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Abstract—Brain Style control scheme is presented inspired
by the brains hability to implement the most efficient and
robust control systems available to date. It represents the
first attempt to perform simultaneous and on-line (a) forward
model identification, (b) controller design and (c) inverse model
learning. For that we have simultaneously implemented the
concepts of Vertex Placement Principle and Feedback Error
Learning. The paper contributes in our attempt to demonstrate
the potential of Piecewise Bilinear models for nonlinear control
systems.

Keywords—Brain style control, Piecewise bilinear models,
Vertex placement principle, Feedback error learning, Nonlinear
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I. INTRODUCTION

The brain implements the most efficient and robust con-
trol system available to date. Works in adaptive control and
artificial neural networks were essential in understanding the
function of the brain [1], which provided valuable insights
for the design of efficient learning and control systems. Thus,
the concept of an internal model has emerged as an important
theoretical concept in motor control [2]. There are two types
of internal model, forward and inverse models.

Forward models are important in sensory perception of
the brain. They capture the forward or causal relationship
between inputs to the system, e.g. the arm, and the outputs.
A forward dynamic model of the arm, for example predicts
the next state (e.g. position and velocity) given the current
state and motor command. When sensing the state of the
system cannot be done directly, or has a big delay, it is useful
to predict the current state using the internal model of the
system dynamics. Such models have been proposed to be
used in motor learning, state estimation and motor control.
Even for a simple arm-reaching movement, a control strategy
which takes into account the dynamic property of the arm
should be used.

On the other hand, inverse models invert the system by
providing the motor command which will cause a desired
change in state. Therefore, inverse models act efficiently as
controllers as they can provide the motor command necessary
to achieve some desired state transition. According to [3], the
brain uses inverse dynamical models in order to calculate
necessary commands from desired trajectory information.
Fast and coordinated limb movements cannot be executed
solely under feedback control, since biological feedback
loops are slow and have small gains. The inverse model as a
feedforward action constitutes an important role for the quick
and smooth motions of the limbs in human motor control.

Both forward and inverse models depend on the dynamics
of the motor system, which change throughout life and under
different contextual conditions, therefore, these models must
be adaptable.

In this paper, we implement a Brain Style control scheme,
where simultaneous (a) plant identification, (b) controller
design and (c) inverse model learning, are performed. It is
the first time the three tasks are tackled simultaneously and it
represents an adaptive control system. If plant and controller
are initially unknown it performs an automatic controller
design scheme based on a desired plant performance.

Adaptive learning and control systems based on brain
functional analysis [1][2][4] only identify forward plant
model and its inverse by they do not design a controller.
In this paper, we also want to target the control of nonlinear
systems and so the task of controller design is considered.

The conventional approach for the analysis of nonlinear
control systems [5] [6] are based on local/global linearization
methods which transform the analyzed systems into linear
models that can then be easily analyzed by linear control
theory. Recently, piecewise systems have been studied related
to the analysis of nonlinear control systems [7] [8] [9] [10].
The TS systems [11] [12] in fuzzy control, also represent
a piecewise method and they aim to approximate general
nonlinear systems.

However, our work is based on the uso of piecewise
bilinear (PB) approximations proposed by one of the authors
in [13]. A bilinear function is a nonlinear bi-affine function:
y = a + bx1 + cx2 + dx1x2, the second simplest one
after a linear function. This function can represents any four
points in the three dimensional space. A PB model is built
on rectangular regions with four vertices partitioning the
state space. The approximated system is easily applicable
for control purpose.

The PB model is a fully parametric model to represent
Linear/Nonlinear systems. It is designed to be easily applica-
ble for control purpose and it is a good general approximation
of nonlinear systems. The PB models are very convenient for
control purpose as they are interpretable (for instance as look
up tables), easy to compute and simple to handle. This paper
and other recent work we have done [14] [15] [16] [17] [18]
[19] are devoted to explore the full potential of PB models
for the design of control systems. Thus, all three models
used in this paper, namely, forward, inverse and controller,
are based on PB models.

The forward model identification and controller design
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tasks of the paper are implemented through Vertex Placement
Principle (VPP) introduced in [16]. VPP represents a sys-
tematic approach for simultaneous and on-line global iden-
tification and controller design. Even if a plant is unknown
initially, we can design a PB controller based on desired
plant based on the realized identification. VPP performs an
on-line design of a PB-controller C for an unknown plant P
based on a desired plant DP so that the closed-loop system
CP of the unknown plant and its PB-controller behaves like
the desired plant. VPP assumes (a) a PB model of a desired
plant is given, and (b) both the states of the desired plant and
an unknown plant can be observed and their derivatives can
be numerically calculated. It represents a direct approach to
design the PB-controller as the design is based directly on the
estimation of P. PB model has a big number of parameters to
tune, the VPP [16] showed the global tuning of PB models
can be made in a very simple and efficient way.

The inverse model learning is implemented following a
PB model based Feedback Error Learning (FEL) presented
in [17]. FEL scheme proposed by Kawato [4], represents
an inverse model identification scheme. The key idea of
FEL is to use the output of the feedback controller as the
error signal for the adaptive feedforward controller. FEL was
originally inspired on biological control systems which usu-
ally are systems with time delays and strong nonlinearities
and it has the feature that the learning and control can be
performed simultaneously. FEL architecture consists of the
combination of a feedback controller that ensures the stability
of the system and an adaptive feedforward controller that
improves control performance. FEL is able to acquire an
accurate inverse model even for redundant systems. In [17]
we concluded that PB model is the most convenient model
to implement the FEL with regard to nonlinear modeling,
control objective and on-line learning capability.

Section II and III introduce the canonical form of PB
model, VPP for on-line plant identification and controller
design respectively. Section IV presents the PB model based
FEL algorithm. Section V presents the implementation issues
of the Brain Style control scheme, where a simultaneous
VPP and FEL is performed. Section VI illustrates various
simulation results, and Section VII concludes the paper with
some discussion and future work plans.

II. PB MODELS

The PB model is very convenient for control purpose
because is interpretable, easy to compute and simple to
handle. In the model, bilinear functions are used to region-
ally approximate any given function. The obtained model
is built on piecewise rectangular regions, and each region
is defined by four vertices partitioning the state space.
A bilinear function is a nonlinear function of the form
y = a+bx1+cx2+dx1x2, where any four points in the three
dimensional space are spanned with a bi-affine plane. PB
system has a continuous crossing over the piecewise regions
and it is a very good general approximator for nonlinear
functions. A local error does not trigger a global error and
its interpolation nature generates robust outputs. A PB model
can be expressed as a look-up table (LUT) which is widely
used to realize industrial controllers. Generalization of PB
models to a multidimensional case was studied in [13], but
for the sake of simplicity here we shall explain a two-
dimensional case.

Fig. 1. Piecewise region Rστ and interpolation of fi(x).

If a general case of an affine two-dimensional nonlinear
control system is considered,{

ẋ1 = f1(x1, x2)
ẋ2 = f2(x1, x2) + g(x1, x2) · r
y = h(x1, x2)

(1)

where r is the input (control, reference or both). For the PB
representation of a state-space equation, a coordinate vector
d(σ, τ) of the state space and a rectangle ℜij must be defined
as,

d(i, j) ≡ (d1(i), d2(j))
T (2)

Rij ≡ [d1(i), d1(i+ 1)]× [d2(j), d2(j + 1)] (3)

where i ∈ (1, . . . , n1) and j ∈ (1, . . . , n2) are integers, and
d1(i) < d1(i + 1), d2(j) < d2(j + 1). The PB models are
formed by matrices of size (n1 × n2), where n1 and n2
represent the number of partitions of dimension x1 and x2
respectively. Each value in the matrix is referred to as a
vertex in the PB model. The operational region of the system
is divided into (n1 − 1× n2 − 1) piecewise regions that are
analyzed independently.

The PB model was originally derived from a set of fuzzy
if-then rules with singleton consequents [13] such that

if x is Wστ , then ẋ is f(σ, τ) (4)

which in a two-dimensional case, x ∈ ℜ2 is a state vec-
tor, W στ = (wσ

1 (x1), w
τ
2 (x2))

T is a membership function
vector, f(σ, τ) = (f1(σ, τ), f2(σ, τ))

T ∈ ℜ is a singleton
consequent vector, and σ, τ ∈ Z are integers (1 ≤ σ ≤
n1, 1 ≤ τ ≤ n2) defined by,

σ(x1) = d1(max(i)) where d1(i) ≤ x1, (5)

τ(x2) = d2(max(j)) where d2(j) ≤ x2. (6)

The superscript T denotes transpose operation.

For x ∈ ℜστ , the PB models that approximates (1) is
expressed as,

f1(x1, x2) =
σ+1∑
i=σ

τ+1∑
j=τ

wi
1(x1)w

j
2(x2)f1(i, j),

f2(x1, x2) =
σ+1∑
i=σ

τ+1∑
j=τ

wi
1(x1)w

j
2(x2)f2(i, j),

g(x1, x2) =
σ+1∑
i=σ

τ+1∑
j=τ

wi
1(x1)w

j
2(x2)g(i, j),

h(x1, x2) =
σ+1∑
i=σ

τ+1∑
j=τ

wi
1(x1)w

j
2(x2)h(i, j),

(7)
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where 
wσ

1 (x1) = 1− α,
wσ+1

1 (x1) = α,
wτ

2 (x2) = 1− β,
wτ+1

2 (x2) = β,

(8)

and

α =
x1 − d1(σ)

d1(σ + 1)− d1(σ)
(9)

β =
x2 − d2(τ)

d2(τ + 1)− d2(τ)
(10)

in which case wi
1, w

j
2 ∈ [0, 1].

In every region of the PB models, i.e.: f1(x1, x2), the
values are computed through bilinear interpolation of the
corresponding four vertexes as shown in Fig. 1. Note that
the approximation can be made by only using the values
of a nonlinear function at the vertexes of Rij’s in (3). A
better approximation of original model can be obtained using
optimal PB modeling method presented in [15], where a
f(x1, x2) is generalized as a function of the vertexes included
in all local PB models.

III. VPP: ON-LINE DESIGN OF LUT CONTROLLERS

Given a partition of the sate space of the objective plant
P into sub-regions, the PB model is completely described
by the values of P at the vertexes of regions. Therefore, to
design a LUT-controller means to assign the values of the
vertexes. Vertex Placement Principle assigns the values of a
LUT-controller C at the vertexes, based on a desired plant
PB model and an objective plant PB model to be identified.
If as in [20], a LUT-controller was assigned so that the values
of the closed-loop system at the vertexes satisfy stability
conditions, in this sense, VPP is similar to the idea of Pole
Placement in linear systems.

The algorithm to implement the on-line design of LUT
proposed in [16] has three clear steps as shown in Fig. 2.
Once the controller C is initialized, either as a table with all
zero elements, or some other value if prior knowledge of the
plant is available. (a) Then with a reference input r and the
observation of current states of an objective plant (P ) the
estimation of the closed-loop plant (CP ) is done. (b) Using
a currently estimated CP model and the controller C, P is
estimated. (c) Based on currently estimated plant P and the
desired plant we update a LUT-controller as C = DP − P .
Steps (a), (b) and (c) are repeated taking account of control
input u and the updated values of controller C.

As we have mentioned above, in this work we want
to design a LUT controller to make an initially unknown
nonlinear plant (P ) type{

ẋ1p = x2p
ẋ2p = f2p(x1p, x2p) + u+ r

(11)

behave like a desired plant (DP ) given by,{
ẋ1d = x2d

ẋ2d = f2d(x1d, x2d) + r
(12)

The performance of the plant P with the controller C in
closed loop CP will be approximated to the performance of

Fig. 2. VPP scheme for on-line plant identification and controller design.

DP , where CP is described by{
ẋ1cp = x2cp

ẋ2cp = f2cp(x1cp, x2cp) + r
(13)

Should the plant to be controlled be known, the closed
loop behavior of the plant with a feedback control u would
be given by,

f2cp(x1cp, x2cp) = f2p(x1cp, x2cp) + u(x1cp, x2cp) (14)

and the controller computed directly as,

u(x1cp, x2cp) = f2cp(x1cp, x2cp)− f2p(x1cp, x2cp). (15)

Even in case that the plant is unknown initially, if we are able
to approximate a PB model through an off-line analysis, the
computation of u(x1cp, x2cp) is straight forward.

However, VPP deals with the on-line design of a LUT
controller for an unknown plat. In the relation (14) containing
three variables, we can set f2cp = f2d where f2d is given. We
still have two unknown variables f2p and u for one relation.
In order to solve this problem, we estimate f2p: a PB model
corresponding to the unknown plant P , and so, we have a
single variable u to solve.

After the initialization of u either as a table with all
zero elements, or some other value if prior knowledge of the
plant is available. Then an estimation of the PB model that
approximates the plant will be performed. At every instant,
the plant vertexes corresponding to the region in which the
plant is operating will be estimated. The values of control u at
the vertexes of the same operational region will be updated
according to the plant estimation and based on the vertex
placement principle.

From the plant in closed loop CP , at every instant k
we can measure its state variables (x1cp(k), x2cp(k)), their
derivatives (ẋ1cp(k), ẋ2cp(k)), and the reference input r(k).
From here, we can also compute (f2cp(k)) as,

f2cp(k) = ẋ2cp(k)− r(k). (16)

The estimation of the vertexes, corresponding to the
region in which the plant is operating, is performed
only using the time instants when the plant was
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inside that given region. The analyzed region of the
closed-loop system is delimited by the vector VCP2 =
(VCP (σ,τ), VCP (σ,τ+1), VCP (σ+1,τ), VCP (σ+1,τ+1))

T that
contains the four vertexes. At every instant, f2cp is expressed
by a piecewise bilinear interpolation as shown at Fig. 1,
where k implies a step in updating in our algorithm.

f2cp(k) = (wσ
1w

τ
2 , w

σ
1w

τ+1
2 , wσ+1

1 wτ
2 , w

σ+1
1 wτ+1

2 )

(VCP (σ,τ), VCP (σ,τ+1), VCP (σ+1,τ), VCP (σ+1,τ+1))
T ,

(17)
where wi

1 and wj
2 are defined in (8).

To be precise, (17) is expressed as

f2cp(k) = a(xcp(k))VCP2(k), (18)

Taking an account of updating values of the LUT controller
C, the vertexes of the closed loop plant f2cp can be written
as,

VCP2(k) = VP2 + VC(k). (19)

which is derived from the relation (14).

Similarly to VCP2 , the vectors VDP2 , VP2 and VC rep-
resent the vertexes defining a region of the desired plant,
objective plant and controller respectively. Through VPP, VC
is obtained such that VDP2 = VCP2 = VP2 + VC , where VP2

is initially unknown and need to be estimated, and VC will be
initialized with a known valued, usually an all zero matrix.
Thus, from (18) we derive,

f2cp(k)− a(xcp(k))VC(k) = a(xcp(k))VP2 . (20)

If there are m samples of the system within a given region,
we can set the following equation:

F2(ẋ2cp, r)−A(xcp)⊙ VC = A(xcp)VP2 , (21)

where F2 is (m × 1) vector F2 =
[f2cp(1) . . . f2cp(m)]T , A is a (m × 4) matrix
A(xcp) = [a(xcp(1)), a(xcp(2)), . . . , a(xcp(m))]T .

A(xcp) ⊙ VC corresponds to the row-sums of their
Hadamard product A(xcp)⊙ VC =

∑
(A(xcp)oVC) .

From (21) we can obtain the values of VP2 as,

(ATA)−1AT (F2 −A⊙ VC) = VP2 , (22)

where ATA is assumed to be non-singular.

Once the VP2 values have been estimated, we can com-
pute the error in each vertex of the region with respect to
the desired plant vertexes VDP2 ,

e(i,j)(k) = VDP2(i,j) − (VP2(i,j) + VC(i,j)(k − 1)). (23)

Note VPP computes the error directly for each of the vertexes
within the current operating region. Tracking errors e = xd−
xp or ė = ẋd − ẋp are not used as in model following or
adaptive control.

Finally in each instant, the vertexes of the controller C
(VC) will be updated as,

VC(i,j)(k) = VC(i,j)(k − 1) + wi
1w

j
2e(i,j)(k). (24)

Fig. 3. Feedback error learning architecture.

IV. FEL: SEQUENTIAL LEARNING

Fig. 3 illustrates the feedback error learning architec-
ture. This architecture consists of an objective plant to be
controlled with a feedback controller and, in addition, a
feedforward controller to be learned by FEL. In [17] PB
model showed to be a very convenient model to implement
the control scheme.

If a plant model is expressed as y = p(u) where y is
output and u control input. We also denote its inverse in
a similar manner as u = p−1(y), assuming that a plant is
invertible. We note that an inverse model used in FEL is
usually written as uff = p−1(r). For the PB based FEL,
feedforward controller is expressed as uff = p−1(r, ṙ), with
two inputs r, ṙ as desired output of the objective plant and
single output uff .

Let u0 be an ideal feedforward control based on a inverse
model. We design a feedforward controller so that uff = u0.
That is, we learn uff , i.e., identify the feedforward controller
parameters, to minimize the performance index

I =
(uff − u0)2

2
(25)

where the PB representation of the feedforward controller is,

uff = p−1(r, ṙ) =
σ+1∑
i=σ

τ+1∑
j=τ

wi
1(r)w

j
2(ṙ)V(i,j) (26)

I can be sequentially minimized using the derivative of (25)

∂I

∂V
=
∂uff
∂V

(uff − u0). (27)

However, the error (uff − u0) is not available since u0 is
unknown. Therefore Kawato [4] suggested to use ufb for
(uff − u0) since u = ufb + uff . This is why ufb is called
a feedback error playing a role as the error (uff −u0). FEL
is a learning scheme based on a signal ufb, a feedback error
signal.

Then we have,

∂I

∂V
=
∂uff
∂V

ufb =
∂p−1(r, ṙ)

∂V
ufb. (28)

The sequential learning of each vertex of a region is made
using the following algorithm:

Vnew(i,j) = Vold(i,j) − δ
∂uff
∂V (i, j)

ufb (29)

where δ is an adjustable parameter as a learning rate. This
is the conventional steepest descent algorithm to minimize
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a performance index. If learning is successfully completed,
i.e., Vnew = Vold, then ufb must become zero, and only uff
works.

In the case of a two dimensional PB model, if we develop
(26), with (8) (9) and (10), we have:

uff = (1− α)(1− β)V(σ,τ) + (1− α)βV(σ,τ+1)

+α(1− β)V(σ+1,τ) + αβV(σ+1,τ+1)
(30)

(Vnew, Vold) refer to the values of 4 vertexes of a region and
as the function is linear, the calculation of partial derivatives
(∇p−1) is straightforward. The equation of change for each
vertex of a region is,

Vnew(i,j) = Vold(i,j) − δwi
1w

j
2ufb, (31)

where wi
1 and wj

2 are defined in (8).

Note that in [17] an off-line identification of pseudo-
inverse model is also proposed. This method uses I/O data to
make an approximation of the inverse model and it is mainly
used for initialization of the feedforward model within the
FEL scheme.

V. BRAIN STYLE CONTROL SCHEME BASED ON PB
MODELS: SIMULTANEOUS VPP AND FEL

All the models used in this paper are based on piecewise
bilinear (PB) models. The three different but simultaneous
tasks performed in the Brain Style control scheme, (a) plant
identification, (b) controller design and (c) inverse model
learning, are represented by PB models.

As we have seen in previous sections, the PB model
is a fully parametric model to represent Linear/Nonlinear
systems. It is designed to be easily applicable for control
purpose and it is a good general approximation of nonlinear
systems. This papers extends on our work to explore the
potential of PB models.

The plant identification and controller design is imple-
mented through VPP introduced in [16]. VPP represents
a systematic approach for simultaneous and on-line global
identification and controller design. Even if a plant is un-
known initially, we can design a PB controller based on
desired plant based on the realized identification.

The inverse model learning is implemented following a
PB model based FEL presented in [17]. A method to make
an on-line sequential learning of a feedforward controller as
a PB model was presented. Moreover, we think PB model
is the most convenient model to implement FEL with regard
to nonlinear modeling, control objective and on-line learning
capability.

Fig. 4 shows the schematic diagram of the Brain Style
Control scheme proposed in this paper. It is a combination
of both VPP and FEL schemes presented before and it also
includes a feedback controller block that tries to correct the
tracking error e = r − y.

Apart from the PB model parameters to be adjusted for
which VPP and FEL algorithms have been presented. This
control scheme needs to tune various parameters, such as,
the learning rate δ of the FEL.

On the other hand, the selection of the feedback controller
is also important. From experimentation we have observed

Fig. 4. VPP + FEL

that the FEL performs better with a PD controller rather
than a PID controller. It was also clear that the better the
original PD controller, tuned for the desired plant, then the
FEL performance was improved. However, with many very
different initial configurations of the PD controller, the FEL
finally learned the inverse model and the feedback control
action tended to zero. This work represents the first attempt to
perform simultaneous and on-line (a) plant identification, (b)
controller design and (c) inverse model learning. It represents
an adaptive control system, and it will potentially work even
if the objective plant and controller are initially unknown
performing an automatic controller design scheme based on
a desired plant performance.

VI. SIMULATIONS

In this section various simulations will be performed in
order to show the efficiency of the presented Brain Style
control scheme. In our simulations, we will use two different
state space models. One referring to a linear plant working
as the desired plant, and the other plant will be nonlinear
plant as the objective plant to be controlled.

In all our simulations we will consider the objective plant
is unknown, and that all the PB models of the control scheme
are initialized as all-zero matrices.

The linear plant used in the simulations is represented as,{
ẋ1 = x2

ẋ2 = ax1 + bx2 + r
(32)

where a = −0.3 and b = −1.1. Its PB representation of the
f2 is the following.

TABLE I. f2 OF THE DESIRED LINEAR PLANT.

x1 \ x2 d2= -3 d2= -1.5 d2= 0 d2= 1.5 d2= 3
d1= -4 4.5 2.85 1.2 -0.45 -2.1
d1= -2 3.9 2.25 0.6 -1.05 -2.7
d1= 0 3.3 1.65 0 -1.65 -3.3
d1= 2 2.7 1.05 -0.6 -2.25 -3.9
d1= 4 2.1 0.45 -1.2 -2.85 -4.5

The second plant is nonlinear, and corresponds to the so
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called ”Van der Pol” oscillator. This system is expressed as,{
ẋ1 = x2

ẋ2 = −x1 + (1− x21)x2 + u+ r
(33)

Its optimal PB representation is represnted in Table II.

TABLE II. f2 OF THE Van der Pol SYSTEM.

x1 \ x2 d2= -3 d2= -1.5 d2= 0 d2= 1.5 d2= 3
d1= -4 47.16 25.58 4 -17.58 -39.16
d1= -2 8.96 5.48 2 -1.48 -4.96
d1= 0 -4.97 -2.49 0 2.49 4.97
d1= 2 4.96 1.48 -2 -5.48 -8.96
d1= 4 39.16 17.58 -4 -25.58 -47.16

The performance of the implemented control scheme is
represented in the figures where the following parameters are
shown:

(a) Desired Plant performance controlled with only the
Feedback (FB) controller.

(b) Plant controlled with the Brain Style control scheme
(VPP + FEL).

(c) Feedback action (ufb) of the original controller
within the FEL scheme.

(d) Feedforward action (uff ) of the feedforward con-
troller as it is updated and the total control action
(u).

In (a) and (b) the blue line represents the reference input (r)
for the plant and the green line corresponds to the output of
the plant (y).

A. Simulation 1

In the first simulation shown in Fig. 5, the feedback
controller was chosen to be a PD controller with gains
KP = 5 and KD = 1.

Fig. 5 shows the performance of the Brain Style control
scheme for a sinusoidal input reference. The feedback action
of the PD controller tends to zero while the feedforward
controller is learned. The performace of the objective plant
is similar to the desired plant, and the control performance
is better due to the feedforward action of the FEL.

In Fig. 6 it can be observed how the performance of the
objective plant in the Brain Style control scheme (in red),
becomes similar, while C is learned, to the performance of
the desired plant (DP). The black line show how the objective
plant would perform only by using a feedback controller.

The estimated objective plant value in this case is shown
in Table III. The estimated values are very close to the values
shown in Table II, apart from those vertexes which did not
have enough data to be estimated correctly.

TABLE III. ESTIMATION OF OBJECTIVE PLANT.

x1 \ x2 d2= -3 d2= -1.5 d2= 0 d2= 1.5 d2= 3
d1= -4 0 24.2650 4.4304 -15.7054 0
d1= -2 10.7306 5.5153 2.3574 -1.5226 2.2520
d1= 0 -13.1594 -2.4861 0 2.5059 7.3804
d1= 2 -1.7338 1.5087 -2.1238 -5.5592 0
d1= 4 0 15.2068 -4.2249 -23.4683 0

Fig. 5. (a) FB scheme of desired plant, (b) Brain Style control scheme
on the objective plant, (c) ufb in FEL, (d) uff & u in FEL. Feedback
action of the PD controller tends to zero while the feedforward controller
is learned.

Fig. 6. Trajectories of (a) Objective plant controlled in feedbcak with a
PD, in black. (b) In blue the desired plant DP controlled with a PD. (c)
The objective plant in a Brain Style control scheme in red (closed loop plant
CP , during the design of C and learning of inverse model.

TABLE IV. DESIGNED CONTROLLER

x1 \ x2 d2= -3 d2= -1.5 d2= 0 d2= 1.5 d2= 3
d1= -4 0 -21.2346 -3.1855 15.3046 0
d1= -2 2.0457 -3.2845 -1.7010 0.4482 -3.7387
d1= 0 8.5878 4.0617 0.0000 -4.1386 -8.4127
d1= 2 2.5327 -0.4705 1.5245 3.2636 0
d1= 4 0 -14.7877 2.9874 19.5681 0

Table IV is the controller designed on the VPP to make
the objective plant P behave like the desired plant DP.

Finally, Table V shows the inverse model of the closed-
loop plant learned during the simulation through FEL.

TABLE V. PSEUDO-INVERSE MODEL OF CP PLANT.

x1 \ x2 d2= -3 d2= -1.5 d2= 0 d2= 1.5 d2= 3
d1= -4 0 -0.2761 -0.1559 0.1731 0
d1= -2 0 -1.5493 0.3818 1.2999 0
d1= 0 0 -1.6247 0 1.4969 0
d1= 2 0 -1.2258 -0.1624 1.4352 0
d1= 4 0 -0.1447 0.1604 0.2122 0
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Fig. 7. Brain Style control scheme for the Van der Pol system. Plant
characteristic changes at time = 75seconds and plant must be updated.

Fig. 8. (a) FB scheme of desired plant, (b) Brain Style control scheme
on the objective plant, (c) ufb in FEL, (d) uff & u in FEL. Feedback
action of the PD controller tends to zero while the feedforward controller
is learned.

B. Simulation 2

For this simulation the parameters of the Van der Pol
system have been changed at time = 75seconds. To be
precise, the change refers to ẋ2 which is altered as ẋ2 =
−3x1 + (1− x21)x2 + u+ r As a result, the control scheme
responds as expected, where both objective plant estimation
and controller C are updated and the feedback controller
starts working again until the feedforward controller is up-
dated.

C. Simulation 3

In this final simulation the feedback controller parameters
have been modified to show that even with a different
feedback action the FEL keeps working well and the inverse
model is learned correctly. Once again a PD feedback con-
troller is used but now with gains KP = 1.5 and KD = 0.2.

Fig. 8.a shows how the desired plant cannot follow per-
fectly the reference input using this new controller. However,
in Fig. 8.b we can see that the inverse model is learned
correctly through FEL and the feedback action tends to zero.

Fig. 9. Trajectories of (a) Objective plant controlled in feedbcak with a
PD, in black. (b) In blue the desired plant DP controlled with a PD. (c)
The objective plant in a Brain Style control scheme in red (closed loop plant
CP , during the design of C and learning of inverse model.

In Fig. 9 it can be observed how blue and red lines are
not similar, and that is due to the new parameters of the
feedback PD controller. Table VI shows the inverse model of
the closed-loop plant learned during the simulation through
FEL.

TABLE VI. PSEUDO-INVERSE MODEL OF CP PLANT.

x1 \ x2 d2= -3 d2= -1.5 d2= 0 d2= 1.5 d2= 3
d1= -4 0 -0.3286 -0.7002 0.1239 0
d1= -2 0 -1.7728 0.0775 2.2057 0
d1= 0 0 -2.3281 0 2.4299 0
d1= 2 0 -2.0019 0.0441 1.8151 0
d1= 4 0 -0.1087 0.5890 0.2942 0

VII. CONCLUSIONS

In this paper we have presented the Brain Style control
scheme. It has been inspired by the brain’s ability to imple-
ment the most efficient and robust control systems available.
Even though only a preliminary test of the control scheme
has been presented, where there are many improvement op-
tions, it represents the first attempt to perform simultaneous
and on-line (a) forward model identification, (b) controller
design and (c) inverse model learning. This paper also con-
tributes in our attempt to demonstrate the full potential of PB
models for nonlinear control systems. The presented control
scheme, is tested in simple situations, however it works and
it shows its potential as an adaptive control scheme. If plant
and controller are initially unknown the presented control
scheme will perform an automatic controller design.

There are many options to explore further the Brain
Style control scheme. In future works the effects of different
feedback controllers on the FEL performance should be
analyzed. Optimum vertex number and placement for the PB
models and systems with time delays need to be analyzed as
well. Finally, the learning sequence (gains, rates, etc.) should
also be analyzed in future works, for the most efficient im-
plementation of the presented control scheme. Depending on
the dynamics of the analyzed system this could be important.
For example, it could be that the FEL should initially have
a very slow learning rate, until the plant identification and
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controller design was implemented correctly. Another option
is to start performing the whole scheme simultaneously but
with very small gains in the feedback controller and increase
them slowly, in order to guarantee the system’s stability.
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