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Abstract— Numerous research works have been done on the
Choquet integral model due to the tremendous usage in many
fields. However, the application is still significantly restricted
by the curse of dimensionality, involved in determining the
non-additive interaction measures, that can properly reflect the
interactions among predictive attributes toward the objective.
To this end, in this paper we propose a novel determination
method for non-additive interaction measures by the way of
solving a sequence of least norm problems and iteratively
updating the values of interaction measures, namely least norm
learning. This method can achieve a significant reduction on
the computation time complexity from O(m × 2n) to O(mn)
for solving the Choquet integral model, where m and n are
the numbers of observations and attributes, respectively. Also
we achieve to reduce the computation space complexity from
O(m × 2n) to O(2n). A case study on cross-layer optimized
wireless multimedia communications is adopted to validate the
proposed method. Both analytical and experimental results show
the effectiveness of the proposed method.

I. INTRODUCTION

The non-additive model based on Choquet integral (the
Choquet model in short) has a great practical use in many
fields, such as classification [1], multicriteria decision mak-
ing [2], image and pattern recognition [3] and data model-
ing [4], due to its distinguished feature that the interaction
among predictive attributes toward the objective attribute can
be properly reflected through a set of non-additive measures.
The Choquet integral is a generalization of the Lebesgue
integral, defined over a set of non-additive measures (also
called fuzzy measures). Let X = {x1, x2, · · · , xn} be a set
of attributes, f(x) be the observated or partially evaluated
value on each attribute x ∈ X , f be a tuple of observated
or partially evaluated values on X , and y be an objective.
The linear/additive multiregression model is traditionally rep-
resented as a weighted sum y =

∑
x∈X

wxf(x), where the

weight wx is also regarded as a Lebesgue measure w on
a singleton {x}, since the linear model is equivalent to
a Lebesgue integral y = (L)

∫
X
fdw. Since the Choquet
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integral model breaks the restriction that the combined contri-
bution of {xi, xj} toward the objective y is the weighted sum
of their respective contributions, and it uses a non-additive
measure μ, which is defined over the powerset of X , and a
Choquet integral, y = (C)

∫
X
fdμ, it is clearly more powerful

than the Lebesgue integral model because the non-additive
measure μ considers the interaction among attributes toward
the objective [5].

Numerous works have been done on the theory and ap-
plication of the Choquet model over the past few decades.
However, the practical use of the Choquet model is still
significantly restricted due to the tremendous challenges when
trying to use it in practical applications. One of the main
challenges is how to determine the non-additive measure μ
defined over the powerset of attributes X . Considering a set of
sample data with the attribute set {x1, x2, · · · , xn}, according
to the Choquet model, there are totally 2n − 1 non-additive
measures, μ({x1}), μ({x2}), · · · , μ({xn}), μ({x1, x2}),
· · · , μ({x1, xn}), · · · , μ({x1, x2, · · · , xn}), necessarily to be
determined. As for non-additive measures, the basic idea to
solve the Choquet model is to reduce the non-linear regression
model to the traditional linear multiregression model, so that
the Choquet model can be easily solved by using the least
squares method in a quadratic running time [6]. Such idea
was originally proposed in [7], and successfully applied on
classification [8]. However, there is a problem that “bad” so-
lutions are often generated [6], [4] because raw attribute data
are often not good enough to identify all 2n − 1 coefficients.
Thus, the obtained optimal solutions are sometimes too unrea-
sonable to support the decision making. To get around such a
bad-solution problem, a suboptimal algorithm, called HLMS
(Heuristic Least Mean Squares) [9], is developed based on a
gradient algorithm and the idea of equilibrium point, but the
obtained suboptimal solution may be quite different from the
optimal one. Literatures [10], [4] exploited genetic algorithm
(GA) to determine the non-additive measures. However, due
to randomness of chromosome generation and the huge 2n

dimensional search space, the obtained solutions at different
running times are not unique, and actually quite different in
general. Compared with these works utilizing the traditional
heuristic strategies or genetic algorithms, our previous work
[11], [12] proposed an efficient approach to determine the
complete non-additive measure such that the solutions of the
Choquet model is unique and deterministic.

Despite numerous works [5], [13], [14] having been done
on solving the Choquet model, the use of non-additive mea-
sure in the practical application is yet seriously restricted
by the exponential complexity [15], known as the curse of
dimensionality, which involves solving a with time constraint
problems which increase exponentially with respect to the
number of attributes. In this paper, we consider the problem
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of exactly determining the non-additive interaction measures
with efficient approaches. The main contributions of this
paper are: 1) we develop a novel method, namely least
norm learning, for efficient determination of non-additive
interaction measures caused by the linear interactions among
the predictive attributes on the basis of the Choquet integral;
2) the proposed method can significantly reduce the com-
putation time complexity from O(m × 2n) to O(mn) for
the Choquet integral, and remarkably reduce the computation
space complexity from O(m× 2n) to O(2n), where m is the
number of observations and n is the number of predictive
attributes; 3) we theoretically analyze the convergence in
probability of our proposed algorithms; and 4) a case study on
cross-layer optimized wireless multimedia communications is
adopted to validate the effectiveness of our proposed method.

The rest of the paper is organized as follows. In Section II,
we describe the non-additive interaction measure, restate our
previous work [11], and analyze the existing challenges in
our previous work. Section III devises efficient algorithms for
determining non-additive interaction measures. In Section IV,
a case study on cross-layer optimized wireless multime-
dia communications is conducted to validate the proposed
method. Finally, Section V summarizes the paper.

II. THE CHOQUET MODEL FOR DETERMINING

NON-ADDITIVE MEASURES

In this section, we give a brief introduction on non-additive
measure, the Choquet model, and how to determine the non-
additive measures with the Choquet model.

A. Non-Additive Measure

Let X = {x1, x2, · · · , xn} be a set of attributes with n =
|X|. A fuzzy measure on X is a set function μ : P(X) → R
with a constraint μ(Ø) = 0, where P(X) is the powerset
of X , and R is the real domain. According to our previous
work [11], the following two traditional restrictions on fuzzy
measures can be relaxed: (i) the co-domain of the set function
μ is R instead of R+, where R+ represents the positive
values in the real domain R; (ii) the monotonicity, A ⊂ B ⊆
X implies μ(A) ≤ μ(B), is not necessary.

The main characteristic of fuzzy measures is that they can
express interactions among attributes being aggregated in a
more flexible and precise manner. A fuzzy measure is said
to be additive if μ(A ∪ B) = μ(A) + μ(B) whenever A ∩
B = Ø, otherwise, it is non-additive. In the applications of
multicreteria decision making [16], the case of μ(A ∪ B) >
μ(A) + μ(B) is often called positive interaction or positive
synergy between criteria A and B; whereas the case of μ(A∪
B) < μ(A) +μ(B) is called negative interaction or negative
synergy, where the union of criteria (or attributes) does not
bring anything more to the objective [12], [11].

B. The Choquet Model

The interaction among attributes toward the objective can
be properly measured through a non-additive fuzzy measure,
which is the main feature of the Choquet integral model.
Assume the data consists of m observations of the attributes

x1, x2, · · · , xn and the objective y, in the following form:

x1 x2 · · · xn y
f11 f12 · · · f1n y1
f21 f22 · · · f2n y2

...
...

...
...

...

fm1 fm2 · · · fmn yq

where each row is an observation of attributes x1, x2, · · · , xn

and y. The observation of x1, x2, · · · , xn can be regarded
as a function f : X → R; hence the j-th observation of
x1, x2, · · · , xn is denoted by fj , and we write fji = fj(xi)
where 1 ≤ i ≤ n and 1 ≤ j ≤ m.

The interaction among predictive attributes X toward the
objective y is described by a set function μ defined on the
power set of X satisfying the condition of vanishing at the
empty set, i.e., μ : P(X) → R with μ(Ø) = 0. The new
non-additive multi-regression model is expressed as

y = e+
∫

(c)

fdμ+ N (0, δ2), (1)

where e is a regression constant,
∫
(c)

is the Choquet integral,

f is an asseveration of x1, x2, · · · , xn, μ is a fuzzy measure,
and N (0, δ2) is a normally distributed random perturbation
with expection 0 and variance δ2. The Choquet integral

∫
(c)

of the data observation f , w.r.t. a fuzzy measure μ, is defined
as:
∫

(c)

fdμ =
∫ 0

−∞
[μ(Fα) − μ(X)]dα+

∫ +∞

0

μ(Fα)dα (2)

where Fα = {x | f(x) ≥ α} for any α ∈ (−∞,+∞), and
is called the α-cut set of f .

C. Precision Determination of Non-Additive Measures

According to literatures [6], [11], the basic idea to solve
the Choquet model is a two-step procedure. The first step
is to reduce the non-linear multiregression model to the
traditional linear multiregression model by converting each n-
dimensional vector attribute datum to a 2n-dimensional vector
datum, which is defined over the powerset of attributes, ac-
cording to Eq.(2). The readers who are interested in the detail
of the data transformation can refer to our previous work [11].
Then, for all m observations, we have the following linear
equation system:

y = e+Aμ+ N (0, δ2), (3)

where A = (aij)m×N , N = 2n−1, and μ =
(μ({x1}), · · · , μ({xn}), · · · , μ({x1, · · · , xn}))T .
y = (y1, y2, · · · , ym)T and yT denotes the transpose
of y. Based on the first step, the second step is to solve
the linear model Eq.(3) by using the standard least-square
method. For the given observation data, the optimal
regression coefficients μ can be determined by using the
least squares method in order to make δ2 minimal. Then,
we use μk to denote μ(X ′

k), where X ′
k is a subset of X ,

i.e. X ′
k ∈ P(X). Readers who are interested in the detail

procedure for determining μk(k = 1, 2, · · · , N = 2n − 1)
can refer to [11].
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In this algorithm, according to our previous work [11],
constructing the m × N augmented matrix Ā = [alk] takes
the time of O(mN). The least-square solution to the linear
equations Eq.(3) is usually calculated with

μ = (ATA)−1AT y, (4)

where AT represents the transpose of A. Thus, the com-
putation complexity is O(mN2). Calculating the regression

residual error δ̂2 expends the time of O(mN). Therefore,
the overall computation complexity is O(mN)+O(mN2)+
O(mN) = O(mN2) = O(m× 22n), where N = 2n − 1.

Once μk has been determined, we can identify which subset
of attributes has the most significant impact on the objective.
So we can further fine-tune those attributes to improve the
objective under the current system and conditions.

D. Challenges
To achieve the optimal objective, the prerequisite is to

evaluate contributions/interaction measures, made by one or
multiple attributes in X = {x1, x2, · · · , xn}, to the objective
y. Based on the derived interaction measures, the subset in
P(X) making the dominating contributions can be found
and used for further fine-tuning those attributes to improve
the objective with the available systems and conditions. With
this purpose, in the last subsection we provide an approach
of precision determination of the non-additive interaction
measures of attributions. It is worthy to be mentioned that this
approach is targeted to address those application issues which
involve not more than 10 attributes. Otherwise the 2n − 1
fuzzy measures made by the n(n > 10) attributes is too large
to determine by solving the Choquet model with the least
squares method whose computation complexity increases
exponentially as the number n of attributes increases. On the
other hand, due to the limited computation capability and
storage space of most current electronic devices, developing
efficient approaches is an urgent requirement for quantita-
tively measuring the contribution of each subset of attributes
in P(X).

III. NON-ADDITIVE MEASURE DETERMINATION WITH

LEAST NORM LEARNING

In Section II-C, matrix A ∈ Rm×N (N = 2n − 1) is
derived for the determination of fuzzy measures. Then, the
least squares problem Eq.(3) can be written as the following
equivalent form:

J1 = min
μ

‖Aμ− y‖, (5)

where μ = (μ1, μ2, · · · , μN )T . According to [17], [18], the
least squares problem Eq. (5) has the same solution to the
following equation

ATAμ = AT y. (6)

Now, let us assume A is skinny, i.e., m ≥ N . This is
reasonable because to determine N non-additive measures,
more than N observations are usually sampled. Thus, if
A is full column rank, i.e., rank(A) = N , the solution
Problem Eq. (5) can be written as

μ = (ATA)−1AT y. (7)

However, if A is not full column rank, i.e., rank(A) < N ,
ATA is singular and then (ATA)−1 can be replaced by
the Moore-Penrose pseudoinverse (ATA)+, where (ATA)+
denotes the Moore-Penrose pseudoinverse of ATA. As for
Eq.(7), considering the limited computation capability of
computers, the solution Eq.(7) cannot be derived when A is
a large matrix in size. To address this issue, our goal is to
develop an effective method, which runs in low computation
complexity and small memory space compared with our
previous method proposed in [5], [12].

A. Singleton Least-Norm Learning

Before going further, we first consider the following system
of linear equations,

Aμ = y, (8)

where A ∈ RN×N . Here, matrix A can also be written as
A = (αT

1 , α
T
2 , · · · , αT

m)T , i.e.,

αT
i = (ai1, ai2, · · · , aiN ) �= 0, (9)

where αi ∈ RN (i = 1, 2, · · · ,m). Here, we write the row
vectors of A as the column vectors αi (i = 1, 2, · · · ,m) in
consistence with that all the vectors are column in this work.
Assume rank(A) = N and for 1 ≤ i �= j ≤ N , we have
αT

i αj = 0. For each αi of A, we consider the following least
squares problem as

Ji = min
μ

{
‖αT

i μ− yi‖ +
√
λ‖μ‖

}

= min
μ

∥∥∥∥
(

αT
i√

λ · IN

)
μ−

(
yi

0N×1

)∥∥∥∥ , (10)

where λ is a factor with λ > 0, and IN is the identity matrix
of order N . According to Eq.(7), we have the solution of
Eq.(10) as follows

μαi
(λ) =

(
(αi,

√
λIN )

(
αT

i√
λIN

))−1

×

(αi,
√
λIN )

(
yi

0N×1

)

=
(
αiα

T
i + λIN

)−1
(αi · yi + 0N×1)

=
(
αiα

T
i + λIN

)−1 · αi · yi. (11)

Here, it is easy to derive rank(αiα
T
i ) = 1, which implies the

inverse of αiα
T
i does not exist. According to the Theory of

Matrix Analysis [19], we rewrite μαi
(λ) as

μαi(λ) = λ−1(I + λ−1αiα
T
i )−1αi · yi

= λ−1(I − λ−1αiα
T
i + λ−2αiα

T
i αiα

T
i + · · · ) · αi · yi

= λ−1αi(1 − λ−1αT
i αi + λ−2αT

i αiα
T
i αi + · · · ) · yi

= αi(λ+ αT
i αi)−1yi (12)

Now, let λ→ 0, then we have

μαi
= μαi

(λ = 0) = αi(αT
i αi)−1yi. (13)

For any αi and αj (1 ≤ i, j ≤ N , i �= j), we have

αT
i · μαj

= αT
i · αj(αT

j αj)−1yj = 0. (14)
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When 1 ≤ i = j ≤ n, we have

αT
i · μαi

= αT
i αi(αT

i αi)−1yi = yi, (15)

i.e.,

αT
i · μαj

=
{

0 for i �= j
yi for i = j

. (16)

Further, we have

Aμ = A ·
N∑

j=1

μαj
=

⎛
⎜⎜⎜⎝

αT
1 μα1 + 0 + · · · + 0

0 + αT
2 μα2 + · · · + 0

...

0 + 0 + · · · + αT
NμαN

⎞
⎟⎟⎟⎠ = y.

(17)

Obviously, μ =
N∑

j=1

μαj
is the solution of Problem Eq. (8).

The above method for deriving the solution of Prob-
lem Eq.(8) provides a new perspective on solving the Prob-
lem Eq.(5). However, in Problem Eq.(5), the row vectors, αT

1 ,
αT

2 , · · · , αT
m, of A are usually non-orthogonal. Then, for any

αi and αj (1 ≤ i = j ≤ N ), we have

αT
i · μαi

= αT
i αi(αT

i αi)−1yi = yi. (18)

But when 1 ≤ i �= j ≤ N ,

αT
i · μαj

= αT
i · αj(αT

j αj)−1yj �= 0. (19)

This implies

A ·
m∑

j=1

μαj �= y. (20)

Thus, μ =
m∑

j=1

μαj is no longer the solution of Prob-

lem Eq. (8). To address such a general case, given the current
solution μi and the μαj

derived from the observation (αj , yj)
with αjμαj

= yj , we adopt the strategy of updating the
projection of the μi on the direction of the μαj

using the
μαj

, and thereby obtain the new solution μi+1. First, we

derive the solution μα1 = α1(αT
1 α1)−1y1 and let μ1 = μα1 .

Now, for αT
2 μ = y2 (α2 �= 0), we derive the solution

μα2 = α2(αT
2 α2)−1y2. The vector projection of the μ1 onto

the μα2 is μ1,α2 =
〈μ1, μα2〉
〈μα2 , μα2〉

μα2 , where 〈·, ·〉 denotes the

inner product of two vectors, and the vector projection of the
μ1 onto the μα2 is the orthogonal projection of the μ1 onto
the straight line defined by the μα2 . Second, we update the
component μ1,α2 of the μ1 projected on the μα2 as

μ′
1,α2

= γ
〈μ1, μα2〉
〈μα2 , μα2〉

μα2 + (1 − γ)μα2 , (21)

where the iterative factor γ is the number with 0 < γ < 1.
For vector μα2 , μ1 can be written as the sum of the vector
projection μ1,α2 and the vector rejection μ⊥

1,α2
, i.e.,

μ1 = μ⊥
1,α2

+ μ1,α2 , (22)

where the vector rejection is the orthogonal projection of μ1

onto a plane orthogonal to μα2 . Thus, we calculate the μ2 by
replacing the μ1,α2 by μ′

1,α2
as

μ2 = μ⊥
1,α2

+ μ′
1,α2

= μ1 + (1 − γ)
[
1 − 〈μ1, μα2〉

〈μα2 , μα2〉
]
μα2 .

(23)

Repeat above procedure, and for αi, we calculate the μi as

μi = μi−1 + (1 − γ)
[
1 − 〈μi−1, μαi

〉
〈μαi , μαi〉

]
μαi . (24)

With this procedure, one observation is processed with the
least norm approach once a time. Assume m observations
is enough to approximate the μ. This is reasonable because
the number of rows in A can be any number in the way of
constructing matrix A by randomly sampling the m obser-
vations. Here, we call this procedure as the Singleton Least
Norm Learning (SLNL) with the details shown in Algorithm 1.

Algorithm 1 Solving the least squares problem Eq.(5) with

the singleton least-norm learning(SLNL).

Require: observations {(αi, yi)}m
i=1, γ and ε

1: μ0 = 0
2: while i < m do
3: Derive the solution of αT

i μ = yi with the Eq.(13), i.e.,

μαi
= αT

i (αiα
T
i )−1yi.

4: Calculate the solution of Aμ = b with

μi = μi−1 + (1 − γ)
[
1 − 〈μi−1, μαi

〉
〈μαi

, μαi
〉
]
μαi

. (25)

5: if the last 100 μs do not change then
6: Exit;

7: end if
8: i = i+ 1
9: end while

10: return μi

Remarks: According to Eq.(13), the Eq.(24) cannot be
updated when yi = 0 for the observation (αi, yi). Assume
μ0 �= 0 is the solution such that Aμ = 0. It is obviously
observed that the observation αi makes the contributions to
μ0. Thus, it is necessary to be used for training μ0. Let another
observation be (αj , yj �= 0). Then, to address the above
problem, we construct a new observation as α′

i = αi + αj

with yi + yj �= 0. Therefore, we derive the new least norm
solution for α′

i as

μα′
i
=α′

i(α
′T
i α

′
i)

−1(yi + yj)

=(αi + αj)((αi + αj)T (αi + αj))−1yj . (26)

Through this way, we conquer the problem of yi = 0
and update the μ with both observations (αi, yi = 0) and
(αj , yj �= 0).

As for the theoretical analysis of Algorithm 1, the conver-
gence of Algorithm 1 is given with the following theorem.

Theorem 1. Algorithm 2 converges in probability to the
optimal solution of Problem Eq.(5).

Here, we omit the details of proof due to the page limita-
tion.
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Computation Complexity Analysis of Algorithm 1. For cal-
culating μαi

= αi(αT
i αi)−1yi, the computation complexity

is O(N), where N is the number of elements in μ. Updating

the μi with μi = μi−1 + (1 − γ)
[
1 − 〈μi−1, wi〉

〈wi, wi〉
]
· wi, it is

required to run m times. Therefore, the overall computation
complexity of Algorithm 2 is O(mN).

B. Solving the Choquet Model with the SLNL Approach

In this section, we solve the Choquet model with Algo-
rithm 1. The basic idea for solving the Choquet model is a
two-step procedure. The first step is to reduce αi of size N
to ξi of size n. In Algorithm 1, it is worth noting that only
one observation (αi, yi) is utilized for calculating μαi once
a time. According to [20], the discrete Choquet integral of a
function f : X → R+ with respect to μ is defined by

Cμ(f) :=
n∑

i=1

(f(x(i)) − f(x(i−1)))μ(Ω(i)), (27)

where ·(i) indicates that the indices have been permuted
so that 0 ≤ f(x(1)) ≤ · · · ≤ f(x(n)), and Ω(i) :=
{x(i), · · · , x(n)}, and f(x(0)) = 0. Thus, for αT

i , we have

at most n non-zero elements in αT
i of matrix A. Let ξT

i be
the corresponding vector of αT

i , that has at most n non-zero
elements, where

ξT
i =((f(x(1)) − f(x(0)), (f(x(2)) − f(x(1)), · · · ,

(f(x(n)) − f(x(n−1))). (28)

Then the Eq.(13) can be rewritten with ξT
i as

μξi
= ξi(ξT

i ξi)
−1yi. (29)

However, it is worthy to be mentioned that when we use the
Eq.(29) for calculating μξi

, we have to encounter another
problem, i.e., given the μξi

, how to modify μ with μξi
,

which is also the issue addressed in the second step. As
for this issue, we first build the index for each subset of X .
Meanwhile, each non-zero element ξij in ξi also indicates that
the corresponding subset appears in the current observation.
For each non-zero element of the derived μξi

, find the
corresponding index νξij

of the element ξij and modify the
μνξij

with μξij
as follows

μνξi,j
= γ · μνξi,j

+ (1 − γ) · μξi,j . (30)

With the above two-step procedure, we successfully decrease
the size of the row vectors αi of the matrix A to ξi, and then
the size of matrix A is significantly reduced. The details for
solving the Choquet model can be found in Algorithm 2.

Obviously, the above two-step procedure does not change
the convergence of the Algorithm 1. Now, the computation
complexity of Algorithm 2 is given as follows.

Computation Complexity Analysis of Algorithm 2: For
solving the Choquet model, with Eq.(29), the computation
complexity of deriving μ(αi) will be reduced from O(N)
to O(n). Since Algorithm 1 runs at O(mN) time, then the
overall computation complexity of Algorithm 2 is O(mn).

As for storage space involved in solving the Choquet
model, applying our previous method [11] to derive the non-
additive measures, we have to store the matrix A of size

Algorithm 2 The SLNL approach for the Choquet Model

Require: observations {(ξi, yi)}m
i=1, γ

1: μ0 = 0
2: for i from 1 to m do
3: Derive the solution of ξT

i μ = yi with the Eq.(29), i.e.,

μξi
= ξT

i (ξiξT
i )−1yi.

4: for j from 1 to n do
5: Find the corresponding subset of ξij and its index

νξij
and update μνξi,j

with Eq.(30)

6: end for
7: end for
8: return μ

m×N , which is the main part for storage. Thus, the required
storage space for our previous work is O(mN). With the
proposed method, we only need to make the storage of ξi.
When μξi is derived, we free the storage and read the ξi+1.
However, we have to make the storage space of N for μ.
Therefore, we significantly reduce the required storage space
from O(mN) to O(N) = O(2n) for solving the Choquet
model.

IV. A CASE STUDY: CROSS-LAYER OPTIMIZED

MULTIMEDIA DELIVERY OVER WIRELESS NETWORKS

In this section, we will adopt cross-layer optimized wireless
multimedia communications as a case study to validate the
proposed method and to illustrate the application of the
Choquet integral for optimizing the video transmission over
wireless networks.

A. Experiment Environment
To describe the wireless channel quality, a Finite-State

Markov Channel model (FSMC) is proposed for Rayleigh
fading channel in [21], [22], in which each state corresponds
to a specific channel quality. The signal-to-interference-noise
ratio (SINR) of channel are quantized to q states, where si is
the state and Pij denotes the transit probability from state si

to sj . Then, the transition probability matrix is P = (Pij)q×q.
According to the state probability and one step transfer matrix
of the channel, it outputs quantized channel state si. The
channel is a discrete memoryless channel in each state and a
Markovian genie determines the state of the channel. In this
paper, the channel conditions are assumed to be composed
of good state s1 (SINR=30 dB) and bad state s2 (SINR=15
dB). We consider two scenarios: the good channel with the
transition probability matrix with P11 = P21 = 0.1, P12 =
P22 = 0.9 and the bad channel with transition probability
matrix with P11 = P21 = P12 = P22 = 0.5.

In the protocol stack of wireless multimedia, each layer has
one or multiple key design variables which significantly affect
the overall system function. For instance, at the application
layer, prediction mode and quantization parameter (QP) in
video encoding are two critical design variables [23]. At the
data link layer, automatic repeat request (ARQ), media access
control protocols, and packetization are often used to maintain
a low packet loss rate. At the physical layer, modulation
and coding schemes (MCSs) have been adopted to achieve
a good tradeoff between transmission rate and transmission
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reliability. In this case study, we investigate the real-time
transmission of an individual video bitstream across a multi-
hop IEEE 802.11a/e wireless network, in which contention-
free access to the medium provided by the HCF controlled
channel access protocol (HCCA) [24] is assumed.

In the latest H.264/AVC standard, the allowed QP values
are {0, 1, 2, · · · , 51}. To simplify the problem, we compress
the video by choosing different QPs. To achieve a good
tradeoff between performance and computation complexity,
without loss of generality, in this work we choose {5, 10,
15, 20, 25, 30, 35, 40} as the operating points of the system
parameter QP. For another system parameter MCS, without
losing generality, the schemes in the modulation and coding
schemes at the Physical Layer specified in IEEE 802.11a/e
networks are adopted as its operating points [24]. The system
model for the cross-layer optimized multimedia transmission
is shown in Figure 1, where the expected received video
quality is used as the objective function, and the design
variables include QP at the application layer and MCS at
the physical layer. It is assumed that the controller is able to
acquire the corresponding system information, such as the
expected video quality from the encoder and the network
conditions from lower layers by interacting with each layer.

Fig. 1. The system model for sampling the controlled parameters involved
in the cross layer design of video transmission over the wireless network.

Let Π = {π1, π2, · · · , πI} be the set of I packets that
compose the current video frame to be transmitted. Let E[Di]
be the expected video quality of packet πi. To provide a
smooth video display experience to end users, each frame is
associated with a frame decoding deadline T budget [25], [27].
T budget imposes a delay constraint on the transmission of each
packet composing the current frame as

I∑
i=1

Ti ≤ T budget, (31)

where Ti is the end-to-end delay of packet πi transmitted
from the sender to the receiver.

Let αl denote the QP for the lth coding unit of the current
frame and βi the MCS for transmitting packet πi. Here, the
coding unit could be a video frame, a slice, or a macroblock,
depending on different adaptation time intervals. Denote A
and B as the sets of all operating points of αl and βi,
respectively. We assume that |A| = A and |B| = B, where |A|
is the cardinality of the set A. Thus, the goal of cross-layer
design is to find the optimal operating point vector {αl, βi}

such that the received video quality is minimized under the
constraint of packet delay deadline, i.e.,

min
αl∈A,βi∈B

I∑
i=1

E[Di], s.t. :
I∑

i=1

Ti ≤ T budget.

The experiments are designed using H.264/AVC JM 12.2
[28]. We encode the Y-component of the first 100 frames of
the QCIF video sequence “Foreman” at different frame rates.

B. Validation of the Proposed Method
In the following, we will validate the proposed method for

cross-layer design. For video transmission, one video frame
is usually divided into multiple slices and delivered slice by
slice over wireless networks. Considering the dependency
between the current video frame and previous video frame
in video encoding, we treat one video frame as a whole to
control the video quality. The video quality (PSNR, i.e., y)
of frames are observed as the design objective function on
all the operating points of two system parameters QP and
MCS. Figure 2 is the path graph for F -frame delivery, where
each path, also namely operation path, is used to describe
the operation sequence for all frames, and each option is
composed of operation points of both QP and MCS. Here
we denote Opti(j) the jth option for frame i, which is
an operating point pair of QP and MCS. As mentioned in
the last subsection, we have 8 operation points for both QP
and MCS. Thus, as shown in Figure 2, each frame has 64
options. Let z = g(Opti(j)) be the function of video quality
(PSNR) of frame i under the option Opti(j). Each path is an
option sequence which is composed of the options on all F
frames. Let x2(i−1)+1 and x2(i−1)+2 be the options for frame
i, where x2(i−1)+1 and x2(i−1)+2 represent the parameters
of QP and MCS, respectively. Then, for F frames, we have
X = (x1, x2, · · · , x2(i−1)+1, x2(i−1)+2, · · · , x2(F−1)+1,
x2(F−1)+2). To measure the video quality (PSNR) D of F
frames, we calculate the average video quality of all frames
on the operation path Pa as:

D(Pa) =

∑
Opti(j)∈Pa

g(Opti(j))

F
. (32)

Fig. 2. The path graph for F -frame video transmission.

As aforementioned, to deliver F -frame video, we have to
adjust 2 × F parameters in total, including both the QP and
MCS, as X = (x1, x2, · · · , xn) with n = 2F . Due to the
complex interactions among frames, according to Eq.(32),
choosing too many frames will dwarf the contribution of
operations on each frame. Thus, taking into account the
contribution of each frame and without loss of generality,
we first choose F = 5 frames. Then, for n = 2 × 5 = 10
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parameters, we total have 210 − 1 = 1023 non-additive
measures. Hence, we use the proposed method to derive these
1023 non-additive measures based on the observation data.
The details of above procedure are stated as follows:

• Assume we have a history database of observation data
for the past video delivery. Sample the M paths from
the database and denote by Ω the set of all sampled
paths. Since each path contains 10 option points of
QP and MCS, we derive the coefficient matrix A with
Algorithm 1. Thus, we have a least squares problem as

min
μ

‖Aμ− y‖ , (33)

where A is the m×1023 matrix. μ is the 1023×1 vector
and y the m× 1 vector.

• Implement the least norm learning with Algorithm 3
and derive the non-additive measure vector μ. Then, the
components of vector μ show the contributions of these
non-additive measures.

We select the bad and good channel conditions to derive
the non-additive vector μ. Usually, the observed data the
number of which is far more than the number of parameters
is usually collected. This makes it intractable for directly
solving the least square problem Eq. (33), with applying
Algorithm 1, because of the required huge storage space
and computation capability. Thus, our proposed method of
Algorithm 3 is applied in the following sections. Figure 3
shows the results of contributions of non-additive measures
under bad and good channel conditions. Compared with the
contributions under the bad channel condition, the contribu-
tions under good channel condition have bigger amplitude
from around −15 to around 60, while the amplitude from
around 4 to around 20 under bad channel condition. This
implies that the adjustments of parameters under the good
channel condition can have much more improvement than that
under bad channel condition. Meanwhile, this also implies
that, under the bad channel condition, a considerable number
of non-additive measures achieve less or even no contribution
for improving the received video quality.
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Fig. 3. The contributions of non-additive measures.

To optimize the number of adjustable parameters involved
in the cross-layer design of video transmission, the remark-
able parameters are required to be found such that the video
quality can be almost maintained or well approximated by
only adjusting selected parameters. Thus, we select the non-
additive measure that achieves the most contribution among

all non-additive measures, and then find the involved param-
eters of this non-additive measure. As shown in Figure 3, for
the good channel condition, we find the set {x3, x8, x9, x10}
whose non-additive measure is μ({x3, x8, x9, x10}) = 61.08.
Except these selected parameters, the options for the other
parameters are randomly selected from the related ranges.
By only adjusting 4 in 10 of the selected parameters, the
mean PSNR of 5 frames is 53.48 dB, 94.04% of the optimal
frame quality (56.87 dB) by adjusting all 10 parameters. With
respect to the bad channel condition, we derive the set {x2,
x9, x10} with the non-additive measure μ({x2, x9, x10}) =
21.47. Here and in the following sections, the searching space
spanning by n parameters is 8×8×· · ·×8 = 8n. Obviously,
we significantly reduce the searching space composed of
810 = 1.07× 109 paths into the space with 84 = 4096 paths.
By only adjusting 3 in 10 of the selected parameters, the
mean PSNR of 5 frames is 20.592 dB, 99.99% of the optimal
frame quality (20.594 dB) by adjusting all 10 parameters.
Moreover, for both bad and good channel conditions, our
proposed method provides an efficient way for optimizing
the cross-layer design in video transmission because adjusting
the selected parameters encounters a much smaller searching
space and greatly reduces the amount of calculations. In sum,
our proposed method of adjusting the remarkable parameters
can effectively and efficiently optimize the video transmission
in cross-layer design.

1) Performance Evaluation in Statistics: To validate the
performance of our proposed method for video transmission
of cross-layer design in statistics, let us consider a scenario
of student’s t test that is implemented to find the confidence
intervals for the video quality. In order to apply student t test
reasonably, our procedure adopts the following two assump-
tions as stated in [29]: (1) the operation path is randomly
drawn from the operation path space; (2) the operation path
can be reasonably supposed to have a normal distribution.
Suppose we have the optimal values of X1, X2, · · · , Xq with
the mean (μ) after doing q tests. The standard deviation of
their parameter distribution (standard error) is σ. According to
literature [29], we can compute the (1−ε) confidence interval
of the optimal value X as:

μ− Bσ√
q
≤ X ≤ μ+

Bσ√
q
. (34)

where B is the critical value, which can be found from
Appendix C “Critical Values of t” in [29].

We have carried out 100 tests under the good channel
condition. Under the good channel, the most contributed fuzzy
measures are μ({x6}) = 40.14, μ({x6, x8}) = 28.84, μ({x3,
x6, x8}) = 21.75. Based on the contributions of these fuzzy
measures, we collect the quality (PSNR) of the video frames
by adopting three ways for adjusting the parameters: (i)
optimizing with one parameter x6; (ii) with three parameters
{x3, x6, x8}; (iii) with all the 10 parameters. For comparison,
the video quality of frames without optimization are also
collected. Figure 4(a) shows the results of the average video
quality of frames under the good channel condition. In this
figure, our proposed method achieves the mean value of 45.76
dB (i.e., 97.49% of the optimal PSNR 46.94 dB) with 3
selected parameters, 43.06 dB (i.e., 91.73% of the optimal
PSNR 46.94 dB) by only adjusting one selected parameter,
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Fig. 4. The statistical results for the received video quality (PSNR) by
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and 30.82 dB (i.e., 65.66% of the optimal PSNR 46.94
dB) without optimization, respectively. By adjusting a part
of parameters, the video quality over wireless networks is
significantly maintained. Also, according to Eq. (34), we
have 95%, 99% and 99.5% confidence intervals of average
video quality (PSNR) in the confidence intervals [45.58,
45.94], [45.52, 45.99] and [45.49, 46.02], under the good
channel condition. Thus, our proposed method can effectively
optimize the video quality. More specifically, we have 99%
confidence that the received video qualities are better than
45.52 dB (i.e., 96.97% of the PSNR 46.94 dB derived from
the optimization with all the 10 parameters). Therefore, under
the good channel condition, the results in statistics sufficiently
illustrate the effectiveness of our proposed method.

V. CONCLUSIONS

One of the major challenges in the application of the
Choquet integral is that the determination of non-additive
interaction measures is seriously restricted by the curse of
dimensionality. In this paper, we have developed an effective
determination method on the basis of the least norm learning
for efficient determination of non-additive interaction mea-
sures. The proposed method has significantly reduced the
computation time and space complexity involved in deter-
mining the non-additive interaction measures. Further, the
proposed method has been proved theoretically convergent in
probability. Finally, a case study has been carried out based on
cross-layer optimized wireless multimedia communications.
Extensive experiment results have validated the effectiveness
of our proposed method.
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