ) ( )T TdV
dt

= =τ τ xs x s x s x s x x  

( )SC( ) ( ) ( ) ( )T= +xs x s x f x b x uτ  

( )(
( ) )

1

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

  ( ) ( ) ( )

T −

−

⎡= + −
⎣

⎤− ⎦

x x x

x

s x s x f x b x s x b x s x f x

s x b x s x

τ

τ

( ) ( ) 0T= − ≤s x s x  (5) 

From the inequality (5), it will guarantee the stability of the 
controlled system (1) with the control input SCu .      █ 

III. FUZZY SYNERGETIC CONTROLLER DESIGN  
In this section, the design procedure of fuzzy synergetic 

controller is described. As the synergetic control can not 
tackle the system with uncertainties and disturbances, the 
fuzzy logic control is adopted to handle these unmolded 
dynamics. Now, we consider a class of the nonlinear system 
with system uncertainties and external disturbances which 
can be expressed as 

( ) ( )( ) ( ) ( ) ( ) ( ) ( , )t x t= Δ + + Δ +x f x + f x b x b x u w  (6) 

where ( )Δf x  and ( )Δb x  are system uncertainties, and 
( , )x tw  is the external disturbances. We denote 
( , ) ( ) ( ) ( , )x t x t= Δ + Δ +d f x b x u w  which is bounded, then, 

eq. (6) becomes  

( ) ( ) ( ) ( , )t x t= + +x f x b x u d  (7) 

where 1 2( , ) [ ]T
nx t d d d=d , j jd κ≤ , and 

jκ , 1j n= →  are bounded positive constants. 
Now, we combine the synergetic control and fuzzy logic 
control, the resulting controller becomes  

FSC eq sy fuzz= + +u u u u  (8) 

where fuzz f1 f2 fn[ ]Tv v v=u . We choose the 
macro-variable as the input of the fuzzy logic controller, then, 
the j-th fuzzy rule can be expressed as  

i i
j j j jRule :  IF    is   ,   THEN   is  j s F v ψ , (9) 

For simplicity, we choose the weighted average 
defuzzification, then, the output of the fuzzy inference system 
can be written as 

M i
i j ji 1

jc j jM
i ji 1

( )

( )
Ts

v
s

μ ψ

μ
=

=

×
= =∑

∑
Ψ Ζ  (10) 

where M is the number of rules, i
jψ  is the associated 

singleton membership function of jv  and i j( )sμ  is the firing 
strength of the j-th rule. Then, the output of the fuzzy control 
term is 

fi i ic , i 1v f v n= = →  (11) 

where if  is the scaling factor of output variable. Here we 
complete the fuzzy synergetic controller design. 
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IV. NUMERICAL EXAMPLE 
Example: Considering an inverted pendulum system 

1 2x x=  (12a) 

2
2 2 2

1 1 1
2 2 2 2 2

1 1

( ) sin sin cos )
( ) ( )( ) cos

      ( , )

m M mgL x m L x x x
x

h x I mL m M m L x
u d x t

+ −
=

= + + −
+ +

 (12b) 

where 1x  and 2x are the angular displacement and angular 
velocity of the pendulum, respectively, m  is the pendulum 
mass, L  is the length from the center of gravity to the pivot, 
I  is the moment of inertia of the pendulum with respect to 
the center of gravity, g  is the gravity constant, u  is the 
control input, and ( , )d x t  is unmolded dynamics. The control 
objective is to maintain the pole in the upright position by 
means of the force from any initial position of the pole.  

In this example, the pendulum mass is 0.05 kg, cart mass 
is 1 kg, and the pendulum length is 1.5 m. Firstly, the control 
objective is to maintain the pole in the upright position by 
means of the control input force.  

For the proposed FSC scheme, the membership functions 
selected for the IF-part and THEN-part are triangular and 
singleton types with three equal partitions, respectively. The 
fuzzy rules are listed below: 

1R  : IF is  is PO THEN iu  is NE; 
2R  : IF is  is ZE THEN iu  is ZE; 
3R  : IF is  is NE THEN iu  is PO. 

where NE, ZE, and PO denote negative, zero, and positive, 
respectively and 1 3i = → .  

Simulation is done first to keep the inverted pendulum 
at the upright position without unmolded dynamics. Fig. 1 
shows the angular displacements, angular velocities, and 
control inputs of the inverted pendulum controlled by the SC, 
SMC, and FSC schemes with the initial conditions 

1(0) / 6x π=  and 2 (0) 0x = . All these three schemes can 
always perform well to upright the pole; however, one can 
read from this figure that the FSC is the best controller among 
these three controllers. One can also see clearly that 
chattering phenomena is occurred when SMC is applied to the 
inverted pendulum system, whereas, the continuous and 
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Fig. 1.  The inverted pendulum controlled to the upright position by the 
SMC, SC, and FSC schemes with the initial condition 1(0) / 6x π=  and 

2 0x = : (a) angular displacement; (b) angular velocity; (c) control input. 

0 1 2 3 4 5 6 7 8 9 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

 time sec

ba
nd

-li
m

ite
d 

w
hi

te
 n

oi
se

Fig. 2.  The band-limited white noise applied to the inverted pendulum 
beginning at 4 seconds and ended at 7 seconds. 
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smooth control is occurred when SC and FSC schemes are 
applied to the system. 

Next, unmolded dynamics is considered for simulation. We 
take the band-limited white noise as the sum-up effect of 
existed system uncertainties and disturbances as shown in Fig. 

2. Now, we apply the noise to the inverted pendulum system 
and the simulation result is shown in Fig. 3 which reveals the 
capability of SC to tackle the noise is poor. 

Suppose that the desired trajectory of angular 
displacement is / 2 0.1sin( )dx tπ= − , and now we let the 
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Fig. 4.  The inverted pendulum controlled to track the desired trajectory 

/ 2 0.1sin( )dx tπ= −  by the SMC, SC, and FSC schemes with the initial 

condition 1(0) / 6x π=  and 2 0x = : (a) angular displacement; (b) 
angular velocity; (c) control input. 
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Fig. 3.  The noise applied to the inverted pendulum controlled to the 
upright position by the SMC, SC, and FSC schemes with the initial 
condition 1(0) / 6x π=  and 2 0x = : (a) angular displacement; (b) 
angular velocity; (c) control input. 
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inverted pendulum track this reference trajectory. Fig. 4 and 
Fig. 5 show the simulation results of these three controllers 
with and without noise, respectively. In these two figures, one 
can easily find that the tracking performance of the FSC is the 
best among these three control schemes. 

V. CONCLUSIONS 
In this paper, we have developed a fuzzy synergetic 

controller for regulating and tracking control of a class of 
nonlinear systems. The control law has been introduced by 
using methods of synergetic theory and fuzzy logic control 
which can handle the nonlinear systems with system 
uncertainties and external disturbances. The Lyapunov 
stability method has been adopted to verify the stability of the 
controlled system. All the simulation results demonstrate the 
effectiveness and feasibility of the proposed control method. 
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Fig. 5. The noise applied to the inverted pendulum controlled to track the 
desired trajectory / 2 0.1sin( )dx tπ= −  by the SMC, SC, and FSC 

schemes with the initial condition 1(0) / 6x π=  and 2 0x = : (a) angular 
displacement; (b) angular velocity; (c) control input. 
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