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Abstract- Discretization of continuous attributes is a key issue 
in classifier design from numerical data. In the machine 
learning community, continuous attributes are discretized into 
intervals. An entropy measure is often used to determine the 
cutting points for interval discretization. In the fuzzy system 
community, continuous attributes are usually discretized into 
overlapping fuzzy sets. Learning and optimization techniques 
are used to adjust the membership function of each fuzzy set. 
One interesting research issue is a comparison between interval 
partitions and fuzzy partitions. We address this issue by using 
an entropy-based interval discretization method in hybrid fuzzy 
genetics-based machine learning (GBML). Our hybrid fuzzy 
GBML algorithm is applied to a number of data sets where 
interval discretization is fuzzified with different fuzzification 
grades from zero (i.e., interval partitions) to one (i.e., completely 
fuzzified partitions). Experimental results from various 
fuzzification grades are compared with each other.   

I. INTRODUCTION 

PPLICATIONS of genetic algorithms to machine learning 
are often referred to as genetics-based machine learning 

(GBML [1]). When classification problems with continuous 
attributes are handled by GBML, each attribute is divided into 
intervals. This process is called interval discretization, which 
is also used in many models of machine learning such as 
decision trees [2]-[4]. Although interval discretization looks a 
nice idea to handle continuous attributes in classifier design, 
it is not always appropriate for any data sets. For example, 
some attributes are noisy or vague. In such a case, multiple 
pattern distributions with different classes are overlapping 
one other. To handle this situation, each attribute is often 
divided into overlapping fuzzy sets. Those fuzzy sets are used 
in the antecedent (i.e., condition) part of a fuzzy if-then rule 
to specify a fuzzy region in the pattern space.  

The use of GBML for fuzzy rule-based classifier design 
has been actively studied under the name of evolutionary 
fuzzy systems or genetic fuzzy systems [5], [6]. Fuzzy rules 
are often categorized into two types: linguistic fuzzy rules 
and approximate fuzzy rules. Linguistic fuzzy rules are based 
on the use of pre-specified linguistic terms such as small, 
medium and large as antecedent fuzzy sets. Thus each rule is 
highly interpretable. Approximate fuzzy rules do not use 
those pre-specified linguistic terms, but these rules use 
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adjustable fuzzy sets to pattern distributions.  
In our hybrid fuzzy GBML algorithm [7], [8], we always 

used homogeneous fuzzy partitions in Fig. 1 to design fuzzy 
rule-based classifiers with high interpretability. In this paper, 
we examine the effect of inhomogeneous fuzzy partitions in 
our hybrid fuzzy GBML algorithm. An inhomogeneous fuzzy 
partition is derived from each interval partition obtained by 
an entropy-based interval discretization scheme. Examples of 
inhomogeneous fuzzy partitions are shown in Fig. 2 where an 
interval discretization of each attribute is shown by vertical 
dashed lines. In [9], [10], the effect of inhomogeneous fuzzy 
partitions derived from interval partitions was examined in 
genetic fuzzy rule selection so far. It was shown that the 
fuzzification of intervals improved the generalization ability 
of interval rules while it slightly deteriorated the accuracy on 
training patterns [10].  
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Fig. 1. Homogeneous fuzzy partitions with different granularity. 
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Fig. 2. Inhomogeneous fuzzy partitions with different granularity which are 
derived from the interval partitions shown by vertical dashed lines. 

 
In this paper, we use inhomogeneous fuzzy partitions in 

our hybrid fuzzy GBML algorithm to examine the effect of 
fuzzification of intervals on the performance of rule-based 
classifiers. We also compare inhomogeneous fuzzy partitions 
with homogeneous ones. 
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This paper is organized as follows. First, we explain fuzzy 
rule-based classifiers in Section II. Next we explain how to 
discretize continuous attributes into intervals using an 
entropy measure in Section III where we also explain the 
fuzzification of discretized intervals. In Section IV, we 
explain GBML in general and our hybrid fuzzy GBML 
algorithm in particular. Then we apply our algorithm to a 
number of data sets using interval and fuzzy partitions in 
Section V. Finally, we conclude this paper in Section VI. 

II. FUZZY RULE-BASED CLASSIFIERS 

In this section, we explain a fuzzy rule-based classifier. Let 
us assume that we design a classifier for an M-class data set 
with m training patterns xp = (xp1, …, xpn), p = 1, 2, …, m. 
Each pattern has n attribute values and a class label. For 
simplicity, each attribute value xpi is normalized into a real 
number in [0, 1] for i = 1, 2, ..., n and p = 1, 2, …, m. Thus, all 
the training patterns are located in an n-dimensional pattern 
space [0, 1]n. For this classification problem, we use if-then 
rules of the following type [11]: 

Rule Rq: If x1 is Aq1 and … and xn is Aqn  
then Class Cq with CFq,  (1) 

where Rq is a rule label for the qth rule, Aqi is an antecedent 
fuzzy set or interval set, Cq is a class label, and CFq is a rule 
weight. As an antecedent set, we simultaneously use four 
partitions with different granularity and “don’t care”. This is 
because the appropriate number of partitions always depends 
on the distribution of patterns in each attribute. Fig. 1 shows 
four kinds of homogeneous fuzzy partitions which have 14 
fuzzy sets in total. Fig. 2 shows four kinds of inhomogeneous 
fuzzy partitions derived from interval partitions generated by 
using an entropy-based discretization. We will explain how to 
make these partitions later in the next section. “don’t care” is 
always fully compatible with any attribute values.  

The consequent class Cq and the rule weight CFq of each 
rule Rq can be specified in a heuristic manner using 
compatible training patterns with its antecedent part [12]-[14]. 
First, we calculate the confidence of the rule “Aq   Class h” 
for each class h as follows: 
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where )( pq
xA  is the compatibility grade of the rule q, 

which is calculated as 
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The consequent class Cq is specified as the class which has 
the maximum confidence: 
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By using the confidence measure, the rule weight CFq is 
calculated as follows: 
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A classifier has a number of if-then rules explained above. 
Let S be a classifier (i.e., a set of if-then rules). When an input 
pattern xp is to be classified by S, a single winner rule Rwin is 
chosen from S using the product of the compatibility grade in 
(3) and the rule weight of each if-then rule in S as follows: 

}|)(max{)( winwin
SRCF qpqp  xxA  ,    (6) 

qppq CF
q

 )()( xx A .            (7) 

The input pattern xp is assigned the consequent class Cwin 
of the winner rule Rwin. When multiple rules with different 
consequent classes have the same maximum value in (6), the 
classification of the input pattern xp is rejected. When no rules 
cover xp, the classification of xp is also rejected [15]. 

III. ENTROPY-BASED DISCRETIZATION 

In this section, we explain how to generate inhomogeneous 
interval partitions and fuzzy ones.  

A. Entropy-based Discretization 

A number of discretization methods have been proposed in 
the literature [2], [4], [16]. We use the class entropy measure 
defined in the following equation to divide a continuous 
attribute into K intervals [2]:  
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where Aj is an interval, Dj is the set of input training patterns 
in the interval Aj, and Djh is the set of the training patterns of 
Class h in Dj. The number of training patterns in each subset 
is denoted by | · | such as |Dj| in (8). By minimizing this class 
entropy measure, each interval tends to include patterns with 
a single class. As we explained in the previous section, we 
generate four kinds of interval partitions corresponding to K 
= 2, 3, 4, and 5.  

B. Inhomogeneous Fuzzy Partitions Derived from Interval 
Partitions 

In this subsection, we explain a general framework for 
defining fuzzy partitions from interval partitions. The idea of 
fuzzy discretization derived from interval discretization was 
first proposed in [9]. According to the following constraint 
conditions, we can generate inhomogeneous fuzzy partitions: 

(a) Membership functions are linear (i.e., triangular or 
trapezoidal). 

(b) The sum of the membership values of neighboring fuzzy 
sets is 1. 

(c) Crossing points of neighboring membership functions 
are identical to threshold values for interval.  
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(d) The membership value of the intermediate fuzzy sets 
(e.g., MS: medium small, M: medium, and ML: medium 
large in Fig. 3) is 1 at the midpoint of the corresponding 
intervals.  

(e) The membership value of the smallest fuzzy set (e.g., S: 
small in Fig. 3) is 1 at the smallest input value (i.e., 0 in 
Fig. 3) in the domain interval.  

(f) The membership value of the largest fuzzy set (e.g., L: 
large in Fig. 3) is 1 at the largest input value in the 
domain interval (i.e., 1 in Fig. 3). 
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Fig. 3. Interval discretization with F = 0 (the upper part) and fuzzy 
discretization with F = 1 (the lower part) when K = 5. 

 
Fig. 3 shows an example of fuzzy discretization derived 

from crisply discretized interval. It should be noted that we 
cannot uniquely specify the fuzzy discretization by the above 
six constraint conditions. To define fuzzy discretization 
uniquely, we have to consider the fuzzification grade F of 
fuzzy discretization, which means the degree of overlap of the 
neighboring partitions. When we specify F as 1, fuzzy 
discretization is completely fuzzified under the above six 
constraint conditions as shown in Fig. 3. In contrast, F 0 
corresponds to interval partition which has no overlaps 
between adjacent fuzzy sets. From complete fuzzy 
discretization with F 1 and interval partition with F 0, we 
can generate optionally fuzzified discretization with arbitrary 
grades of fuzzification (i.e., fuzzification grade). 
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Let us denote optionally fuzzified trapezoidal fuzzy set 

with fuzzification grade F as Aj
F = (aj

F, bj
F, cj

F, dj
F) where 0 ≤ 

F ≤ 1 (see Fig. 4). Here, four parameters (i.e., aj
F, bj

F, cj
F, dj

F) 
mean four vertices of the trapezoid. If the fuzzy set 
corresponds to triangle, bj

F and cj
F are the same value. Note 

that Aj
0 and Aj

1 correspond to crisp discretization and 
completely fuzzified discretization, respectively. 

Using the interpolation between Aj
0 and Aj

1, we can 
uniquely specify the optionally fuzzified discretization Aj

F = 
(aj

F, bj
F, cj

F, dj
F) as the following equations: 
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IV. FUZZY GBML ALGORITHMS 

A. GBML Algorithms 

In this subsection, we explain GBML algorithms. GBML 
algorithms can be divided into two categories depending on 
their coding mechanisms [17]. One is the Pittsburgh approach 
where a rule set (i.e., a classifier) is coded as a string and 
handled as an individual. A population consists of a number 
of rule sets. Pittsburgh-style GBML algorithms search for the 
best rule set with respect to a pre-specified fitness function. 
Thus, classifiers are directly optimized. The other category is 
the Michigan approach where an individual represents a rule, 
while the population is a rule set. Since a number of rules are 
optimized, a classifier includes well-designed rules. 

As the combination of the above two types of GBML 
algorithms, we proposed the hybridization of Michigan and 
Pittsburgh-style GBML algorithms [8]. In this study, we use 
this hybrid GBML algorithm. 

B. Hybrid Fuzzy GBML Algorithm 

In this subsection, we explain our hybrid fuzzy GBML 
algorithm. Our hybrid fuzzy GBML algorithm [8] has a 
Pittsburgh framework where a rule set is handled as an 
individual. A Michigan-style algorithm is probabilistically 
used as a kind of local search after genetic operations in the 
Pittsburgh-style framework. 

The procedure of our hybrid fuzzy GBML algorithm is 
summarized as following steps [8]: 

 
[Hybrid Fuzzy GBML Algorithm (Pittsburgh Part)] 

Step 1:  Generate an initial population of Npop rule sets. 
Step 2:  Evaluate each rule set in the initial population. 
Step 3:  Generate Npop rule sets by selection, crossover and 

mutation. 
Step 4:  Apply the Michigan part to each new rule set with a 

pre-specified probability.  
Step 5:  Evaluate the newly generated Npop rule sets. 
Step 6:  Construct the next population by choosing the best 

Npop rule sets from the Npop rule sets in the current 
population and the newly generated Npop rule sets.  

Step 7:  If a pre-specified termination condition is satisfied, 
terminate the execution of this algorithm. Otherwise, 
return to Step 3. In our computational experiments, 
the total number of generations is used as the 
termination condition. 
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[Michigan Part] 

Step A:  Let a new rule set in Step 4 of the Pittsburgh part be 
S, which is used as the current population in the 
Michigan part. 

Step B:  Classify training patterns by S. Then calculate the 
number of correctly classified training patterns by 
each fuzzy rule, which is used as the fitness value of 
each fuzzy rule. 

Step C:  Generate k fuzzy rules where k is an integer 
satisfying the inequality 5(k-1) < |S| ≤ 5k. 

Step D:  Remove the worst k fuzzy rules from S. Then add the 
newly generated k fuzzy rules to S.  

Step E:  Return the updated S to the Pittsburgh part where S is 
used as a newly generated rule set. 

C. Parallel Distributed Implementation of Hybrid Fuzzy 
GBML algorithm 

In this study, for large data sets, we use parallel distributed 
implementation of our hybrid fuzzy GBML algorithm [18]. 
There are two main characteristics of our parallel distributed 
model. One is that not only a population but also training data 
are divided into a number of subpopulations and training data 
subsets, respectively. A pair of a subpopulation and a training 
data subset is assigned to a single CPU core. Since a number 
of GBML algorithms are performed in parallel at a 
workstation with multiple CPU cores, we can drastically 
reduce the computation time. The other characteristic is the 
use of training data rotation and individual migration. These 
two operations avoid the overfitting to the training data and 
improve the search performance. See [18] in detail. 

V. COMPUTATIONAL EXPERIMENTS 

The effects of inhomogeneous interval and fuzzy partitions 
are examined through computational experiments using 
various benchmark data sets in this section. 

A. Experimental Settings 

The operators and parameters used in our hybrid fuzzy 
GBML algorithm and its parallel distributed model are listed 
as follows: 

Population size: 210, 
Crossover: uniform crossover, 
Crossover probability: 0.9 (Pittsburgh), 0.9 (Michigan), 
Mutation probability: 1/ (nx|S|) (Pittsburgh), 
           1/ n (Michigan), 

n: Number of dimensions,  
Michigan operation probability: 0.5, 
Initial number of rules: 30, 
Max number of rules: 60, 
Termination condition: 10,000 generation (non-parallel), 
 50,000 generation (parallel), 

Number of subpopulation: 7, 
Number of training data subset: 7, 
Rotation interval: 100 generations, 
Migration interval: 100 generations. 

As we mentioned before, we used inhomogeneous fuzzy 

partitions derived from interval ones as an antecedent sets in 
this study. For the setting of fuzzification grade F, we 
examined six specifications of F, that is, F = 0.0, 0.2, 0.4, 0.6, 
0.8, and 1.0 to examine the effectiveness of the fuzziness. 
Here, F = 0.0 means interval partitions. On the other hand, F 
= 1.0 means fully-fuzzified partitions. We examined each 
fuzzification grade for twelve datasets listed in Table I. The 
data sets used in this paper are available from the KEEL data 
set repository [19]. We used our hybrid fuzzy GBML 
algorithm for small data sets from Iris data to Vehicle data. 
We also used our parallel distributed model for other data sets 
(i.e., Segment, Phoneme, and Satimage). 

 
TABLE I 

TWELVE DATA SETS USED IN THIS PAPER 

Data Sets Patterns Attributes Classes 

Iris 150 4 3 

Wine 178 13 3 

Glass 214 9 7 

Newthyroid 215 5 3 

Heart 270 13 2 

Ecoli 336 7 8 

Wdbc 569 30 2 

Pima 768 8 2 

Vehicle 864 18 4 

Segment 2310 19 7 

Phoneme 5404 5 2 

Satimage 6435 36 7 

 

The ten-fold cross-validation was applied to each data set 
three times using different divisions into ten subsets of the 
same size. That is, we executed our hybrid fuzzy GBML 30 
times for each data set and each fuzzification grade.  

B. Experimental Results 

In Fig. 5, we show the obtained accuracy for twelve data 
sets. In each plot, horizontal lines represent the average 
accuracy by homogeneous fuzzy partitions in Fig. 1. A solid 
line means the training data accuracy. A dashed line means 
the test data accuracy. The open circles represent the accuracy 
by inhomogeneous partitions.  

We can see that better training data accuracy was obtained 
by using inhomogeneous fuzzy and interval partitions than by 
using homogeneous fuzzy partitions for almost all data sets. 
Especially, for Glass, Wdbc, Pima, and Vehicle data sets, we 
can see much improvement by using inhomogeneous 
partitions. This is because all inhomogeneous partitions were 
appropriately adjusted by using the training data.  

With respect to the test data accuracy, we can observe that 
the generalization ability was improved by inhomogeneous 
partitions for ten out of twelve data sets. We can see that 
better results were obtained with larger fuzzification grade 
(e.g., F > 0.5). This is because the fuzzification of interval 
partitions leads to the alleviation of the overfitting to the 
training data.  
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In Fig. 6, we show the number of rules in the obtained 
classifier. In each plot, a horizontal line represents the 
number of rules in the classifier obtained by homogeneous 
fuzzy partitions. The open circles represent the number of 
rules in the classifier obtained by inhomogeneous partitions.  

From Fig. 6, we can observe that the number of rules with 
inhomogeneous partitions was larger than that of rules with 
homogeneous ones. This may be because inhomogeneous 
partitions tend to cover well-fitted smaller regions than 
homogeneous fuzzy partitions. From the comparison between 
the small fuzzification grade and the large one, we can say the 
same thing that we need a large number of interval rules to 
generate an accurate classifier.  

From the comparison between the non-parallel model (i.e., 
(a)-(i) in Fig. 5) and the parallel distributed one (i.e., (j)-(l) in 
Fig. 5), a different tendency was observed. We need further 
investigation whether this difference is caused by the size of 
data sets or the different structure of the algorithms.  

VI. CONCLUSIONS 

In this paper, we examined the effects of inhomogeneous 
fuzzy partitions derived from interval partitions in our hybrid 

fuzzy GBML algorithm through computation experiments. 
We also examined the effect of different fuzzification grades 
on the obtained classifiers. The experimental results showed 
the accuracy improvement by using inhomogeneous fuzzy 
partitions but the increase in the number of rules. Of course, 
the appropriate fuzzification grade strongly depends on the 
data sets. Thus we need to carefully specify the grade. One 
idea is to use repeated double cross validation for parameter 
choice [20]. This is one of future research topics.  
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 (a) Iris data. (b) Wine data.  (c) Glass data.   (d) Newthyroid data. 
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(e) Heart data.   (f) Ecoli data.  (g) Wdbc data.  (h) Pima data. 
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 (i) Vehicle data. (j) Segment data.  (k) Phoneme data.  (l) Satimage data. 

Fig. 5. The training and test data accuracy for each data set. 
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 (a) Iris data. (b) Wine data.  (c) Glass data.   (d) Newthyroid data. 
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(e) Heart data.   (f) Ecoli data.  (g) Wdbc data.  (h) Pima data. 
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 (i) Vehicle data. (j) Segment data.  (k) Phoneme data.  (l) Satimage data. 

Fig. 6. Number of rules in the obtained classifier for each data set. 
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