

Abstract- Discretization of continuous attributes is a key issue
in classifier design from numerical data. In the machine
learning community, continuous attributes are discretized into
intervals. An entropy measure is often used to determine the
cutting points for interval discretization. In the fuzzy system
community, continuous attributes are usually discretized into
overlapping fuzzy sets. Learning and optimization techniques
are used to adjust the membership function of each fuzzy set.
One interesting research issue is a comparison between interval
partitions and fuzzy partitions. We address this issue by using
an entropy-based interval discretization method in hybrid fuzzy
genetics-based machine learning (GBML). Our hybrid fuzzy
GBML algorithm is applied to a number of data sets where
interval discretization is fuzzified with different fuzzification
grades from zero (i.e., interval partitions) to one (i.e., completely
fuzzified partitions). Experimental results from various
fuzzification grades are compared with each other.

I. INTRODUCTION

PPLICATIONS of genetic algorithms to machine learning
are often referred to as genetics-based machine learning

(GBML [1]). When classification problems with continuous
attributes are handled by GBML, each attribute is divided into
intervals. This process is called interval discretization, which
is also used in many models of machine learning such as
decision trees [2]-[4]. Although interval discretization looks a
nice idea to handle continuous attributes in classifier design,
it is not always appropriate for any data sets. For example,
some attributes are noisy or vague. In such a case, multiple
pattern distributions with different classes are overlapping
one other. To handle this situation, each attribute is often
divided into overlapping fuzzy sets. Those fuzzy sets are used
in the antecedent (i.e., condition) part of a fuzzy if-then rule
to specify a fuzzy region in the pattern space.

The use of GBML for fuzzy rule-based classifier design
has been actively studied under the name of evolutionary
fuzzy systems or genetic fuzzy systems [5], [6]. Fuzzy rules
are often categorized into two types: linguistic fuzzy rules
and approximate fuzzy rules. Linguistic fuzzy rules are based
on the use of pre-specified linguistic terms such as small,
medium and large as antecedent fuzzy sets. Thus each rule is
highly interpretable. Approximate fuzzy rules do not use
those pre-specified linguistic terms, but these rules use

Yuji Takahashi is with Department of Computer Science and Intelligent
Systems, Osaka Prefecture University, Japan (phone: +81-72-254-9198; fax:
+81-72-254-9915; e-mail: yuji.takahashi@ci.cs.osakafu-u.ac.jp).

Yusuke Nojima and Hisao Ishibuchi are with Department of Computer
Science and Intelligent Systems, Osaka Prefecture University, Japan (e-mail:
{nojima, hisaoi}@cs.osakafu-u.ac.jp).

This work was partially supported by Grand-in-Aid for Scientific
Research (C): KAKENHI (25330292).

adjustable fuzzy sets to pattern distributions.
In our hybrid fuzzy GBML algorithm [7], [8], we always

used homogeneous fuzzy partitions in Fig. 1 to design fuzzy
rule-based classifiers with high interpretability. In this paper,
we examine the effect of inhomogeneous fuzzy partitions in
our hybrid fuzzy GBML algorithm. An inhomogeneous fuzzy
partition is derived from each interval partition obtained by
an entropy-based interval discretization scheme. Examples of
inhomogeneous fuzzy partitions are shown in Fig. 2 where an
interval discretization of each attribute is shown by vertical
dashed lines. In [9], [10], the effect of inhomogeneous fuzzy
partitions derived from interval partitions was examined in
genetic fuzzy rule selection so far. It was shown that the
fuzzification of intervals improved the generalization ability
of interval rules while it slightly deteriorated the accuracy on
training patterns [10].

Attribute value 1

1

0M
em

be
rs

hi
p

A7 A9

Attribute value 1

1

0
M

em
be

rs
hi

p

A3 A5

Attribute value 1

1

0M
em

be
rs

hi
p

A11 A14

Attribute value 1

1

0

M
em

be
rs

hi
p

A1 A2 A4

A8A6
A12 A13A10

Fig. 1. Homogeneous fuzzy partitions with different granularity.

Attribute value 1

1

0

M
em

be
rs

hi
p

A7 A9

Attribute value 1

1

0

M
em

be
rs

hi
p

A3 A5

Attribute value 1

1

0

M
em

be
rs

hi
p

A11 A14

Attribute value 1

1

0

M
em

be
rs

hi
p

A1 A2 A4

A8A6
A12 A13A10

Fig. 2. Inhomogeneous fuzzy partitions with different granularity which are
derived from the interval partitions shown by vertical dashed lines.

In this paper, we use inhomogeneous fuzzy partitions in

our hybrid fuzzy GBML algorithm to examine the effect of
fuzzification of intervals on the performance of rule-based
classifiers. We also compare inhomogeneous fuzzy partitions
with homogeneous ones.

Hybrid Fuzzy Genetics-based Machine Learning with
Entropy-based Inhomogeneous Interval Discretization

Yuji Takahashi, Yusuke Nojima, and Hisao Ishibuchi

A

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 1512

This paper is organized as follows. First, we explain fuzzy
rule-based classifiers in Section II. Next we explain how to
discretize continuous attributes into intervals using an
entropy measure in Section III where we also explain the
fuzzification of discretized intervals. In Section IV, we
explain GBML in general and our hybrid fuzzy GBML
algorithm in particular. Then we apply our algorithm to a
number of data sets using interval and fuzzy partitions in
Section V. Finally, we conclude this paper in Section VI.

II. FUZZY RULE-BASED CLASSIFIERS

In this section, we explain a fuzzy rule-based classifier. Let
us assume that we design a classifier for an M-class data set
with m training patterns xp = (xp1, …, xpn), p = 1, 2, …, m.
Each pattern has n attribute values and a class label. For
simplicity, each attribute value xpi is normalized into a real
number in [0, 1] for i = 1, 2, ..., n and p = 1, 2, …, m. Thus, all
the training patterns are located in an n-dimensional pattern
space [0, 1]n. For this classification problem, we use if-then
rules of the following type [11]:

Rule Rq: If x1 is Aq1 and … and xn is Aqn
then Class Cq with CFq, (1)

where Rq is a rule label for the qth rule, Aqi is an antecedent
fuzzy set or interval set, Cq is a class label, and CFq is a rule
weight. As an antecedent set, we simultaneously use four
partitions with different granularity and “don’t care”. This is
because the appropriate number of partitions always depends
on the distribution of patterns in each attribute. Fig. 1 shows
four kinds of homogeneous fuzzy partitions which have 14
fuzzy sets in total. Fig. 2 shows four kinds of inhomogeneous
fuzzy partitions derived from interval partitions generated by
using an entropy-based discretization. We will explain how to
make these partitions later in the next section. “don’t care” is
always fully compatible with any attribute values.

The consequent class Cq and the rule weight CFq of each
rule Rq can be specified in a heuristic manner using
compatible training patterns with its antecedent part [12]-[14].
First, we calculate the confidence of the rule “Aq Class h”
for each class h as follows:

m

p
p

h
p

q

q

p

q

hc

1

 Class

)(

)(

) Class(

x

x

A

A

x
A

, h = 1, 2, ..., M, (2)

where)(pq
xA is the compatibility grade of the rule q,

which is calculated as

)(...)()()(21 21 pnApApAp xxx
qnqqq

 xA . (3)

The consequent class Cq is specified as the class which has
the maximum confidence:

)Class(max)Class(
...,2,1,

hcCc q
Mh

qq

AA . (4)

By using the confidence measure, the rule weight CFq is
calculated as follows:

M

Ch
h

qqqq

q

hcCcCF
1

) Class() Class(AA . (5)

A classifier has a number of if-then rules explained above.
Let S be a classifier (i.e., a set of if-then rules). When an input
pattern xp is to be classified by S, a single winner rule Rwin is
chosen from S using the product of the compatibility grade in
(3) and the rule weight of each if-then rule in S as follows:

}|)(max{)(winwin
SRCF qpqp xxA , (6)

qppq CF
q

)()(xx A . (7)

The input pattern xp is assigned the consequent class Cwin
of the winner rule Rwin. When multiple rules with different
consequent classes have the same maximum value in (6), the
classification of the input pattern xp is rejected. When no rules
cover xp, the classification of xp is also rejected [15].

III. ENTROPY-BASED DISCRETIZATION

In this section, we explain how to generate inhomogeneous
interval partitions and fuzzy ones.

A. Entropy-based Discretization

A number of discretization methods have been proposed in
the literature [2], [4], [16]. We use the class entropy measure
defined in the following equation to divide a continuous
attribute into K intervals [2]:

K

j

M

h j

jh

j

jhj
K D

D

D

D

D

D
AAH

1 1
21 ||

||
log

||

||

||

||
),...,(, (8)

where Aj is an interval, Dj is the set of input training patterns
in the interval Aj, and Djh is the set of the training patterns of
Class h in Dj. The number of training patterns in each subset
is denoted by | · | such as |Dj| in (8). By minimizing this class
entropy measure, each interval tends to include patterns with
a single class. As we explained in the previous section, we
generate four kinds of interval partitions corresponding to K
= 2, 3, 4, and 5.

B. Inhomogeneous Fuzzy Partitions Derived from Interval
Partitions

In this subsection, we explain a general framework for
defining fuzzy partitions from interval partitions. The idea of
fuzzy discretization derived from interval discretization was
first proposed in [9]. According to the following constraint
conditions, we can generate inhomogeneous fuzzy partitions:

(a) Membership functions are linear (i.e., triangular or
trapezoidal).

(b) The sum of the membership values of neighboring fuzzy
sets is 1.

(c) Crossing points of neighboring membership functions
are identical to threshold values for interval.

1513

(d) The membership value of the intermediate fuzzy sets
(e.g., MS: medium small, M: medium, and ML: medium
large in Fig. 3) is 1 at the midpoint of the corresponding
intervals.

(e) The membership value of the smallest fuzzy set (e.g., S:
small in Fig. 3) is 1 at the smallest input value (i.e., 0 in
Fig. 3) in the domain interval.

(f) The membership value of the largest fuzzy set (e.g., L:
large in Fig. 3) is 1 at the largest input value in the
domain interval (i.e., 1 in Fig. 3).

M
em

be
rs

hi
p

10

Attribute value

M
em

be
rs

hi
p

10

MS M ML LS

MS M ML LS

Fig. 3. Interval discretization with F = 0 (the upper part) and fuzzy
discretization with F = 1 (the lower part) when K = 5.

Fig. 3 shows an example of fuzzy discretization derived

from crisply discretized interval. It should be noted that we
cannot uniquely specify the fuzzy discretization by the above
six constraint conditions. To define fuzzy discretization
uniquely, we have to consider the fuzzification grade F of
fuzzy discretization, which means the degree of overlap of the
neighboring partitions. When we specify F as 1, fuzzy
discretization is completely fuzzified under the above six
constraint conditions as shown in Fig. 3. In contrast, F 0
corresponds to interval partition which has no overlaps
between adjacent fuzzy sets. From complete fuzzy
discretization with F 1 and interval partition with F 0, we
can generate optionally fuzzified discretization with arbitrary
grades of fuzzification (i.e., fuzzification grade).

F
jA

F
jd 1

F
jA 1

F
ja F

jc 1
F
j

F
j ac 1 F

j
F
j bd 1F

jb
Fig. 4. Adjacent trapezoidal fuzzy sets.

Let us denote optionally fuzzified trapezoidal fuzzy set

with fuzzification grade F as Aj
F = (aj

F, bj
F, cj

F, dj
F) where 0 ≤

F ≤ 1 (see Fig. 4). Here, four parameters (i.e., aj
F, bj

F, cj
F, dj

F)
mean four vertices of the trapezoid. If the fuzzy set
corresponds to triangle, bj

F and cj
F are the same value. Note

that Aj
0 and Aj

1 correspond to crisp discretization and
completely fuzzified discretization, respectively.

Using the interpolation between Aj
0 and Aj

1, we can
uniquely specify the optionally fuzzified discretization Aj

F =
(aj

F, bj
F, cj

F, dj
F) as the following equations:

,)(010 Faaaa jjj
F
j (9)

,)(010 Fbbbb jjj
F
j (10)

,)(010 Fcccc jjj
F
j (11)

.)(010 Fdddd jjj
F
j (12)

IV. FUZZY GBML ALGORITHMS

A. GBML Algorithms

In this subsection, we explain GBML algorithms. GBML
algorithms can be divided into two categories depending on
their coding mechanisms [17]. One is the Pittsburgh approach
where a rule set (i.e., a classifier) is coded as a string and
handled as an individual. A population consists of a number
of rule sets. Pittsburgh-style GBML algorithms search for the
best rule set with respect to a pre-specified fitness function.
Thus, classifiers are directly optimized. The other category is
the Michigan approach where an individual represents a rule,
while the population is a rule set. Since a number of rules are
optimized, a classifier includes well-designed rules.

As the combination of the above two types of GBML
algorithms, we proposed the hybridization of Michigan and
Pittsburgh-style GBML algorithms [8]. In this study, we use
this hybrid GBML algorithm.

B. Hybrid Fuzzy GBML Algorithm

In this subsection, we explain our hybrid fuzzy GBML
algorithm. Our hybrid fuzzy GBML algorithm [8] has a
Pittsburgh framework where a rule set is handled as an
individual. A Michigan-style algorithm is probabilistically
used as a kind of local search after genetic operations in the
Pittsburgh-style framework.

The procedure of our hybrid fuzzy GBML algorithm is
summarized as following steps [8]:

[Hybrid Fuzzy GBML Algorithm (Pittsburgh Part)]

Step 1: Generate an initial population of Npop rule sets.
Step 2: Evaluate each rule set in the initial population.
Step 3: Generate Npop rule sets by selection, crossover and

mutation.
Step 4: Apply the Michigan part to each new rule set with a

pre-specified probability.
Step 5: Evaluate the newly generated Npop rule sets.
Step 6: Construct the next population by choosing the best

Npop rule sets from the Npop rule sets in the current
population and the newly generated Npop rule sets.

Step 7: If a pre-specified termination condition is satisfied,
terminate the execution of this algorithm. Otherwise,
return to Step 3. In our computational experiments,
the total number of generations is used as the
termination condition.

1514

[Michigan Part]

Step A: Let a new rule set in Step 4 of the Pittsburgh part be
S, which is used as the current population in the
Michigan part.

Step B: Classify training patterns by S. Then calculate the
number of correctly classified training patterns by
each fuzzy rule, which is used as the fitness value of
each fuzzy rule.

Step C: Generate k fuzzy rules where k is an integer
satisfying the inequality 5(k-1) < |S| ≤ 5k.

Step D: Remove the worst k fuzzy rules from S. Then add the
newly generated k fuzzy rules to S.

Step E: Return the updated S to the Pittsburgh part where S is
used as a newly generated rule set.

C. Parallel Distributed Implementation of Hybrid Fuzzy
GBML algorithm

In this study, for large data sets, we use parallel distributed
implementation of our hybrid fuzzy GBML algorithm [18].
There are two main characteristics of our parallel distributed
model. One is that not only a population but also training data
are divided into a number of subpopulations and training data
subsets, respectively. A pair of a subpopulation and a training
data subset is assigned to a single CPU core. Since a number
of GBML algorithms are performed in parallel at a
workstation with multiple CPU cores, we can drastically
reduce the computation time. The other characteristic is the
use of training data rotation and individual migration. These
two operations avoid the overfitting to the training data and
improve the search performance. See [18] in detail.

V. COMPUTATIONAL EXPERIMENTS

The effects of inhomogeneous interval and fuzzy partitions
are examined through computational experiments using
various benchmark data sets in this section.

A. Experimental Settings

The operators and parameters used in our hybrid fuzzy
GBML algorithm and its parallel distributed model are listed
as follows:

Population size: 210,
Crossover: uniform crossover,
Crossover probability: 0.9 (Pittsburgh), 0.9 (Michigan),
Mutation probability: 1/ (nx|S|) (Pittsburgh),
 1/ n (Michigan),

n: Number of dimensions,
Michigan operation probability: 0.5,
Initial number of rules: 30,
Max number of rules: 60,
Termination condition: 10,000 generation (non-parallel),
 50,000 generation (parallel),

Number of subpopulation: 7,
Number of training data subset: 7,
Rotation interval: 100 generations,
Migration interval: 100 generations.

As we mentioned before, we used inhomogeneous fuzzy

partitions derived from interval ones as an antecedent sets in
this study. For the setting of fuzzification grade F, we
examined six specifications of F, that is, F = 0.0, 0.2, 0.4, 0.6,
0.8, and 1.0 to examine the effectiveness of the fuzziness.
Here, F = 0.0 means interval partitions. On the other hand, F
= 1.0 means fully-fuzzified partitions. We examined each
fuzzification grade for twelve datasets listed in Table I. The
data sets used in this paper are available from the KEEL data
set repository [19]. We used our hybrid fuzzy GBML
algorithm for small data sets from Iris data to Vehicle data.
We also used our parallel distributed model for other data sets
(i.e., Segment, Phoneme, and Satimage).

TABLE I

TWELVE DATA SETS USED IN THIS PAPER

Data Sets Patterns Attributes Classes

Iris 150 4 3

Wine 178 13 3

Glass 214 9 7

Newthyroid 215 5 3

Heart 270 13 2

Ecoli 336 7 8

Wdbc 569 30 2

Pima 768 8 2

Vehicle 864 18 4

Segment 2310 19 7

Phoneme 5404 5 2

Satimage 6435 36 7

The ten-fold cross-validation was applied to each data set
three times using different divisions into ten subsets of the
same size. That is, we executed our hybrid fuzzy GBML 30
times for each data set and each fuzzification grade.

B. Experimental Results

In Fig. 5, we show the obtained accuracy for twelve data
sets. In each plot, horizontal lines represent the average
accuracy by homogeneous fuzzy partitions in Fig. 1. A solid
line means the training data accuracy. A dashed line means
the test data accuracy. The open circles represent the accuracy
by inhomogeneous partitions.

We can see that better training data accuracy was obtained
by using inhomogeneous fuzzy and interval partitions than by
using homogeneous fuzzy partitions for almost all data sets.
Especially, for Glass, Wdbc, Pima, and Vehicle data sets, we
can see much improvement by using inhomogeneous
partitions. This is because all inhomogeneous partitions were
appropriately adjusted by using the training data.

With respect to the test data accuracy, we can observe that
the generalization ability was improved by inhomogeneous
partitions for ten out of twelve data sets. We can see that
better results were obtained with larger fuzzification grade
(e.g., F > 0.5). This is because the fuzzification of interval
partitions leads to the alleviation of the overfitting to the
training data.

1515

In Fig. 6, we show the number of rules in the obtained
classifier. In each plot, a horizontal line represents the
number of rules in the classifier obtained by homogeneous
fuzzy partitions. The open circles represent the number of
rules in the classifier obtained by inhomogeneous partitions.

From Fig. 6, we can observe that the number of rules with
inhomogeneous partitions was larger than that of rules with
homogeneous ones. This may be because inhomogeneous
partitions tend to cover well-fitted smaller regions than
homogeneous fuzzy partitions. From the comparison between
the small fuzzification grade and the large one, we can say the
same thing that we need a large number of interval rules to
generate an accurate classifier.

From the comparison between the non-parallel model (i.e.,
(a)-(i) in Fig. 5) and the parallel distributed one (i.e., (j)-(l) in
Fig. 5), a different tendency was observed. We need further
investigation whether this difference is caused by the size of
data sets or the different structure of the algorithms.

VI. CONCLUSIONS

In this paper, we examined the effects of inhomogeneous
fuzzy partitions derived from interval partitions in our hybrid

fuzzy GBML algorithm through computation experiments.
We also examined the effect of different fuzzification grades
on the obtained classifiers. The experimental results showed
the accuracy improvement by using inhomogeneous fuzzy
partitions but the increase in the number of rules. Of course,
the appropriate fuzzification grade strongly depends on the
data sets. Thus we need to carefully specify the grade. One
idea is to use repeated double cross validation for parameter
choice [20]. This is one of future research topics.

REFERENCES
[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning, Addison-Wesley, Reading, MA, 1989.
[2] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan

Kaufmann Publishers, San Mateo, CA, 1993.
[3] U. M. Fayyad and K. B. Irani, “Multi-interval discretization of

continuous-valued attributes for classification learning,” Proc. of 13th
International Joint Conference on Artificial Intelligence, pp.
1022-1027, 1993.

[4] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and
unsupervised discretization of continuous features,” Proc. of 12th
International Conference on Machine Learning, pp. 194-202, 1995.

[5] O. Cordon, F. Herrera, F. Gomide, F. Hoffman, “Ten years of genetic
fuzzy systems: current framework and new trends,” Fuzzy Sets and

94

98

100

96

92

A
cc

ur
ac

y
(%

)

0.4 10
F

0.6 0.80.2

95

Homogeneous
Training Test

Inhomogeneous
Training Test

A

cc
ur

ac
y

(%
)

0.4 10
F

0.6 0.80.2

94

98

100

96

92

95

90

Homogeneous
Training Test

Inhomogeneous
Training Test

0.4 10

F

70

90

100

80

60

A
cc

ur
ac

y
(%

)

0.6 0.80.2

95

Homogeneous
Training Test

Inhomogeneous
Training Test

A
cc

ur
ac

y
(%

)

0.4 10
F

0.6 0.80.2

97

99

100

98

94

95

95

96

93

Homogeneous
Training Test

Inhomogeneous
Training Test

 (a) Iris data. (b) Wine data. (c) Glass data. (d) Newthyroid data.

0.4 10
F

0.6 0.80.2

A
cc

ur
ac

y
(%

)

80

90

70

100
95

Homogeneous
Training Test

Inhomogeneous
Training Test

A
cc

ur
ac

y
(%

)

0.4 10
F

0.6 0.80.2

85

95

90

80

95

75

100

Homogeneous
Training Test

Inhomogeneous
Training Test

A
cc

ur
ac

y
(%

)
0.4 10

F
0.6 0.80.2

94

98

100

96

92

95

Homogeneous
Training Test

Inhomogeneous
Training Test

75

90

80

70

A
cc

ur
ac

y
(%

)

95

85

0.4 10
F

0.6 0.80.2

Homogeneous
Training Test

Inhomogeneous
Training Test

(e) Heart data. (f) Ecoli data. (g) Wdbc data. (h) Pima data.

A
cc

ur
ac

y
(%

)

0.4 10
F

0.6 0.80.2

72

84

76

68

92

80

88

Homogeneous
Training Test

Inhomogeneous
Training Test

A
cc

ur
ac

y
(%

)

0.4 10
F

0.6 0.80.2

93

96

94

92

97

95

Homogeneous
Training Test

Inhomogeneous
Training Test

81

84

82

80

A
cc

ur
ac

y
(%

)

86

83

0.4 10
F

0.6 0.80.2

85

A
cc

ur
ac

y
(%

)

0.4 10
F

0.6 0.80.2

84

87

85

83

88

86

 (i) Vehicle data. (j) Segment data. (k) Phoneme data. (l) Satimage data.

Fig. 5. The training and test data accuracy for each data set.

1516

Systems, vol.14, no. 141, pp. 5-31, 2004.
[6] F. Herrera, “Genetic fuzzy systems: Status, critical considerations and

future directions,” International Journal of Computational Intelligence
Research, vol. 1, pp. 59-67, 2005.

[7] H. Ishibuchi, T. Nakashima, and T. Murata, “Three-objective
genetics-based machine learning for linguistic rule extraction,”
Information Sciences, vol. 136, no. 1-4, pp. 109-133, August 2001.

[8] H. Ishibuchi, T. Yamamoto, and T. Nakashima, “Hybridization of fuzzy
GBML approaches for pattern classification problems,” IEEE Trans. on
Systems, Man, and Cybernetics - Part B: Cybernetics, vol. 35, no. 2, pp.
359-365, April 2005.

[9] H. Ishibuchi and T. Yamamoto, “Performance evaluation of fuzzy
partitions with different fuzzification grades,” Proc. of 2002 IEEE
International Conference on Fuzzy Systems, pp. 1198-1203, 2002.

[10] H. Ishibuchi, Y. Nojima, “Comparison between Fuzzy and Interval
Partitions in Evolutionary Multiobjective Design of Rule-Based
Classification Systems,” Proc. of 2005 IEEE International Conference
on Fuzzy Systems, pp.430-435, Reno, USA, May 22-25, 2005.

[11] H. Ishibuchi, K. Nozaki, and H. Tanaka, “Distributed representation of
fuzzy rules and its application to pattern classification,” Fuzzy Sets and
Systems, vol. 52, no. 1, pp. 21-32, November 1992.

[12] H. Ishibuchi, T. Nakashima, and M. Nii, Classification and Modeling
with Linguistic Information Granules: Advanced Approaches to
Linguistic Data Mining, Springer, Berlin.

[13] H. Ishibuchi and T. Yamamoto, “Rule weight specification in fuzzy
rule-based classification systems,” IEEE Trans. on Fuzzy Systems, vol.

13, no. 4, pp. 428-435, August 2005.
[14] H. Ishibuchi and T. Nakashima, “Effect of rule weights in fuzzy

rule-based classification systems,” IEEE Trans. on Fuzzy Systems, vol.
13, no. 4, pp. 506-515, 2001.

[15] H. Ishibuchi, T. Nakashima, and T. Morisawa, “Voting in fuzzy
rule-based systems for pattern classification problems,” Fuzzy Sets and
Systems, vol. 103, no. 2, pp. 223-238, April 1999.

[16] J. R. Quinlan, “Improved use of continuous attributes in C4.5,” Journal
of Artificial Intelligence Research, vol. 4, pp. 77-90, 1996.

[17] A. Fernández, S. García, J. Luengo, E. Bernadó-Mansilla, and F.
Herrera, “Genetics-based machine learning for rule induction: State of
the art, taxonomy, and comparative study,” IEEE Trans. on
Evolutionary Computation, vol. 14, no. 6, pp. 913-941, December
2010.

[18] H. Ishibuchi, S. Mihara, and Y. Nojima, “Parallel distributed hybrid
fuzzy GBML models with rule set migration and training data rotation,”
IEEE Trans. on Fuzzy Systems, vol. 21, no.2, April 2013.

[19] J. Alcalá-Fdez, L. Sánchez, S. García, M. J. del Jesus, S. Ventura, J. M.
Garrell, J. Otero, C. Romero, J. Bacardit, V. M. Rivas, J. C. Fernández,
and F. Herrera, “KEEL: A software tool to assess evolutionary
algorithms for data mining problems,” Soft Computing, vol. 13, no. 3,
pp. 307-318, February 2009.

[20] H. Ishibuchi and Y. Nojima, “Repeated double cross-validation for
choosing a single solution in evolutionary multi-objective fuzzy
classifier design,” Knowledge-Based Systems, vol. 54, pp. 22-31,
December 2013.

0.4 10
F

0.6 0.80.2

4

10

8

2

6

N
um

be
r

of
 R

ul
es

0.4 10
F

0.6 0.80.2

4

10

8

2

6

N
um

be
r

of
 R

ul
es

Homogeneous
Number of Rules

Inhomogeneous
Number of Rules

0.4 10
F

0.6 0.80.2

N
um

be
r

of
 R

ul
es

28

30

32

34

26

Homogeneous
Number of Rules

Inhomogeneous
Number of Rules

0.4 10
F

0.6 0.80.2

4

10

8

2

6

N
um

be
r

of
 R

ul
es

Homogeneous
Number of Rules

Inhomogeneous
Number of Rules

 (a) Iris data. (b) Wine data. (c) Glass data. (d) Newthyroid data.

0.4 10
F

0.6 0.80.2

25

N
um

be
r

of
 R

ul
es

24

23

22

26

0.4 10
F

0.6 0.80.2

N
um

be
r

of
 R

ul
es

31

30

29

28

27

26

25

0.4 10
F

0.6 0.80.2

13

N
um

be
r

of
 R

ul
es

9

12

11

15

14

10

Homogeneous
Number of Rules

Inhomogeneous
Number of Rules

0.4 10
F

0.6 0.80.2

N
um

be
r

of
 R

ul
es 40

30

20

50

Homogeneous
Number of Rules

Inhomogeneous
Number of Rules

(e) Heart data. (f) Ecoli data. (g) Wdbc data. (h) Pima data.

0.4 10
F

0.6 0.80.2

N
um

be
r

of
 R

ul
es

40

45

50

55

35

0.4 10
F

0.6 0.80.2

16N
um

be
r

of
 R

ul
es

20

24

28

32

12

Homogeneous
Number of Rules

Inhomogeneous
Number of Rules

0.4 10
F

0.6 0.80.2

16N
um

be
r

of
 R

ul
es

20

24

28

32

12

0.4 10
F

0.6 0.80.2

N
um

be
r

of
 R

ul
es

10

20

30

40

50

0

 (i) Vehicle data. (j) Segment data. (k) Phoneme data. (l) Satimage data.

Fig. 6. Number of rules in the obtained classifier for each data set.

1517

