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Abstract—Classification is one of the problems in pattern 

recognition. Most of the time this problem will deal with data 
sets that are in numeric form and represented by vectors of 
numbers. Since there might be uncertainties embedded in a data 
set, it is more natural to represent the data set as fuzzy vectors. 
Hence, in this paper, we develop a fuzzy perceptron with pocket 
algorithm for fuzzy vectors. This algorithm is based on the 
extension principle and the decomposition theorem. We 
implement this algorithm on both synthetic and a real-world 
data set, i.e., the postoperative patient data. We also compare 
the result from the fuzzy perceptron with pocket algorithm with 
that from the regular perceptron with pocket algorithm. The 
comparison is done on the fuzzy perceptron with and without 
pocket as well. 

Keywords—Fuzzy Pocket; Fuzzy Perceptron; Postoperative 
Patient Data set 

I. INTRODUCTION 
 Normally, each sample in classification problem can be in 
the form of binary values or real numbers. The vector of 
numbers corresponding to an appropriate linear space is a 
representation of this data. Most of the classifiers are 
developed based on numeric mathematical model. However, 
there are usually uncertainties in data resulting from several 
reasons, e.g., imprecision measurement in the data collection, 
natural language, and etc. This uncertainty can be best 
modeled by a fuzzy set. A vector of fuzzy subsets in the 
Euclidean space is called a fuzzy vector or a linguistic vector. 
 There have been several studies on extending the numeric 
neural networks to work with fuzzy inputs. However, some of 
them did not show any calculation or perform any experiment 
[1, 2]. Some other algorithms [3–9] were to calculate numeric 
weights or triangular weights, but not general fuzzy weights 
from fuzzy inputs. There were some other works on fuzzy 
rule-based systems with fuzzy inputs [10−13].  However, our 
interest in this paper is on the extension of regular algorithm 
using the extension principle theorem. 
 In our previous works [14−16], we described the 
generalized Choquet fuzzy integral (GCFI) and applied it to 

pattern recognition and information fusion. We introduced a 
linguistic fuzzy C-means (LFCM) [17] that worked with 
fuzzy inputs without any defuzzification methods. It is our 
belief that developing algorithms that deal with linguistic 
vectors without using defuzzification methods produces 
meaningful results. In [18, 19], we introduced a fuzzy 
perceptron that is a fuzzy version of the regular perceptron. 
However, we only performed experiments on synthetic data 
sets. The result showed that it was worth doing further 
investigation on real-world data sets. However, the nature of 
real-world data set is not usually linear separable. Hence, we 
propose a fuzzy perceptron with pocket algorithm in this 
work. We test the algorithm with a real-world data set, i.e., 
the postoperative patient data. 

II. FUZZY PERCEPTRON WITH POCKET ALGORITHM 

A. Background 
 A fuzzy number A is a normal convex fuzzy set defined on 
the real line, R [20]. The support of A (ΓA = [a1, a2]) is 
bounded in R. If 0 < a1 ≤ a2 holds for ΓA then A is called 
positive [21]. Similarly, A is called negative if a1 ≤ a2 < 0 and 
zero if a1 ≤ 0 < a2 [21]. Or A is called non-negative if μA(x) = 
0 for all x < 0, [22]. Suppose that A and B are two fuzzy 
numbers. Let the symbol ⊗ denote any of the algebraic 
operations +, −, × or ÷. According to the extension principle 
[23], the algebraic operation will map fuzzy sets in the fuzzy 
power set of R (ℑ(R)) to a fuzzy subset in ℑ(R) producing 
another fuzzy number Z. The result’s membership function is 
given by:  
 ( ) ( ) ( )( )21 ,minsup

21

xxy
yxx

BAZ μμμ
=⊗

= , (1) 

where x1 and x2 satisfy the mapping constraint. However, the 
resultant fuzzy set is often irregular and inaccurate compared 
with the exact result if the continuous support is discretized 
into finite number of points and approximate the fuzzy set on 
the discrete domain [24–26]. Hence, the operation is perform 
based on interval arithmetic [21, 24−26] and the 
decomposition theorem [20]. For a fuzzy set (A ⊗ B), its 
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α-cut ([A⊗B]α) equals [A]α ⊗ [B]α for all α∈(0, 1] [20]. 
Then, by the decomposition theorem, 
 A ⊗ B = [ ]

[ ]
∪

1,0∈

⊗
α

αBA . (2) 

Since, for any of these operations, [A⊗B]α is a closed 
interval for each α∈(0, 1] and A, B are fuzzy numbers, A⊗B 
is also a fuzzy number. 

For the collection of non-interactive fuzzy vectors, Mares 
[27] has shown that with 0

G
 (the vector of singleton fuzzy 

number 0), 1
G

 (vector of singleton fuzzy number 1), and 
component-wise addition and scalar multiplication, this 
forms a vector space. Also, with appropriate definitions of 
distance, these spaces exhibit the properties of metric spaces 
[22, 28]. 

B. Fuzzy Perceptron with Pocket Algorithm 
 To deal with fuzzy vectors, a fuzzy perceptron is 
developed by extending the perceptron algorithm [29−31]. 
Now, we will briefly describe our fuzzy perceptron [18, 19]. 
Let X = { jX

G
 | 1 ≤ j ≤ N} be a set of non-interactive fuzzy 

vectors in p-dimensional space, jX
G

 = (Xj1,…,Xjp)t ∈ [ℑ(R)]p. 

Suppose there exists a fuzzy weight vector W
G

=(W1,…,Wp+1)t 
such that 

( )1 1 2 2 1 1... 0

if is in class 1

t
j j j p jp p jp

j

+ += + + + + >
G G

G
W X W X W X W X W X

X
 

   (3a) 
( )1 1 2 2 1 1... 0

if is in class 2

t
j j j p jp p jp

j

+ += + + + + ≤
G G

G
W X W X W X W X W X

X
 

   (3b) 
where jX

G
= (Xj1,…,Xjp, 1)t is an augmented feature vector j 

with a singleton fuzzy number 1. From the decomposition 
theorem, the left side of equations (3a) and (3b) is 
transformed to 

[ ] [ ]( )
[ ]

1 1 1
0,1

...α αα α α α
α

+
∈

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
G G

∪t
j j p jp p 1W X W X W X W

   (4) 
The inner product between a fuzzy weight vector and fuzzy 
input vector produces a positive fuzzy number if jX

G
 is in 

class 1, and if jX
G

 is in class 2, j
t XW
GG

 is a negative or zero 
fuzzy number. For the simplicity of the training process, we 
also multiplied each class 2 fuzzy vectors with a numeric 
number −1, i.e., 

  2 classin  arethat allfor1 jjj XXX
GGG

×−=′ . (5) 
 Since the input feature vector is a non-interactive fuzzy 
vector, this multiplication is done in each dimension 
separately. For each dimension k and the decomposition 
theorem,  

[ ]( )
[ ]

2 classin  arethat allfor11
1,0

jjkjk XXX
G

∪
∈

×−=×−
α

α . 

   (6) 
 Hence, for all fuzzy input vectors, 

  for all 1,..., ,t
j j N> =W X 0

G G
 (7) 

i.e., the inner product in equation (7) produces a positive 
fuzzy number.  
 The fuzzy hyperplane (H) is defined by XW

GG t = 0 where all 
class 1 feature vectors lie on one side and all class 2 feature 
vectors lie on the other side of the hyperplane. In order to 
understand this definition better, let us first consider the 
2-dimensional case. If fuzzy hyperplane is a fuzzy number ∈ 
[ℑ(R)]2, then it is a fuzzy line [32], i.e.,  
  H = ∨{α|(x1, x2)∈Ω}, (8) 

where Ω = {(x1, x2) | [W1]αx1 + [W2]αx2 + [W3]α= 0}, 
∀α∈[0,1] and (x1, x2)∈R2. If the fuzzy hyperplane is a fuzzy 
number ∈ [ℑ(R)]p, then 
  H = ∨{α|(x1,…, xp)∈Ω}, (9) 

where Ω = {(x1,…, x2) | [W1]αx1 + [W2]αx2 + … + [Wp]αxp + 
[Wp+1]α= 0}, ∀α∈[0,1] and (x1,…, xp)∈Rp.  The perceptron 
algorithm is then to find a  fuzzy weight vector as follows: 

1. If 0≤XW
GG t  or XW

GG t  is a negative or zero fuzzy 
number then  

 ( ) ( ) ( )nnn XWW
GGG

η+=+1 , (10) 
where η is a positive constant (numeric number) and n is a 
time step. For each dimension k,  
 ( ) ( ) ( )nnn kkk XWW η+=+1 .  (11a) 
From the decomposition theorem, equation (11a) is 
transformed to 
 ( ) ( )nn kk XW η+ = ( )[ ] ( )[ ]( )

[ ]
∪

1,0∈
+

α
αα η nn kk XW .(11b) 

2. Otherwise, W
G

remains the same. 
 We use the similarity [33] of the weight to compute the 
stopping criteria of our fuzzy perceptron algorithm. Let 

OW be the old weight, W
G

be the new weight; OW and 
W
G

∈  [ℑ(R)]p and ε be a small positive number. The 
dissimilarity between the old weight and the new weight is: 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∪

∩
−=

+≤≤ )(
)(

1max
11 jj

jj

pj card
card

Q
WOW
WOW

. (12) 

The algorithm will stop if: 
  Q < ε (13) 

or the weight is not updated for N fuzzy feature vectors. 
 For a data set that is not linearly separable data set, Gallant 
[34] introduced the pocket algorithm that helps the perceptron 
to converge to an optimal solution. Therefore, we utilize the 
pocket algorithm in our fuzzy perceptron as well. However, 
the postoperative patient data set has an unbalanced number 
of samples in each class. To reduce the bias from unbalanced 
numbers, we modify the pocket algorithm as follows: 
 1. The correct classification of either class has to be 
increasing, and 
 2. The total number of correct classification has to be 
increasing. 
The algorithm of fuzzy perceptron with the pocket algorithm 
is as follows: 

819



 
 

 

Initial weight fuzzy vector 

Define a stored weight ( s
G

W ) 

Define history of total correct 
classification (hs) 

Define history of class 1 correct 
classification (hs1) 

Define history of class 2 correct 
classification (hs2) 

Do { 
 Set Update Flag to false. 

 For all vector jX
G

, j = 1,…,N 

  If j
t XW
GG

 is negative or zero fuzzy 

number then 
   Update weight fuzzy vector using 
equations (10), (11a) and (11b) 
   Set Update Flag to true. 
 End For 
 Compute class 1 correct classification 
(Pc1) 
 Compute class 2 correct classification 
(Pc2) 
 Compute total correct classification (Pc) 
 If (Pc1> hs1 or Pc2> hs2) and (Pc> hs) then 
  hs1 = Pc1 
  hs2 = Pc2 
  hs = Pc 

  s =
G G

W W  

}Until weight stabilize using equations (12) 
and (13) or Update Flag is false. 

III. EXPERIMENTAL RESULTS 

A. Synthetic Data Set 
 In this section, we perform experiments on two synthetic 
examples shown in figure 1. For each data set in figure 1, we 
fuzzify each dimension of each data point to be a trapezoid as 
shown in figure 2. We generate the width on the right and left 
of the core (wr, wl) using Gaussian distribution N(μ, σ2). The 
width of the spread (a) is equal to the mean of the distribution 
(μ) that generates wr and wl of the core [17]. The first data set 
is fuzzified into fuzzy vector data set using N(0.1,0.5), while 
the second data set is fuzzified using N(0.01,0.01). 
 

   
                          (a)                                                           (b) 

Fig. 1. (a) First synthetic data set and (b) Second synthetic data set. 

 We apply the regular perceptron with pocket on the peaks 
(the coordinates in figure 1) followed by the fuzzy perceptron 
with pocket on the fuzzy vectors. In all the computer 
simulations, we randomly initialize weight to be a singleton 
fuzzy vector. The learning rate is set to 0.0001 for all 

experiments of both data sets. The stopping criterion for both 
algorithms is set to a maximum iteration count of 1000 or 
ε=10−4. To make a comparison, we implement fuzzy 
perceptron without pocket on both data sets with the same 
setting, as well. 

1

px

wl wra a

1

py

wl wra a
 

Fig. 2. Data with peak (px, py) and (wr, wl) generated from normal 
distribution. 

 In all of the experiments, we randomly initialize weight to 
be a singleton fuzzy vector. For the first data set, the 
initialized weight vector is [0.0765, 0.6857, 0.4191]. Table 1 
shows the confusion matrix of fuzzy peceptron with pocket 
on the first data set. The confusion matrix of the regular 
perceptron with pocket and the fuzzy perceptron without 
pocket are similar to the one shown in table 1. All of the 
algorithms yield 100% correct classification rate. Both fuzzy 
perceptron with and without pocket are converged at iteration 
133. The final weight vector from the fuzzy perceptron with 
pocket is shown in figure 3. Because the input fuzzy vector 
from this data set is ∈ [ℑ(R)]2, the fuzzy hyperplane is a fuzzy 
line. The support of this fuzzy line and the support of the 
fuzzy input vectors are shown in figure 4. The final weight 
vector ([−0.2566,0.5635,0.4072]) from the regular one is 
from iteration 120. 

TABLE I.  CONFUSION MATRIX OF FUZZY PERCEPTRON WITH POCKET 
ON THE FIRST DATA SET 

  Desired Output 
Class 1 Class 2 

Program 
Output 

Class 1 14 0 
Class 2 0 14 

 

   
                                (a)                                                      (b) 

 
(c) 

Fig. 3. The final weight vector from the fuzzy perceptron with pocket on the 
first data set (a) first, (b) second, and (c) third (bias) dimensions 
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Fig. 4. Supports of fuzzy input vectors from 2 classes and fuzzy hyperplane 
for the first data set 

TABLE II.  CONFUSION MATRIX OF FUZZY PERCEPTRON WITH POCKET 
ON THE SECOND DATA SET 

  Desired Output 
Class 1 Class 2 

Program 
Output 

Class 1 12 1 
Class 2 1 12 

TABLE III.  CONFUSION MATRIX OF FUZZY PERCEPTRON WITHOUT 
POCKET ON THE SECOND DATA SET 

  Desired Output 
Class 1 Class 2 

Program 
Output 

Class 1 11 1 
Class 2 2 12 

TABLE IV.  CONFUSION MATRIX OF REGULAR PERCEPTRON WITH 
POCKET ON THE SECOND DATA SET 

  Desired Output 
Class 1 Class 2 

Program 
Output 

Class 1 13 1 
Class 2 0 12 

 
 For the second data set, we initialize weight vector to 
[0.3848, 0.4388, 0.8923]. Tables 2, 3 and 4 show the 
confusion matrix of the fuzzy perceptron with pocket, fuzzy 
perceptron without pocket, and regular perceptron with 
pocket respectively. We can see that fuzzy perceptron without 
pocket perform worse than that with pocket as expected. The 
fuzzy perceptron with pocket yields 92.31% correct 
classification rate while the one without pocket provides 
88.46%. However, the regular perceptron with pocket 
performs better than the fuzzy perceptron with and without 
pocket. The correct classification from the regular one is 
96.15%. The final weight vector from the fuzzy perceptron 
with pocket shown in figure 5 is the weight vector at iteration 
384. Again, the fuzzy hyperplane is a fuzzy line shown in 
figure 6. The fuzzy perceptron without pocket is stopped by 
the maximum iteration. The final weight vector ([−0.0365, 
−0.0429, 0.8594]) from the regular one comes from iteration 
451. 

 

   
                                (a)                                                     (b) 

 
(c) 

Fig. 5. The final weight vector from the fuzzy perceptron with pocket on the 
second data set (a) first, (b) second, and (c) third (bias) dimensions 

 
Fig. 6. Supports of fuzzy input vectors from 2 classes and fuzzy hyperplane 
for the second data set 

B. Postoperative Patient Data Set 
 The postoperative patient data set [35] was collected by 
Sharon Summers of the University of Kansas and Linda 
Woolery of the University of Missouri-Columbia. It was 
made available to public by Jerzy W. Grzymala-Busse of the 
University of Kansas. Based on the hypothermia condition, 
the classification task in this data set is to group patients in a 
postoperative recovery into Intensive Care Unit (I class), 
general hospital floor (A class) or go home (S class). In this 
data set, there are 2, 64, and 24 patients in I, A, and S classes, 
respectively. Since, there are not enough samples for the 
training the fuzzy perceptron with pocket algorithm in the I 
class, we disregard this class from the experiments. 
 There are eight linguistic attributes as follows: 

• Patient’s internal temperature in degrees Celsius 
(L-CORE): 
high (>37), mid (>=36 and <37), low (<36). 

• Patient’s surface temperature in degrees Celsius 
(L-SURF): 
high (>36.5), mid (>=36.5 and <35), low (<35) 

• Patient’s oxygen saturation in percentile (L-O2): 
excellent (>=98), good(>=90 and <98), fair(>=80 
and <90), poor(<80). 

• Patient’s last measurement of blood pressure 
(L-BP): 
high (<130), mid (<=130 and >= 90), low (<90). 
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• Stability of patient’s surface temperature 
(SURF-STBL): 
stable, mod-stable, unstable. 

• Stability of patient’s core temperature 
(CORE-STBL): 
stable, mod-stable, unstable.  

• Stability of patient’s blood pressure (BP-STBL): 
stable, mod-stable, unstable 

• patient’s comfort at discharge (COMFORT): 
integer number between 0 – 20. 
 

 Although there are 8 features, some of patients in this data 
set have a missing last attribute. Hence, we disregard the last 
attribute in our experiments. Therefore, there are 88 patients 
with seven attributes. Figure 7 shows a fuzzy value (based on 
expert’s opinion) of each attribute. 

   
                           (a)                                                          (b) 

   
                           (d)                                                        (e) 

   
                             (e)                                                     (f) 

 
 (g) 

Fig. 7. Fuzzy values of attributes (a) L-CORE, (b) L-SURF, (c) L-O2, (d) 
L-BP, (e) SURF-STBL, (f) CORE-STBL and (g) BP-STBL. 

 We apply the fuzzy perceptron with pocket algorithm on 
this data set followed by a regular perceptron with pocket 
algorithm on the centroid of each fuzzy attribute value and on 
the numeric value (mapped from each fuzzy attribute value, 
shown in table 5). Again to make a comparison, we 
implement the fuzzy perceptron without pocket on this data 
set, as well. 

 In all experiments, we randomly initialize weight to be a 
singleton fuzzy vector. For all experiments, we use the same 
initialized weight vector set ([0.6929, 0.1528, 0.5337, 0.1604, 
0.0336, 0.9554, 0.1163, 0.5232]). The learning rate is set to 
0.0003 for all experiments. The stopping criterion is set to a 
maximum iteration count of 3000 or ε=10−4. 
 
TABLE V.  FUZZY ATTRIBUTE VALUE TO NUMERIC NUMBER MAPPING 

Attribute fuzzy label Numeric number 

L-CORE 
low 1 
mid 2 
high 3 

L-SURF 
low 1 
mid 2 
high 3 

L-O2 

poor 1 
fair 2 

good 3 
excellent 4 

L-BP 
low 1 
mid 2 
high 3 

SURF-STBL 
unstable 1 

mod-stable 2 
stable 3 

CORE-STBL 
unstable 1 

mod-stable 2 
stable 3 

BP-STBL 
unstable 1 

mod-stable 2 
stable 3 

 
 The final weight vector of the fuzzy perceptron with pocket 
algorithm is from iteration 76. While the fuzzy perceptron 
without pocket is converged at iteration 3000. The confusion 
matrix of the fuzzy perceptron with and without pocket 
algorithms are shown in table 6 and 7, respectively. From the 
confusion matrix, we can see that the correct classification 
from the fuzzy perceptron with pocket is 53.41%, while that 
from the one without pocket is 52.27%. The final fuzzy 
weight vector from the fuzzy perceptron with pocket is also 
shown in figure 8. 
 The regular perceptron with pocket algorithm of centroid 
and numeric value are converged at iterations 2474 and 2980, 
respectively. The confusion matrix of the regular perceptron 
with pocket algorithm on centroid and numeric value are 
shown in tables 8 and 9, respectively. From table 8, we can 
see that the correct classification from the centroid is 65.91%, 
whereas that from numeric value is 68.18%. The final weight 
vector from centroid is [0.2613, 0.0398, −0.1541, 0.0271, 
0.0303, 0.9660, 0.0916, 0.5142], whereas that from numeric 
value is [0.2396, −0.1514, −0.0591, −0.1378, −0.1524, 
0.3260, −0.0763, −0.0201] 
 From all the experiments, we can see that the correct 
classification is around 53% − 68% from both fuzzy data set 
and regular data set. This might be because there are 
overlapping between these two classes. For the indirectly 
comparison, in the report from [36, 37], they used the LERS 
algorithm (LEM2) that achieved 48% correct classification 
for three classes. Therefore, all four experiments show better 
results. 
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TABLE VI.  CONFUSION MATRIX OF FUZZY PERCEPTRON WITH POCKET 

  Desired Output 
A class S class 

Program 
Output 

A class 41 18 
S class 23 6 

TABLE VII.  CONFUSION MATRIX OF FUZZY PERCEPTRON WITHOUT 
POCKET 

  Desired Output 
A class S class 

Program 
Output 

A class 36 14 
S class 28 12 

TABLE VIII.  CONFUSION MATRIX OF REGULAR PERCEPTRON WITH 
POCKET ON CENTROID 

  Desired Output 
A class S class 

Program 
Output 

A class 48 14 
S class 16 10 

TABLE IX.  CONFUSION MATRIX OF REGULAR PERCEPTRON WITH 
POCKET ON NUMERIC VALUE 

  Desired Output 
A class S class 

Program 
Output 

A class 53 17 
S class 11 7 

  

   
                        (a)                                                 (b) 

   
                    (c)                                                       (d) 

   
                          (e)                                                  (f) 

   
                         (g)                                               (h) 
Fig. 8. Final weight fuzzy vectors (a) L-CORE, (b) L-SURF, (c) L-O2, (d) 
L-BP, (e) SURF-STBL, (f) CORE-STBL, (g) BP-STBL, and (h) bias. 

Although, the correct classification from the fuzzy 
perceptron with pocket algorithm is not as good as the regular 
perceptron with pocket on centroid or numeric value, it still 
has an advantage over the regular one. This is because if the 
mapping in table 5 or the defuzzification method of the 
attribute is changed, the classification result will be different 
definitely. We also lose some information when we map the 
fuzzy attribute into number in the first place. Hence, the 
resulting hyperplane will not reflect the real hyperplane. In 
addition, from the comparison between the fuzzy perceptron 
with and without pocket experiments, the one with pocket 
always performs better than the one without pocket as 
expected. 

IV. CONCLUSION 
In this paper, we develop a variant version of our fuzzy 

perceptron, i.e., a fuzzy perceptron with pocket algorithm. 
We implement this algorithm on both synthetic data set and a 
real-world fuzzy data set, i.e., the postoperative patient data 
set. To compare the result with the conventional method, we 
implement the regular perceptron with pocket on the peaks in 
synthetic data sets and on the defuzzified fuzzy attribute in 
the postoperative patient data set. In a real world data set, we 
defuzzify each fuzzy attribute using centroid and we also map 
each fuzzy attribute to numeric value. We found out that the 
correct classification of the fuzzy perceptron with pocket is 
comparable with their regular counterpart. The fuzzy 
perceptron do not perform as well as the one with pocket. 
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