
Collaborative Medical Diagnosis through               

Fuzzy Petri Net Based Agent Argumentation 

Xuehong Tao  

College of Education 

Victoria University 

Melbourne, Australia 

Yuan Miao,    Yanchun Zhang 

 Centre for Applied Informatics 

College of Engineering and Science 

Victoria University 

Melbourne, Australia 

Zhiqi Shen 

 School of Computer Engineering 

Nanyang Technological University 

Singapore 

 
 

Abstract—Online health information services and self diagnosis 

systems become popular recent years. We propose a computing 

model for collaborative medical diagnosis through multi agent 

argumentation. In this model, the agents are able to communicate 

with each other to share information, critique and verify each 

other’s knowledge, and collaboratively make diagnosis based on 

multiple agents’ knowledge through an argumentation process. 

Fuzzy Petri Net (FPN) is adopted as the agents’ knowledge model. 

Different from the commonly used FPNs that assign tokens in 

places, we assign tokens on arcs and also give places capability in 

controlling the inference of FPN. The FPN based argumentation is 

automated with algorithms. The proposed model can be employed 

to achieve collaborative healthcare diagnosis systems, where 

agents with different expertise collaboratively argue with each 

other to come up with a mutually agreed diagnosis.   

Keywords—fuzzy petri net; collaborative argumentation; multi 

agent systems; medical diagnosis  

I. INTRODUCTION 

HERE are many online health information services that 

provide informative medical knowledge for the public as 

well as tools for self diagnosis. These services provide  

additional sources to promote awareness of diseases. They also 

enable people to make prediction based on symptoms, get alert 

for certain signs of disease, as well as act as initial steps of heath 

care management. These services will not replace but act as a 

compliment to formal medical consultations.  

There exist large amount of people who use the Internet to 

access health information and make self diagnosis. According 

to the Bupa Health Pulse Survey 2011 [1], of the 13,373 

respondents from 12 countries, 83% say they “often” or 

“sometimes” search the Internet for information and advice 

about their health, medicines or medical conditions. 

Specifically, there are 70% in UK, 77% in Australia and 94% in 

China. Overall, well over a third (39%) seeks out information to 

make a self diagnosis. 

The healthcare diagnosis systems typically provide interfaces 

guiding users to describe their symptoms, then predict the 

possible illness and display the illness related knowledge and 

treatment methods. For example, WebMD [2] and Mayo Clinic 

[3] are two such online services. However, patients usually 
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don’t know which kinds of information are important for 

diagnosis and are not able to describe their conditions precisely. 

The situations are different when visiting human doctors. 

Human doctors ask patients questions to clarify and refine the 

symptoms until precise health conditions are obtained. It is 

desirable for online diagnosis systems to be able to conduct 

such interactive dialogues.  

Doctors started to participate in online healthcare services in 

recent years, such as Chunyuyisheng [4] and DoctorSpring [5]. 

Due to the availability of doctors or asynchronous 

communication protocols, it takes time for patients to receive 

responses from doctors. In addition, health professionals 

possess expertise only on specific areas. For complex medical 

cases, diagnosis may encompass several consultations with 

different professionals before arriving at a final diagnosis. 

Collaboration is a beneficial method for doctors to access each 

other’s expertise. However, it is not easy to call together all 

relevant human doctors to discuss asynchronously online for the 

diagnosis of a patient.  

People need interactive healthcare diagnosis systems where 

doctors collaboratively make diagnosis. Intelligent agents could 

play important roles in this context. Agents are autonomous 

entities that can communicate with other agents or humans to 

perform tasks automatically. Multi agent collaborative 

diagnosis is a practical solution to online medical diagnosis 

applications.  

There are several multi agent based applications in medical 

diagnosis. For example, to have a master agent share tasks 

among different specialist doctor agents based on the symptoms 

of a patient [6]; to have specialist agents contribute to the 

diagnosis or treatment opinions in special domains, examiner 

agents conduct lab and other examinations, and joint decision 

maker agents who gather the diagnoses produced by the 

specialists and using decision making method (such as weighted 

voting, bidding) to choose a final diagnosis [7]; to employ 

information searching agents find information from the 

databases (for example, patient's historical data, side effect of 

medicine) to help the physician agent in the medical diagnosis 

and treatment process [8]. All the aforementioned researches 

focus on coordinating multi agents to finish different tasks 

within a diagnosis problem. There is no collaborative diagnosis 

based on multiple agents’ knowledge.  

This paper proposes a method to support multi agents’ 

diagnosis through collaborative argumentation. Collaborative 
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argumentation is a form of collaborative discussion in which 

multiple parties work together to resolve an issue, and in which 

all participants expect to find agreement by the end of the 

argumentation [9]. Collaborative argumentation have many 

benefits in medical diagnosis, such as more precise diagnosis 

based on multiple parties’ knowledge; better understand of 

patients’ health condition through interaction; and knowledge 

creation by learning from each other. In a collaborative medical 

argumentation, the multiple agents should share knowledge 

with each other, verify each other’s decision and collaboratively 

come up with a final mutually agreed diagnosis. 

Agents’ knowledge can be extracted from the enormous 

amounts of medical data collected nowadays by machine 

learning techniques. The knowledge can then be applied in 

corresponding fields to increase the quality of decision making, 

predict possible diseases and support medical diagnosis. A 

knowledge rule mined from dataset usually has a confidence 

value attached which indicates how certain the knowledge is. 

Fuzzy petri net is adopted in this paper to handle the inference 

with uncertainties.  

The rest of this paper is organized as follows: section 2 

introduces fuzzy petri net; section 3 introduces the diagnosis 

agent we designed; section 4 introduces the automation of agent 

argumentation; section 5 illustrates the method with an example 

and section 6 concludes the paper.  

II. FUZZY PETRI NET 

Petri net is a promising graphical and mathematical modeling 

tool for describing and studying information processing systems 

that are characterized as being concurrent, asynchronous, 

distributed, parallel, nondeterministic, and/or stochastic [10]. 

To represent systems that contain fuzzy behaviour, petri nets are 

extended to fuzzy petri nets [11, 12]. 

A. Fuzzy Petri Net (FPN) 

A Fuzzy Petri Net (FPN) is a bipartite directed graph which 

contains two types of nodes: places and transitions, where 

circles represent places and bars represent transitions. The 

relationships from places to transitions and from transitions to 

places are represented by directed arcs. A generalised fuzzy 

petri net structure can be defined as an 8-tuple [11]: 

FPN=(P, T, D, I, O, CF, V, M), 

where 

P = {p1, p2 , … pn} is a finite set of places; 

T = { t1 , t2 , … tm } is a finite set of transitions;  

D = {d1, d2 , … dn} is a finite set of propositions; 

I:   TP
∞
 is an input function which maps transitions to 

their input places; 

O:   TP
∞
 is an output function which maps transitions to 

their output places; 

CF: T[0, 1] is a function which maps each transition to a 

real value between zero and one. The values for 

transitions are noted as cf1, cf2, … cfm; 

V:   T[0, 1] is a function which maps each place to a real 

value between zero and one. The values for places are 

noted as v1, v2, … vn; 

M:  PD is an association function which maps each 

place to a proposition. Places are graphical 

representations of propositions in an FPN.  

In a fuzzy petri net, function I describes the input of a 

transition, and function O describes the output of a transition. If 

pj ϵ I (ti), then there exists a directed arc aji from place pj to 

transition ti. If pk ϵ O(ti), then there exists a directed arc aik from 

transition ti to place pk.  

Rules can be represented by fuzzy petri nets [11]. In a fuzzy 

petri net, T corresponds to rules, P and D correspond to 

propositions of rules. P is the graphical representation of 

propositions and D contains the meaning of propositions.  The 

fuzziness of FPNs is manifested by the certainty factors of 

places and transitions. V is a set of certainty factors for places 

which are the degree of truth for propositions. CF is a set of 

certainty factors for transitions which are the degree of truth for 

rules.  

For example, Fig. 1 shows a fuzzy petri net, where, 

P={p1, p2, p3}             T={t1}  

D={ d1=“eat lots of sugar”,    d2=“seldom exercise”,   

d3=“has diabetes”}  

I (t1)={ p1, p2}           O (t1)={ p3} 

CF (t1) =0.6 

V (p1) =0.9,  V (p2) =0.8 

 M  (p1)= d1 , M  (p2)= d2 , M  (p3)= d3 

This FPN describes a belief with 60% confidence that if 

somebody eats lots of sugar and seldom takes exercise, he/she 

may have diabetes. It can also be represented as a fuzzy rule: if 

eat lots of sugar (0.9) and seldom exercise (0.8), then the person 

may have diabetes. The certainty factor of this rule is 0.6. 

 
Fig. 1.  A fuzzy petri net 

B. Inference via Fuzzy Petri Net 

Inferences of FPNs are achieved through the firing of 

transitions. Tokens are often used to control the inference 

process. A token is represented by a dot in a place. The 

conditions for a transition to be ready to fire may include: 

whether the certainty factor of each input place satisfies a 

predefined threshold value λ’, whether each input place has a 

token, and whether the certainty factor of the transition satisfies 

a predefined threshold value λ. It depends on specific situations 

to decide which conditions to be used. In this paper, threshold λ’ 

is not used. Only certainty factors of transitions and tokens are 

used to control the firing of transitions. A transition is enabled if 

it is ready to fire.   

When a transition fires, it removes the tokens from all its 

input places and deposits one token into each of its output 

places. It also calculates new certainty factors for its output 

places.  

Paper [11] gave methods to calculate certainty factors of 

output places, for FPNs that represent four different types of 

rules. FPN reasoning processes for two types of rules are 

relevant to this paper and they are introduced below.  
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If a rule is  

If p1 and  p2 and  … and  pk  Then p0       (cfi) 

The fuzzy reasoning process of this type of rule can be modelled 

by an FPN shown in Fig. 2. The certainty factor of the premise 

is the minimum value of certainty factors of the individual 

propositions in the premise. This aligns with real world 

situations, that is, if any part of a whole is not certain, the whole 

thing is not certain. In the example of Fig. 1, the certainty factor 

for p3 will be Min(0.9, 0.8)*0.6=0.48.  

 
(a) Before firing transition ti                   (b) After firing transition ti 

Fig. 2.  Firing process for a transition with multiple inputs 

If there are many rules have the same conclusion, such as  

If p1  Then p0    (cfi1) 

If p2  Then p0    (cfi2) 

… … 

If pk  Then p0     (cfik) 

The fuzzy reasoning process of this type of rule can be modelled 

by an FPN shown in Fig. 3. The certainty factor of the 

conclusion is the maximum value of the certainty factors 

obtained by applying different rules. This aligns with real world 

situations, as we usually use our most confident methods (rules) 

to make decisions.   

 
(a) Before firing transitions                    (b) After firing transitions 

Fig. 3.  Firing process for a place with multiple inputs 

With the firing process of FPNs, we can predict the truth of 

propositions based on the certainty factors of known 

propositions. The next section will introduce the design of a 

diagnosis agent that is able to reason based on FPN.  

III. FUZZY PETRI NET BASED DIAGNOSIS AGENT 

This section introduces the agent we designed for 

collaborative diagnosis, including its knowledge base, 

reasoning mechanism and knowledge update.  

A. Knowledge Base 

Diagnosis agents possess medical rules for diagnosis. 

Medical rules can be in different formats. We only consider 

Horn clause format rules in this paper. That is, each rule is in the 

form of h1, h2, … hk  h0. It represents that if a patient has 

health conditions of h1, h2, … hk, he/she may have condition h0.  

The knowledge base of a diagnosis agent is a collection of 

medical rules the agent possesses. Medical rules can be 

obtained from medical experts or by mining medical datasets. In 

this paper, the knowledge base is defined as a 4-tuple:  

KB={H, R, C, S},  where 

H  = { hi  | i = 1, 2, … n } 

R = { ri: hi1, hi2, … hik hi0 |hi0, hi1,… hik H, i =1, 2,…m}  

C = { ci | i =1, 2, … m}  

S = { s i | i =1, 2, … m }  

 = { < (agent
1
,  x

1
i, y

1
i), (agent

2
, x

2 
i, y

2
 i), … 

 (agent
k
, x

k
 i, y

k
 i), … > |i=1, 2,…m, k =1, 2,…} 

H is a set of health indicators. R is a relationship set where 

each relationship ri describes how the health indicators are 

related to each other. The parts in a rule before the arrow is 

called premise, and after the arrow is called conclusion. C is a 

confidence set. ci  is the confidence of ri which describes how 

certain rule ri is.  

S is a set of confidence related records collected during the 

interaction with other agents. si is confidence related records of 

ri, where x
k
i  refers that according to the knowledge of agent

k
, 

there are x
k
i patient cases match the premise of the rule, y

k
i
 

means that according to the knowledge of agent 
k
, the rule 

correctly identified y
k
i cases to be in the health condition 

indicated by the conclusion of the rule. For easy reference, s i is 

called confidence-records of ri . si is illustrated in Table 1. 
TABLE 1. 

ILLUSTRATION OF CONFIDENCE-RECORDS OF A RULE 

 agent1 agent2 … Agentk … 

Matched  x1
i x2

i …  xk
i …  

Correct y1
i y2

i …  yk
i  …  

 So ci = ( y
1
i + y

 2
i +…+ y

 k
i +…)/(x

1
i + x

2
i +…+ x

k
i +…). The 

agent has a threshold λ. If a rule’s confidence is not less than λ, 

this rule can be applied in diagnosis.  

For example, agent1 has the following knowledge base, 

H= { h1  = “high BMI (Body Mass Index)”,  

  h2  = “diabetes positive”,  

  h3  =  “high blood sugar”, h4  =  “old age” }  

R= { r1:  h1, h3  h2,    r2:  h4  h2 } 

C = { 0.75, 0.5}  

S= {<  (agent
1
, 2000,800) , (agent

2
, 8000, 6700) >, 

 <(agent
1
, 1000,500)>} 

There are two rules in this example. r1 tells us that if a person 

has high BMI and high blood sugar, he/she has diabetes. The 

confidence of this rule is 0.75 which comes from two agents’ 

knowledge. Agent1 has 2000 patients who have high BMI and 

high blood sugar. Among these patients, 800 patients were 

diagnosed diabetes. If only consider the patients records in 

agent1, the confidence of this rule is 40% (i.e. 800/2000). If 70% 

is the threshold, this rule cannot be used in diagnosis. Agent1 

also receives information from agent2. Agent2 has 8000 patients 

match the premise of the rule and 6700 patients were diagnosed 

diabetes. The confidence of this rule is 83.75% (i.e. 6700/8000) 

according to the knowledge of agent2. After incorporation of the 

information from agent2, the confidence of r1 is 

(800+6700)/(2000+8000)=75%. It can be used in diagnosis as 

the confidence is bigger than the threshold 70%. Information 

exchange among agents can help them to learn from each other 

and gradually abandon local bias. Agent1 also has another rule, 

r2, which tells us that if a person is in senior age, he/she has 
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diabetes. The confidence of this rule is 50%, so it cannot be used 

for diagnosis.  

During the interaction with others, an agent will revise its 

knowledge base to incorporate new rules from other agents. Of 

course the confidence and confidence-records of some existing 

rules will be updated.  

A rule based knowledge base can be represented to its 

equivalent FPN [11]. In the transformation, rules become 

transitions, propositions become places, and confidences of 

rules become certainty factors of transitions. The diagnosis 

agent is designed to be able to use and transform between rule 

representation and FPN representation of its knowledge. Rules 

are meaningful, so the agent uses rule representation to 

communicate with human users and other agents. FPN is 

efficient in computation, so the agent uses FPN representation 

to perform reasoning.  

B. Reasoning Mechanism  

To enable FPN suitable for medical diagnosis, we modified 

the use of tokens. Tokens exist in places according to most petri 

nets [10] and fuzzy petri nets [11], this paper places tokens on 

arcs. One arc is restricted to have maximum one token.  

Tokens in places control the firing of transitions by the 

availability of resources. For example, two transitions with a 

same input place may not fire at the same time due to the 

insufficient tokens in the place. This research uses FPN for 

logical inference. The truth of a proposition should be passed to 

all transitions with this proposition as input. We put tokens on 

arcs. Once there are updates in a place, the changes are passed to 

all its output arcs by placing a token on those arcs.  

The reasoning process of a diagnosis agent is to make 

inference from what is known to what is unknown. It includes 

firing of transitions and updating of places.  

Firing of transitions: If each input arc of a transition has a 

token, and a transition’s certainty factor is not smaller than a 

predefined threshold λ, a transition is enabled to fire. When a 

transition fires, all the tokens on its input arcs are removed and a 

token is added on its output arc, as shown in Fig. 4. Meanwhile, 

a certainty factor is calculated for the output arc using the 

following formula: 

 v’ = Min(v1, v2, … vk) * cfi                 

 
(a) Before firing a transition                    (b) After firing a transition 

Fig. 4.  Firing process for a transition 

Updating of places: If one or more input arcs have tokens, a 

place is enabled to update. Updating a place pi follows the 

following method (Fig. 5): 

-  Remove tokens from the input arcs of pi. 

-  Suppose the old certainty factor of pi is vi . Update the 

certainty factor of pi to v’i = Max(vi
1
, vi

2
, … vi

k
).                

- If v’i ≠ vi and  pi has output places, add a token to each of 

the output arcs of pi (if that arc doesn’t have one token at 

the moment).  

So the certainty factor of a place is updated whenever new 

information is received from its input transitions, and only 

changed certainty factor is passed on (by placing tokens on its 

output arcs) for further inferences.  

 
(a) Before updating a place                    (b) After updating a place 

Fig. 5.  Updating process for a place 

C. Health Status Prediction 

By firing transitions and updating places, FPNs can be used 

to predict the degree of truth of propositions based on known 

propositions. Medical diagnosis is to predict patients’ health 

status from some known health indicators. For example, if we 

know a patient has high blood pressure, does he/she have heart 

disease? Or how certain he/she has heart disease? An algorithm 

for prediction is listed below. 

Algorithm. Prediction 

Input:  Known:  is a set of places with known certainty factors, 

which correspond to patient’s known health indicators. 

 Certainty: is a set of certainty factors for places in 

Known. 

Output: Certainty factors of places in set Target. Places in 

Target correspond to health indicators to be predicted. 

// Initialising 

For each place pi  in Known 

vi= xi //set certainty factor of pi to the known value.  

Put a token in each output arc of pi  

For each place pi  not in Known  

 vi= 0 

// Reasoning 

Continue firing enabled transitions and updating places that are 

enabled but not included in Known, until no more actions can be 

done.    

Whenever the certainty factor of a place is changed, use an 

arrow to mark the input arc which has the maximum certainty 

factor. The arrow starts from place and points to transition. If 

there are two or more input arcs with the same certainty factor 

and which is the biggest, randomly mark one arc.  

// Reporting results 

For each place pi in Target,   

Output pi and vi 

If vi ≠ 0, set Proofi to the set of transitions obtained by 

tracing the arrows from pi. Output Proofi. The transitions 

in Proofi are rules used to predict pi to have degree of truth 

of vi.   

End of Prediction. 

Note that certainty factors for places in Known are not 

updated, as they are considered as input and don’t need to be 

predicted.    
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Suppose there is an FPN which represents a rule set   

{ p1, p2 p7, p3 p7,  p7 p9, 

  p3, p4 p9, p4 p8, p5, p6 p8, 

 p8 p9,  p8 p10  } 

Know ={p1, p2, p3, p4, p6 } are places that their certainty factors 

are known. Target ={ p9, p10} are places that their certainty 

factors are to be predicted. If we apply algorithm Prediction to 

this FPN, after the initializing and reasoning steps, the FPN 

might look like the graphs in Fig. 6 (a)  and (b) respectively. 

When the reasoning process stops, certainty factors of p9 and p10 

are the predicted degree of truth of the corresponding 

propositions.   

By tracing the arrows, transitions used to predict p9 is 

recorded as {t1, t5} or { p1, p2 p7,  p7 p9}. There are other 

paths that can predict p9, but the path with arrow marks gives p9 

the highest certainty factor. Similarly, transitions used to predict 

p10 is recorded as {t3, t8} or { p4 p8,  p8 p10}. t4 is not fired 

because there is no token in its input arc that starts from p5.   

 
(a) After initialising                     (b) After reasoning 

Fig. 6.  Prediction process  

In this paper, we made changes to the traditional FPNs. We 

put tokens on arcs, and let places have capability to control the 

propagation of tokens. This ensures that each enabled transition 

only fires once and only changes are propagated along the fuzzy 

network.   

D. Knowledge Base Update 

During the interaction with others, an agent will receive new 

information that it doesn’t know before. Accept or reject? This 

type of decisions also needs to be made in human beings’ 

everyday lives. Human beings have the default readiness to 

accept new things. In human cognitive functioning, there is a 

strong tendency to accept incoming information as true, as 

Gilbert [13] pointed out that “unacceptance is a more difficult 

operation than is acceptance” (p. 111). Lee [14] stated that “this 

natural preference for acceptance over rejection is a 

manifestation of the fundamental psychological tendency 

shaped through the course of human evolution”. Mantovani 

[15] explained this in evolutionary terms, “we act in a world in 

which it is important to respond promptly to situations, while 

accuracy usually is not the top priority. The result is that human 

cognitive systems have developed adaptively the tendency to 

treat all representations as if they were true, except when there 

is proof to the contrary” (p.680). Artificial intelligence is to 

simulate human’s behaviors. We also design our agents to have 

the readiness to accept new knowledge unless they have proof 

that the new knowledge is incorrect. 

During collaborative diagnosis, an agent may receive 

knowledge from others. For the knowledge that is totally new 

and the agent doesn’t know it before, the agent accepts the new 

knowledge. For the knowledge that the agent can prove its 

confidence to be too low based on the agent’s knowledge base, 

the agent doesn’t use it for diagnosis.   

If an agent receives a set of rules RSet, and the 

confidence-records of rules in RSet, the following algorithm 

can update the agent’s FPN based on the knowledge in RSet.  

Algorithm. Update (RSet, S) 

Input:  RSet: a rule set {r1, r2, … rn,}  

 S: a set {s’1, s’2, … s’n} contains confidence-records 

for rules in RSet. 

Output: Updated FPN. 

For each ri in RSet  

 If ri does not exist in FPN 

 Add a corresponding transition ti in FPN if it does not 

cause loop,  

si = s’i      //  set s’i as confidence-records of ri 

Else // ri exists as transition ti, with confidence-records si 

Update si based on information in s’i.   

Set certainty factor cfi based on si. 

End of Update. 

The Update algorithm incorporates new knowledge and 

corrects the certainty factors of existing knowledge. Low 

confidence rules are not deleted in the update process. They are 

still stored in the knowledge base but disabled from any 

diagnosis. They may become enabled again if their certainty 

factors meet the threshold after later update processes.  

The update process helps the agent to switch from local bias 

belief to considerably impartial global views.   

IV. DIAGNOSIS THROUGH ARGUMENTATION 

A. Argumentation Dialogue Types 

Dialogues are the basic components in an argumentation. 

There are several dialogue types proposed in the literature for 

human or agent communication [16, 17, 18, 19]. The existing 

studies on argumentation dialogues showed that although the 

detailed dialogue types may vary depending on the context, the 

common dialogues are those to express one's position, justify 

one's position, attack the other's position, and exchange 

information with others. We use the following dialogue types in 

this paper:  

Propose: propose the predicted disease together with rules as 

justifications. 

Disagree: show disagreement with certain rules.  

Question: ask questions. 

Information: provide information. 

These dialogues enable agents to collaboratively critique and 

evaluate each other’s predictions to have a more precise 

diagnosis, and exchange information with others to extend and 

refine their knowledge base.  

Each dialogue has a head which indicates the type of the 

dialogue, followed by additional information. The propose 

dialogue consists of keyword Propose, followed by the 
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proposed disease, certainty factor of the disease and the rules 

used to make the prediction. The Disagree dialogue lists the 

rules it disagrees. The Question dialogue seeks information on 

one health indicator. For example, dialogue [Question | mental 

disorder] asks other agents whether the patient has mental 

disorder. The Information dialogue provides information on a 

health indicator. Format of the four dialogues are:  

- [Propose | Proposed disease | Certainty factor of the 

disease | Rules used to justify the proposal, and the 

corresponding confidence-records of rules] 

- [Disagree | Rules disagreed, and the corresponding 

confidence-records of rules] 

- [Question | Health indicator ] 

- [Information | Health indicator | Certainty factor of the 

indicator] 

B. Argumentation Automation 

When a patient starts to describe his/her symptoms, a 

diagnosis starts. Since the agents’ knowledge comes from 

various sources and with different specialties, the agents may 

have different predictions. These agents need to argue with each 

other to come up with a mutually agreed diagnosis. Now comes 

to the question that how to efficiently manage the agents’ 

argumentation dialogues. Of course, these agents cannot talk 

whenever they want. Agent’s discussion is similar to human 

doctor’s discussion. If all doctors explain their own point of 

view at the same time, it is hard to draw a final conclusion and 

the discussion will not make sense to the listeners. In human’s 

cases, we usually limit the number of persons in an 

argumentation.  

To coordinate the agents’ argumentation and make sure the 

discussion makes sense to listeners, the number of agents in an 

argumentation should be restricted. Some researchers use the 

idea from the Arena Contest of Chinese KungFu to transform 

multiple party argumentation into two-party argumentation [20, 

21]. We follow the similar idea.  

For easy understanding of the protocol, let’s imagine an 

argumentation stage and maximum two agents are allowed to 

argue on the stage. There is a chair agent who is in charge of the 

argumentation. When a patient finishes describing his/her 

symptoms, the chair agent announces the start of the 

argumentation. The first agent who would like to make 

diagnosis goes up the stage to propose illness the patient is in 

risk or ask patient questions. Another agent can go up the stage 

and argue with the first agent. If an agent has no higher certainty 

proposals and no more to argue, it leaves the stage. The agent 

with the higher certainty proposal stays on the stage and waits 

for other challengers. If none of the agents on the stage has 

proposals finally, both of them leave the stage, and other agents 

go up the stage to argue. This process continues until no more 

agents go up the stage. If finally a proposal exists, the patient 

has some certainty of this disease. If later there are agents have 

proposals on other disease, an argumentation on that disease 

will start. We let the agents argue on one disease at a time.       

Now we will concentrate on the argumentation among two 

agents. When an agent receives some health indicators 

regarding a patient, the diagnosis starts. An agent can go up the 

argumentation stage to make proposal or ask questions to 

clarify with the patient. A function for agents to make proposal 

is as follows.  

Proposal (pi) // pi is a concerned disease 

{ 

Set Known to a set of known health indicators of the patient, 

Certainty is a set of certainty factors for health indicators in 

Known.  

Set Target to { pi } 

Apply algorithm Prediction 

  // the algorithm will output vi and Proofi ,  

// Proofi  is a set of rules used for this prediction  

If vi ≠0,  

    Generate proposal dialogue [Propose | pi |vi |Proofi 

        and the corresponding confidence records set] 

 Else  

Pick up a pk which does not have input arcs and has path 

to pi   

Generate dialogue [Question | pk ]  

} 

Up to two agents can stay on the stage and argue about the 

diagnosis. When agent A receives dialogues from agent B, A 

will do three things: first, update its knowledge base with the 

rules used by B; second, generate a Disagree dialogue if A 

believes some rules from B are not correct; finally, generate 

Propose dialogue to make new diagnosis.  

The procedure of how an agent replies to others is described 

as follows. Note that an agent may receive Disagree dialogue 

and Propose dialogue at one time.  

Reply () 

{  // step 1: update knowledge base 

If receives [Disagree | Rules and confidence records set S] ,   

 Update (Rules, S)  

If receives [Propose | pi | vi | Proofi and the corresponding  

                   confidence records set S]  

 Update (Proofi , S) 

If receives [Information | pk | vk ] 

  Set the certainty factors of pk to vk  

// step 2: generate disagreement 

If there are rules in Proofi  with certainty factor smaller than 

λ, assign these rules in a set DisagreedRules,  

Generate dialogue [Disagree | DisagreedRules, and the 

corresponding confidence records set]  

// step 3: make new proposal 

If the agent has not made a proposal before 

  Initialise FPN with Known and Certainty 

Else   //   initialise with the updates 

-  For each rule updated or added in step 1, add a token to 

all its input arcs. 

-  For each place receives new information in step 1, add 

it to Known, add a token to all its output arcs.  

Apply algorithm Prediction without the initialising step. 

If vi ≠0  // pi is the currently concerned disease 

If no current proposal or the current proposal is 

disagreed or vi  is bigger than the current vi,  

      Generate proposal dialogue 
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Else   // no prediction on pi 

  Generate question dialogue if needed.  

} 

The reply() method ensures that the agent can update its 

knowledge base and conduct argumentation simultaneously.  

V. ILLUSTRATIVE EXAMPLE 

This section uses an example to illustrate the diagnosis 

through agents’ collaborative argumentation. The diseases 

concerned here are diabetes and heart disease. Now let’s equip 

the agents with knowledge. Only rules that can diagnose the 

presence of a disease is stored in the knowledge base, as rules 

that predict the existence of certain disease are more important 

than rules predict the absence of such disease.  

Suppose there are four agents. Agent A’s knowledge was 

obtained from a diabetes dataset [22] with 768 records. For 

illustration purpose, some changes were made to the dataset: 

only six attributes were considered which are the number of 

times of pregnancy(Preg), plasma glucose concentration (Glu), 

blood pressure (Bp), body mass index (BMI), age and class; 

removed records with missing values, so 724 records left; 

converted the continuous data to categorical data followed 

method in [23]. In the resulting dataset, each attribute has the 

value of L(Low), M(Medium) or H(High), the class is diabetes 

positive and negative. We then used data mining tool Weka [26] 

to mine the dataset. By applying association rule classification 

method Apriori [24, 25] provided in  Weka, some rules were 

obtained (values in brackets are certainty factors of rules):  

KB
A
={ r

A
1:Glu_H, BMI_HDiabetes_Positive (0.78),  

   r
A

2: Glu_H, Bp_M Diabetes_Positive  ( 0.75), 

   r
A

3: Glu_H  Diabetes_Positive  (0.74)   } 

Suppose agent B’s knowledge comes from knowledge 

discovery algorithm from an elderly service centre.  

KB
B
= { r

B
1: Age_H  Diabetes_Positive  (0.7) } 

 r
B

2: Age_H  HeartDisease_Present (0.72) } 

Agent C had knowledge obtained via Weka association rule 

mining on a heart disease dataset [27]. There are 270 instances, 

only attributes of age, sex, blood pressure (Bp) and class were 

considered. Age and Bp were converted to categorical data 

followed the method in [23]. The class has two labels, Absent 

and Present.  

KB
C
={r

C
1:Age_H,Sex_Male,Bp_H 

HeartDisease_Present( 0.61), 

r
C

2 :  Age_H, Sex_Male HeartDisease_Present (0.61), 

r
C

3:   Age_H HeartDisease_Present  ( 0.5)   } 

Agent D had the following knowledge base (knowledge 

comes from [28]):  

KB
D
={r

D
1: Age_H, Diabetes_Positive, Area_Rural 

   Heart Disease_Present (0.75) } 

Suppose there is a 55 (Age_H) years old lady lived in a rural 

area, who has plasma glucose level 187 (Glu_H), BMI 35 

(BMI_H). To clearly illustrate the FPN, propositions are used as 

names of places, certainty factors of places and transitions are 

put beside them.  

In this case, Known ={Age_H, Glu_H, BMI_H}, 

Certainty={1,1,1}, Target ={Diabetes_Positive}. Suppose the 

threshold for rules is 0.7.  

After the Chair announces the start of argumentation, agent B 

makes a proposal [Propose|Diabetes_Positive |0.7|{ r
B

1}] 

(confidence-records of supporting rules are omitted for 

simplification).  

Agent A has a higher confidence proposal [Propose 

|Diabetes_Positive |0.78|{ r
A

1}]. Fig. 7 shows the FPN after 

initialising and after reasoning.  

 

  (a) After initialising                     (b) After reasoning 

Fig. 7.  FPN of Agent A  

Agent B has no better proposals, agent A wins this round of 

argumentation. No agent has arguments on A’s proposal, the 

chair announces that the patient has diabetes with 0.78 

certainty.  

The chair starts an argumentation for new possible disease. 

Agent B makes a proposal [Propose|HeartDisease_Present 

|0.72|{ r
B

2}]. Agent C has a rule r
C

3 (0.5) which is the same as 

r
B

2(0.72). After updating with the confidence-records from B, 

the certainty factor of r
C

3 is lower than the threshold 0.7. 

Therefore, C generates dialogue [Disagree|{ r
C

3}] with the 

updated confidence-records. Both B and C have their 

knowledge updated during the interaction. They cannot make 

other proposals and have nothing to argue, so they leave the 

argumentation stage.  

D has insufficient information to make a proposal so it asks a 

question [Question|Area_Rural]. After the patient confirms that 

she lives in rural area, D proposes [Propose 

|HeartDisease_Present |0.585| r
D

1 ]. The corresponding FPN is 

shown in Fig. 8. No more arguments on this proposal, the chair 

announces that the patient has heart disease with certainty factor 

0.585. 

 
(a) After initialising                     (b) After reasoning 

Fig. 8.  FPN of Agent D  

  The argumentation dialogues among agents contain all the 

details such as confidence-records. The dialogues are also 

presented in human readable format for doctors and patients to 

participate in the collaborative diagnosis. Fig. 9 shows a sample 

interface for patients, where propositions are described by 

natural language, certainty factor (v) is described by fuzzy 

description of {no risk(v ≤0.5), low risk(0.5<v ≤0.65), medium 

risk (0.65<v ≤0.75), high risk(v >0.75)}. 

Through the argumentation, agents’ knowledge is validated 

by other agents. The final diagnosis is agreed by all agents 

which removes the local bias. New knowledge may be created 

during the argumentation. For example, agent D obtains new 
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knowledge Age_H, Glu_H, BMI_H, Area_Rural  

HeartDisease_Present (0.585) from r
A

1 and r
D

1. If it encounters 

such patient later, it will propose heart disease check up.  

 
Fig. 9. Sample dialogues  

VI. CONCLUSION 

This paper proposed a computing model for collaborative 

medical diagnosis through multiple agent argumentation.   

We applied fuzzy petri nets as the knowledge model to 

handle the uncertainty in reasoning. Uncertain rules are 

common for medical agents, especially when the knowledge is 

mined from databases. Two changes are made to FPNs: to put 

tokens on arcs (not in places as that of the usual FPNs), and to 

give places capability in controlling the propagation of tokens. 

The changes make the FPN more suitable for logical inference 

and more flexible in applications where knowledge is 

frequently updated.   

We designed algorithms to automate the agent argumentation 

dialogues. Through argumentation, the agents can share 

information, critique and verify each other’s knowledge, learn 

from each other and collaboratively come up with a mutually 

agreed diagnosis based on the collective expertise of multiple 

agents.  

The argumentative diagnosis model proposed in this paper 

provides a channel for better patient symptoms understanding, 

extensive knowledge sharing and learning, as well as more 

accurate diagnosis.  
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