
 

Abstract— Reliability is the measure of the result of the 
quality of the system over a long run. The reliability- 
redundancy allocation problem (RRAP) aims to ensure high 
systems reliability in the presence of optimally redundant 
systems components. This is one of the most important design 
considerations for the systems designers. Several researchers 
have addressed this important issue during last few decades. 
However, due to the embedded uncertainty in the parameters of 
the system components, reliability as well as the costs of the 
whole system fits very well to be modeled as fuzzy quantity.  We 
therefore modeled this problem as a fuzzy multi-objective 
optimization problem (MORRAP) that is addressed using the 
popular multi-objective evolutionary algorithm, NSGA-II (non- 
dominated sorting genetic algorithm-II). We have considered 
the based MORRAP with fuzzy type-2 uncertainty.  As far as we 
know, no research has been reported where MORRAP was 
considered under type-2 fuzzy uncertainty. A typical numerical 
example is included and results are compared showing that our 
approach outperforms other recently reported results.   
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I. INTRODUCTION 
 
The probability that a system shall perform its desired 
functions without any intermediate failure for a certain 
amount of time under defined working conditions is known as 
reliability of the system. The reliability of a system can 
mainly be increased by the addition of additional components 
or through the increase in the reliability of the individual 
components [1]. However, the addition of surplus 
components causes the increase of the cost, weight and 
volume etc. of the designed system. Therefore, it is 
imperative to find a balance between the reliability of system 
and added redundancy of the components. This little 
background is at the centre of evolution of a well-known 
research problem called, ‘reliability redundancy allocation 
problem (RRAP)’’. As the problem is computationally 
intractable [2], it has drawn immense attraction from research 
community over the last few decades. This problem has been 
solved both as a single-objective optimization problem and 
multiple-objective optimization problem using a number of 
approaches viz. dynamic programming, mixed integer 
programming, non-linear programming [3], integer 
programming [4],  heuristic algorithms [5], meta-heuristic 
algorithms,  evolutionary algorithms [6] etc.  
 
For real-life applications, the reliability optimization 
problem that considers the maximization of reliability 

function as an only objective function is not very suitable. 
Therefore, researchers formulated the reliability redundancy 
allocation problem (RRAP) as a multi objective optimization 
problem (MORRAP) in which reliability becomes very high 
and designing cost gets minimized. The multi-objective 
reliability-redundancy allocation problem (MORRAP) has 
recently been addressed by a significant number of 
researchers considering the objectives of reliability 
maximization and redundancy minimization under different 
design constraints. However, a very remarkable feature of 
the problem remained unnoticed until recently that is 
nothing other than the embedded uncertainties in the 
reliability and the costs of the components. The fact is that 
consideration of these uncertainties plays a significant role 
in the computation of the overall system reliability and cost. 
 
In this paper, we address the multi-objective 
reliability-redundancy allocation problem (MORRAP) with 
uncertainties in the reliability and cost of the components. 
These uncertainties in the reliability and cost are as modelled 
as fuzzy uncertainties. We therefore addressed the problem 
with the consideration of the system components having 
reliabilities and costs modelled with type-1 fuzzy parameter. 
We have considered model the problem as fuzzy type-2 
uncertainty based MORRAP. This has been augmented by 
the fact that during the system designing time, all the 
information on the reliabilities and the cost of the 
components are designers’ approximation. Different 
designers may have different opinions about the membership 
grades of the associated uncertainties in the cost and 
reliabilities of the system components. Thus, it is highly 
appropriate to model these parameters with type-2 fuzzy 
sets. As far as we know, no research has been reported till 
date where MORRAP has been considered under type-2 
fuzzy uncertainty. This problem is then very suitably 
reduced to the type-1 fuzzy MORRAP with the application 
of a suitable type-reduction method [28-30].   We therefore 
solved the Fuzzy MORRAP with a well-known evolutionary 
algorithms viz. NSGA-II (non-dominated sorting genetic 
algorithm-II). Suitable numerical examples are included to 
demonstrate that our approach outperforms the other 
recently reported results.  
 
The rest of the paper is organized as follows. Section II gives 
a brief literature survey of the related research of the RRAP. 
In the Section III, the mathematical formulation of the 
problem is given. The solution and numerical example is 
discussed in the Section IV. The paper is concluded in the 
Section V with a discussion of the results.  

FUZZY MULTI-OBJECTIVE RELIABILITY-REDUNDANCY 
ALLOCATION PROBLEM 

Zubair Ashraf                    Pranab K. Muhuri                             Q. M. Danish Lohani                Rahul Nath       
Faculty of Mathematics and Computer Science 

South Asian University, Akbar Bhavan, Chanakyapuri, New Delhi-110021, India 
ashrafzubair786@gmail.com   pranabmuhuri@cs.sau.ac.in  danishlohani@cs.sau.ac.in  rahul.nath@outlook.com     

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2580



 

II. LITERATURE REVIEW 
 
In reliability theory, one of the core issues is the problem of 
finding the optimal allocation of component redundancy 
under maximized systems’ reliability because of the 
non-polynomial computational complexity of the problem. In 
his seminal research paper [8], M.-S. Chern proved that the 
reliability-redundancy allocation problem is NP-hard. This 
prompted researchers to look-for heuristic based approaches 
rather than algorithmic solutions. To analyze and determine 
the optimal design configuration of the series-parallel 
systems, D. W. Coit et. al. [9] proposed a genetic algorithm 
based solution approach by modeling the problem as a linear 
optimization problem with a dynamic penalty function. A 
very significant research work on the reliability-redundancy 
allocation problem has been carried out by Kuo and Prasad 
[10]. In this paper authors have discussed the problem 
thoroughly with an overview of the researches reported over a 
decade and highlighted all the methods that have been 
developed. They have argued that exact solutions for this 
problem are not essentially looked-for as it is difficult to 
obtain precise solutions. In [11], J. E. R-Marquez et. al. 
formulated the redundancy allocation problem for systems 
with multi-state reliability behaviour under system-level 
performance constraints and solved the problem heuristically 
to minimize the design cost. The authors considered 
multi-state series-parallel systems having binary components 
which were capable of providing varying performance levels. 
H. A. Taboada et. al. [12] considered the multi-objective 
reliability design optimization problems and solved the 
problem using the non-dominated sorting genetic algorithm 
(NSGA). For multi-state series-parallel systems Z. Tian et. al. 
[13] investigated the reliability-redundancy allocation 
problem and designed a genetic algorithm to solve it. Z. 
Wang et al. [14] addressed the multi-objective Reliability 
Redundancy Allocation Problem (MORAP) with two 
objective functions, maximize the reliability and minimize 
the design cost with a Multi-objective Evolutionary 
Algorithm, namely Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) under a number of constraints. W.-C. 
Yeh et al. [8] proposed a particle swarm optimization based 
on the Monte-Carlo Simulation problem technique to solve 
not only the traditional series-parallel system for evaluating 
the reliability optimization problem also can solve the 
complex network. V. Ebrahimipour et al. [16] develop a fuzzy 
multi-objective optimization problem for MORRAP with 
consideration of triangular fuzzy number. The expected value 
concept was used to convert developed model to a crisp 
model and to solve the crisp model Multi- objective particle 
swarm optimization is used. K. K.- Damghani, et. al. [17] 
proposed a particle swarm optimization based dynamic 
self-adaptive method for solving the multi-objective 
reliability redundancy allocation problem. The authors used 
an efficient version of the epsilon-constraint method together 
with non-dominated sorting genetic algorithm method and a 
customized time-variant multi-objective particle swarm 
optimization method in their approach to test the solutions. C.  
Dingzhou et. al. [18] proposed a decomposition-based 
approach to solve the Multi-objective Redundancy Allocation 

Problem for series-parallel systems. The authors treated 
redundancy allocation problem as a multi-objective problem 
and decompose the original problem into several 
multi-objective sub-problems then solve each sub-problems 
and then combine the solutions. H. Garg et. al. [19] 
formulated a Fuzzy Multi-objective Reliability Redundancy 
Allocation Problem for the original Multi-objective 
Reliability Redundancy Allocation Problem of a 
series-parallel system. With the help of crisp optimization a 
fuzzified MOOP is constructed then particle swarm 
optimization is applied to solve this problem and results are 
compare with genetic algorithm (GA). B Xing et. al. [20] 
addressed the reliability optimization problem by a 
computational intelligence method for globally optimal 
solutions. In [21], H. Garg et. al. used intuitionistic fuzzy 
programming technique in the multi-objective reliability 
redundancy allocation problem to avoid the conflict between  
objectives. 
 

III. PROBLEM FORMULATION 
 

In the design of series-parallel system with m independent 
subsystems arranged in series and in each subsystem have i 
components, arranged in parallel which are equivalent in 
functionality [3]. A subsystem can work properly if at least 
one of its components is operational. The typical structure of 
a series-parallel system is illustrated in Fig. 1. Increasing the 
number of redundant components will increase the system 
reliability, but that also increases its cost, weight and others 
constrains. The aim is to optimize the redundant components 
while balancing the other objectives. 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Fig-1: Typical Series-Parallel Systems with m subsystems 

 
The basic assumptions for the multi-objective 
reliability-redundancy allocation problem (MORRAP) are as 
follows: 

a) All components are assumed to be non-repairable. 
b) All components are assumed to have binary states 

i.e. a component can only in the working state or in 
the failed state. 

c) The functioning of all the components is known, 
deterministic, and time-independent. 
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d) Physical properties e.g. reliability, volume, weight, 
and cost etc. 

e) All the redundant components for individual 
subsystems are identical. 

f) Failure of any redundant components are 
independent and do not damage the system. 

 
The notations used in our mathematical model for the 
multi-objective reliability-redundancy allocation problem is 
given in the Table 1. 
    

Table 1 : Notations Used in Mathematical Model 
 

Abbreviations Details 

m Number of sub-systems 
i Index of sub-systems, i = 1,2,…,m 
ni the number of components in the ith sub-system 
ri reliability of each component in ith subsystem 

Rs system reliability function of the reliability model 

Cs system cost function of the reliability model 

c(ri) 
the cost of each component with reliability ri at 
subsystem i 

vi volume of each component in ith subsystem 

wi weight of each component in ith subsystem 

gi ith constrain of the system  
T operating temperature 
V allowed volume of the system 
W allowed weight of the system 

C Maximum allowed cost of the system 

αi 
shaping factor  of each component in ith 
subsystem 

βi scaling factor of each component in ith subsystem 
 
The system reliability of an m-stage parallel-series system is 
expressed by 

( ) ( )1 2 3,
1

, , , ,  1 1 i
m

n
s n i

i

R x x x x r
=

⎡ ⎤… = − −⎣ ⎦∏        (1) 

where ri is the component reliability and ni the number of 
components  at the stage-i. The cost is an increasing function 
of ri or conversely a decreasing function of the component 
failure rate expressed by 

     ( )   i
i i i irc βα λ −=                            (2) 

where αi, and βi are shaping factor and scaling factor  
representing the inherent characteristics of each component at 
stage-i, βi > 1.  If for all i each component follows the 
negative exponential failure law, i.e., 

   it
ir e λ−=                                       (3) 

 then, component cost at stage i is  

( ) ( ) / ln( ) i

i i ic r t r βα= −                      (4) 
 

where t is the operating time during which the component at 
stage-i will not fail. Usually αi and βi and t are given. Thus, 
c(ri) * ni give the cost of the components at stage-i as a 
function of ri and ni. An additional cost c(ri) * exp(ni/4) is 

included, as the cost for interconnecting parallel elements. 
Using the above equations the total cost function of the 
system can be determine as 

( ) ( ) ( )( )1 2 3
1

, , , , / ln( ) . exp / 4i
m

S n i i i i
i

C x x x x t r n nβα
=

… = − +∑  (5) 

  The first constraint is a combination of weight and volume:                  

                    ( ) 2 2
1

1

,  
m

i i i
i

g r n w v n V
=

= ≤∑                           (6) 

 

The second constraint is weight which similarly evaluated as 
the cost is evaluated earlier:    

( )2
1

, . exp
4

m
i

i i
i

ng r n w n W
=

⎛ ⎞⎛ ⎞= + ≤⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑          (7)  

where, wi * ni is the weight of all of the components at stage-i. 
Again an additional factor is added, which is exp (X1/4), due 
to the hardware for interconnecting the links. The weight 
constraint is not a function of component reliability. 

A.    Mathemathical Model of Multi-Obective 
Realiability redundancy Allocation Problem 

 
In most of the cases RRAP is assumed to be a single objective 
problem for maximizing the reliability of the system and 
minimizing the cost, weight, and volume. But now the interest 
of the researches is fast moving towards taking more than one 
objective. In terms of the RRAP, the main goal is to determine 
the optimal component reliabilities and the redundancy level 
of components in a system to maximize the system reliability 
subject to several resource constraints. In this model we 
maximize the reliability of system and also minimized cost 
simultaneously. The multi-objective reliability-redundancy 
allocation problems (MORRAPs) presented here is based on a 
single objective formulation with one or several constraints 
[kuo & Prasad, 2000]. The multi objective formulation was 
obtained by converting the cost constraints into an objective 
function.   
 
Therefore, the MORRAP for the system with the 
consideration of two separate objectives viz. reliability and 
cost, may be stated mathematically as follows: 
 

Maximize ( ) ( )1 2 3,
1

, , , ,  1 1 i
m

n
s m i

i

R x x x x r
=

⎡ ⎤… = − −⎣ ⎦∏           (9) 

Minimize ( ) ( ) ( )( )1 2 3
1

, , , , . exp /4
m

S m i i i
i

C x x x x c r n n
=

… = +∑   (10) 

                               subject to   

              ( ) 2
1

1

,  
m

i i
i

g r n u n V
=

= ≤∑                                     (11)  

( ), . exp2 41

m nig r n w n Wi i
i

= + ≤∑
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
     (12) 

where,   ( ) ( )/ ln( ) i

i i ic r T r βα= −   and       2*i i iu w v= . 
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B. Establishing Fuzzy  multi-objective optimization 
model for reliability  

 
We have formulated FMOOP for series parallel system 
corresponding to optimization problem discussed in section 
C. In order to maximize the reliability of the above model 
through fuzzy theory we fuzzily the reliability of individual 
subsystem (arrange in the series) and take its minimum value.  
Simultaneously to minimize the cost involved in keeping the 
required optimized reliability we compute the cost of 
corresponding subsystems and take its maximum.  
 
Now to model our problem various types of membership 
functions are available such as linear, tangent type, 
exponential type etc. Here for the sake of simplicity we are 
using linear membership function as defined in the following 
Eqs. (19) & Eq. (22). We assumed that ܴ݈ݐ is the minimum 
value of the system reliability, that is, the necessarily 
requirements of the decision-maker for the system reliability;  ܴݑݐ is that the decision-makers think the ideal reliability of the 
system to be;  ݐ݂ߤ ሺ݅ݎ, ݊݅ሻ is a linear membership function of 

system reliability objective function ܴܵሺ݅ݔሻ.Similarly in the 
second objective function ݐ݈ܥ is the upper value of the system 
cost, showing the maximum value of investment for system; ݑݐܥ is that lowest cost the decision-makers thing for the system 
ideal cost to be: ሼߥ௙೟ ሺݎ௜ , ݊௜ሻሽ is a linear membership function 
of system reliability cost  function ܥ෨ݏሺ݅ݔሻ. 

The fuzzy MORRAP for the system is stated as 

Maximize    ܴݏ෥ ሺ1ݔ, ,2ݔ ,3ݔ … ,                                 =  ሻ݉ݔ

         ሼ ෨ܴௌሺݔଵሻ, ෨ܴௌሺݔଶሻ, ෨ܴௌሺݔଷሻ, … , ෨ܴௌሺݔ௠ሻሽ    (17) 

where,             ෥ܴݏሺ݅ݔሻ ൌ ሼ1 െ ,݅ݎሺ ݐ݂ߤ ݊݅ሻሽ                          (18) 

 

,݅ݎሺ ݐ݂ߤ      ݊݅ሻ ൌ ൞ 1,               ܴܵሺ݅ݔሻ ൒ ݐെܴ݈ݑݐܴݐሻെܴ݈݅ݔሺܴܵݐ݈ܴ , ݐ݈ܴ ൑ ܴܵሺ݅ݔሻ ൑ ሻ݅ݔሺܴܵ               ,0ݑݐܴ ൑ ݐ݈ܴ
                (19) 

                                   
                                     and  
 

Minimize   ݏܥ෩ ሺ1ݔ, ,2ݔ ,3ݔ … ,  =  ሻ݉ݔ
   ሼܥሚௌሺݔଵሻ, ,ଶሻݔሚௌሺܥ ,ଷሻݔሚௌሺܥ … ,  ௠ሻሽ (20)ݔሚௌሺܥ

 
where,         ܥ෨ݏሺ݅ݔሻ ൌ ሼݐ݂ߥ ሺ݅ݎ, ݊݅ሻሽ                                    (21) 
 

,݅ݎሺ ݐ݂ߥ ݊݅ሻ ൌ ൞ ሻ݅ݔሺܵܥ               ,1 ൒ ݐ݈ܥെݑݐܥሻ݅ݔሺܵܥെݑݐܥݐ݈ܥ , ݐ݈ܥ ൑ ሻ݅ݔሺܵܥ ൑ ሻ݅ݔሺܵܥ               ,0ݑݐܥ ൒ ݑݐܥ
            (22) 

 

subject to,        ( ) 2,  1
1
u

m
g r n n Vi i

i
= ≤∑

=
                            (23)  

( ), . exp2 41

m nig r n w n Wi i
i

= + ≤∑
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
         (24) 

where,   ( ) ( )/ ln( ) ic r T ri i i
β

α= −  and        2*i i iu w v= . 
 

C. Representation of   Fuzzy sets 
 
Reliability is very critical outcome of any real-world 
application. The timing parameters are very crucial for the 
effectiveness of the reliability. Also, when the cost 
minimization is the concerned with the component reliability, 
we have to consider the uncertainty in the parameters. There 
can be many approximation of one input which is concerned 
with the reliability. All of these approximations have to be 
dealt with care. So we propose to use the Type-2 fuzzy 
arithmetic in this paper which related to the two conflicting 
objectives of our problem.  Some works have been done in 
these fields which have dealt with type-2 fuzzy for reliability. 
Very few have been done with regards to Type-2 Fuzzy sets 
(T2FS). Nobody has used the concept of T2FS in this field to 
model uncertainty as here we propose to use it. The reason for 
using T2FS is that type-1 may suffer from interpretability 
issues. The uncertainties are modeled with type-2 fuzzy 
numbers [24][25]. We have to first consider the definition of 
type-2 fuzzy sets, which is: 
 
A type-2 fuzzy set [26], denoted by , is characterized by a 
type-2 membership function  µA෩ሺx, uሻ , where x ∈ X  and u ∈  J୶  ⊆ ሾ0,1ሿ, i.e., 
 

=൛൫ሺx, uሻ, µA෩ሺx, uሻ൯| ׊ x ∈ X , u׊ ∈  J୶ԓ ሾ0,1ሿൟ,0 ≤ µA෩ሺx, uሻ ≤ 1. 
 

Here, x is a primary variable and its measurement domain is 
denoted by X; u is a secondary variable, u⊆J୶ at each x∈ X; J୶ 
is a primary membership degree of x.  can also expressed in 
discrete cases as A෩  = ׬ ׬ µA෩ ሺ୶,୳ሻሺ୶,୳ሻ ୳∈J౮ ୶∈X J୶ԓ [0, 1]. 
 

 
Fig-2: Type-2 Fuzzy Logic System 

 
If µA෩ሺxሻ is the Lower membership function (LMF) and µതA෩(x) 
is Upper membership function (UMF), then  FOU is 
collection of LMF and UMF i.e. FOU= [ µA෩ሺxሻ , µതA෩ (x)]. 
Type-2 fuzzy sets incorporate a Footprint of Uncertainty 
(FOU) which allows for better modeling of uncertainty. FOU 
is certainly the collection of all the embedded type-1 fuzzy 
sets. It offers more degree of freedom to the T2FS. Many 
publications have shown that T2FS can outperform their 
type-1 FSs counterparts in a variety of applications, ours one 
is specific to reliability and cost constraints. The structure of 
T2FLS is shown in the Figure-2. We have considered the 
T2FLS having n inputs, ݔଵ ∈ ଵܺ,, ݔଶ ∈ ܺଶ,…,, ݔ௡ ∈ ܺ௡  and 
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one output, y ∈ Y , the rule-base is composed of N rules, where 
the ith rule ܴ௜can be expressed as follows: 
   ࡮ THEN y is . ࢔is Ã࢔࢞ IF ࢞૚ is Ã૚  and ࢞૛ is Ã૛ … and :࢏ࡾ 
 

The output of Fuzzifier is T2FS, which is then provided to the 
Rule & Inference Block and so on The firing strength ݂௜’s are 
defined as: ݂௜ = ݊݅ܯ (LMF’s) ݂௜

f (UMF’s) ݊݅ܯ =  ୧  is the Lower limit of firing-strength and  fҧ ୧ is the Upper limit of firing-strength. 
 
Next we have to perform the   type reduction and the 
defuzzification for our reliability and cost optimization. We 
have used the Nie-Tan Type-reduction method [27]. 
Vertical-slice representation is used in NT method. This 
method provides the output with less complexity. First the 
average ܽ݃ݒ௜  of the FOU of ܣሚ  at each ݔ௜  is calculated. ܽ݃ݒ௜can be calculated as  [28][29]: 
 =௜݃ݒܽ 

ሺఓಲ෩ ሺ௫೔ሻା ఓಲ෩ ሺ௫೔ሻ ሻଶ  
With the help of this averageܽ݃ݒ௜ , we can calculate the 
defuzzified value (avg) of the Type-2 fuzzy set as: 
 

avg = ∑ ௫೔೔ಿసభ ௔௩௚೔∑  ೔ಿసభ ௔௩௚೔  
 

where ܽ௜is computed from above. The defuzzified output is 
then used for our functional computation. 
 

IV. SOLUTION TECHNIQUE 
 
In real world problem the chances are very least that we 
come-up with only a single-Objective problem.  Our problem 
is to increase the reliability in the real-world application with 
the conflicting approach to minimize the overall cost. 
Moreover there is always an Up-down scale in the values of 
these two conflicting criteria’s. One objective is 
compromised for the other. Practically these are called the 
multi-objective optimization problems. Multi-objective 
optimization problem are well addressed considered by the 
NSGA-II (non-dominated sorting genetic algorithm) 
algorithm [11], which is one of the most popular variants of 
the traditional genetic algorithmic approaches. NSGA-II is a 
fast and exclusive Multi-objective Genetic Algorithm. It’s an 
extension to the genetic algorithm which has been widely 
used for its multi-objective optimization capability. We 
therefore solve the MORRAP problem using the techniques 
of NSGA-II. The basic operations of the NSGA-II algorithm 
is shown in the flow-chart given in the Fig. 3. The concept of 
domination sort is used where certain conditions are followed 
if solution from objective 1 dominates the solutions from 
objective 2. Below are given the conditions: 
 

• First solution is no worse than the other solution 
• First solution is strictly better than the other solution 

in at least one objective. 
• If first solution dominates other solution ,then it can 

be said that 

o Other solution is dominated by First solution. 
o First solution is non-dominated by Other 

solution.  
o Other solution is inferior to First Solution. 

The benefits of using NSGA-II is that it uses the improved 
sorting algorithm, incorporates elitism and sharing parameter 
are not needed to be chosen a priori. The initialization of 
population is same as used for Genetic algorithm. After the 
population initialization, it is sorted depending on the 
non-domination into each front. We will be having some 
fronts which depend on the procedure run on population. The 
first front is completely non-dominate done in the current 
population and the second front is dominated by the 
individuals in the population in the first front only. The front 
goes on of there are more than two fronts. The ranks which 
are the fitness values, the results of objective function, are 
assigned to each individual in the first front and so on. 
Individuals in first front are assigned a fitness value of 1 and 
individuals in second are given a fitness value as 2. 
 

Fig 3: Flow-chart of the NSGA-II Algorithm 
 

 
After the fitness values are calculated, a new parameter called 
crowding distance is calculated for each individual forming 
the front. Large average crowding distance will result in 
better diversity in the population. Parents are selected from 
the population by using binary tournament selection based on 
the rank and crowding distance. An individual is selected if 
the rank is lesser than the other or if crowding distance is 
greater than the other.  
 

V. EXAMPLE [20] 
 
We now demonstrate our fuzzy type-2 based model for the 
multi-objective reliability-redundancy allocation problem 
(FT2MORRAP) with the help of a numerical example [20]. 
Considering the typical numerical parameters, the 
FT2MORRAP problem may be summarized as given below:  

Maximize            RS = ( )
1

5

1 1 in
i

i

r
=

⎡ ⎤− −⎣ ⎦∏  

Minimize      CS = ( ) ( )( )
1

5

. exp / 4i i i
i

c r n n
=

+∑    
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subject to         g1(r,n) = 
5

2

1
u n Vi i

i
≤∑

=
  

 g2(r,n) = 
5

. exp
41

niw ni i
i

+ ≤∑
=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
0.5  ≤ ri ≤ 0.95,               1  ≤ ni ≤ 3   and   ni 
Cs ≤ C, g1(ri,ni) ≤ W       and      g2(ri,ni) ≤ V
 

We have solved this problem using the NS
operations of the NSGA-II algorithm were
Section IV. The input data for the NSGA-II
Table 2, which includes all the paramete
problem formulation. These parameters are a
the notations mentioned in the Table 1. We
here five different type of components and a
parameters are mentioned. Each row in the T
the values for parameters of a single system
 

TABLE 2 INPUT PARAMETERS DATA
 

Sr. 105αi βi wi vi V C

1 3.516724 1.5 6.0 4.0 289 55

2 1.982908 1.5 8.0 4.0 289 55

3 3.578225 1.5 5.0 3.0 289 55

4 2.966955 1.5 10.
0

4.0 289 55

5 0.611360 1.5 9.0 4.0 289 55
 

 

 

Fig. 4: Components Reliability with IT2 Fuzzy Mem
 

TABLE 3 RESULTS FOR 1ST DATA INPUT (
 

ri ni Rs Cs 

0.50534 3 0.524629 50.46003 

0.601112 3 0.720466 78.35737 

0.732451 3 0.907839 163.7687 

0.789882 3 0.954469 248.3759 

0.847239 3 0.982302 421.5547 

0.86178 3 0.986866 495.925 

0.895154 3 0.994251 771.8787 

0.910143 3 0.996378 984.8456 

0.922074 3 0.997636 1231.268 

0.931168 3 0.998371 1493.982 

0.933756 3 0.998547 1585.628 

0.942644 3 0.999057 1982.036 

0.947185 3 0.999264 2251.076 

W≤   

∈   Z+
, 

V. 

SGA-II. The basic 
e explained in the 
I are shown in the 
ers related to the 
already defined in 
e have considered 
all of their related 
Table 2 represents 

m component.  

A 

C W T(h) 

53 483 1000 

53 483 1000 

53 483 1000 

53 483 1000 

53 483 1000 

 
mbership Functions 

(SR. 1) 

PF CD 

1 0.108837 

1 0.11412 

1 0.117802 

1 0.194419 

1 0.145055 

1 0.160795 

1 0.215009 

1 0.168113 

1 0.11453 

1 0.133006 

1 0.179852 

1 0.171008 

1 0.11744 

 

 
Fig 5: Graph for Ta

 
TABLE 4 RESULTS FOR 2ND DA

 

ri ni Rs C

0.773784 3 0.943443 123.

0.796249 3 0.958417 147.

0.860127 3 0.986392 274.

0.868663 3 0.988724 303.

0.893924 3 0.994046 427

0.910427 2 0.996412 558.

0.925907 3 0.997968 751

0.930285 3 0.998307 825.

0.93609 3 0.998696 945.

0.938534 3 0.998839 1004
 
 

TABLE 5 RESULTS FOR 3RD DA
 

ri ni Rs Cs 

0.628132 3 0.767999 91.2991

0.772984 3 0.942855 221.562

0.809015 3 0.965651 296.714

0.881524 3 0.991713 646.497

0.893704 3 0.994009 768.454

0.913061 3 0.996719 1055.4

0.923904 3 0.997799 1300.15

0.925978 3 0.997974 1357.45

0.933053 3 0.998501 1587.14

 
 

 

Fig. 6:  Graph for Ta
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able: 3 

ATA INPUT (SR. 2) 

Cs PF CD 

.5239 1 0.156179 

.5145 1 0.154532 

.3004 1 0.145394 

.6568 1 0.119661 

7.248 1 0.186499 

.0811 1 0.149224 

.111 1 0.197608 

.8492 1 0.142603 

.2496 1 0.130798 

4.107 1 0.123049 

ATA INPUT (SR. 3) 

PF CD 

15 1 0.236482 

26 1 0.287334 

43 1 0.106282 

72 1 0.107677 

45 1 0.125004 

44 1 0.219206 

58 1 0.123583 

51 1 0.116929 

45 1 0.104984 

 

able: 4 

1 1.02
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Fig. 7: Graph for Table: 5 
 

TABLE 6 RESULTS FOR 4TH DATA INPUT (SR. 4) 
 

ri ni Rs Cs PF CD 

0.745348 3 0.920115 150.6568 1 0.118939 

0.810938 3 0.966664 250.2207 1 0.269634 

0.883482 3 0.992115 550.5144 1 0.223342 

0.894959 3 0.994219 649.296 1 0.142628 

0.910324 3 0.996399 833.5246 1 0.145505 

0.916995 3 0.997144 941.0721 1 0.086334 

0.924049 3 0.997811 1081.284 1 0.101666 

0.935059 3 0.998631 1379.663 1 0.125113 

0.93775 3 0.998795 1473.207 1 0.08369 

 
 

 
 

Fig. 8 Graph for Table: 6 
 

TABLE 7 RESULTS FOR 5TH DATA INPUT (SR. 5) 
 

ri ni Rs Cs PF CD 

0.834732 3 0.977633 64.42346 1 0.207145 

0.880032 3 0.991397 108.2685 1 0.211845 

0.900678 3 0.995111 146.1959 1 0.181189 

0.913684 3 0.996789 182.3729 1 0.194021 

0.924921 3 0.997886 226.8555 1 0.131713 

0.927076 3 0.998063 237.3952 1 0.100346 

0.932854 3 0.998487 269.926 1 0.104034 

0.938927 3 0.998862 312.6706 1 0.137712 

0.946569 3 0.999238 384.402 1 0.126636 

0.948468 3 0.999316 406.4555 1 0.098218 

 
 

Fig. 9: Graph for Table: 7 
 
As stated earlier and shown in the problem formulation, we 
have considered the component reliability and the cost as 
type-fuzzy fuzzy quantity. Fig. 4 shows the components 
reliability with type-2 fuzzy membership functions for a 
specific case. The type-2 fuzzy parameters are suitably 
subjected to the defuzzification process using the famous 
Karnik-Mendel approach [26], [29]. The defuzzified 
parameters are then used for running the NSGA-II algorithm. 
In the NSGA-II, we have used the crossover probability of  
0.9, mutation probability of 0.2 and population size is varied 
from 50 to 100. The results for the components listed in the 
Sr. nos. 1 to 5 are shown in the Tables 3 to 7 respectively. The 
tables show the values for the optimized reliability and 
corresponding cost of the components, obtained Pareto-fronts 
and the optimized system reliability and amount of 
redundancy. Fig. 5 to Fig. 9, where the x axis and y axis 
represents the system reliability and designing cost in 
providing solutions respectively, illustrates the solutions 
obtain by the NSGA-II algorithm for different parameters. 
The Fig. 5 to 9 also shows the shapes of the Pareto-fronts for 
different components. We thus see that NSGA-II gives us a 
set of solutions which are non-dominated to each other.  Thus 
the system designer can chose any of the solutions by 
considering the appropriate reliability and cost as per their 
own conveniences. The proposed model therefore provides a 
wider range of solutions to the system designers.    
 

VI. CONCLUSION 
 
Reliability is the measure of the result of the quality of the 
system over a long run. The reliability-redundancy allocation 
problem (RRAP) aims to ensure high systems reliability in 
the presence of optimally redundant systems components. 
This is one of the most important design considerations for 
the systems designers. Several researchers have addressed 
this important issue during last few decades. However, due to 
the embedded uncertainty in the parameters of the system 
components, reliability as well as the costs of the whole 
system fits very well to be modeled as fuzzy quantity.  We 
therefore modeled this problem as a fuzzy multi-objective 
optimization problem (MORRAP) that is addressed using a 
popular multi-objective evolutionary algorithm, viz. 
non-dominated sorting genetic algorithm-II. We have 
considered the based MORRAP with fuzzy type-2 
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uncertainty.  As far as we know, no research has been 
reported where MORRAP was considered under type-2 fuzzy 
uncertainty. We have used the solved the problem with the 
well-known evolutionary algorithm, NSGA-II with the   
crossover probability of  0.9, mutation probability of 0.2 and 
population size is varied from 50 to 100. The results 
demonstrate that the problem can be addressed quite 
efficiently by this technique. A number of Pareto-optimal 
solutions are obtained from the NSGA-II.  Fig. 5 to 9 show 
the shapes of the Pareto-fronts for different components.  
Therefore, a set of solutions which are non-dominated to each 
other are obtained from NSGA-II.  Hence, the designers of 
the systems enjoys flexibilities  in choosing a particular 
solution by selecting the favorable values of the reliability 
and cost. The proposed model therefore provides a wider 
range of solutions to the system designers.   The typical 
numerical example considered here is there very nicely 
demonstrates our new FT2MORRAP model.  In future we 
wish to continue research in this area with the consideration 
of some other objectives viz. component weight, time 
duration etc. in the same model. The problem might pose 
some interesting results as NSGA-II may have some 
limitations in handling the MORRAP problem in the presence 
of more than two objectives.    
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