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Abstract— A practical single-carrier (SC) block transmission
with frequency domain equalisation (FDE) system can generally
be modelled by the Hammerstein system that includes the
nonlinear distortion effects of the high power amplifier (HPA)
at transmitter. For such nonlinear Hammerstein channels, the
standard SC-FDE scheme no longer works. In this paper, we
propose a novel B-spline neural network based nonlinear SC-
FDE scheme for Hammerstein channels. In particular, We
model the nonlinear HPA, which represents the complex-
valued static nonlinearity of the Hammerstein channel, by two
real-valued B-spline neural networks, one for modelling the
nonlinear amplitude response of the HPA and the other for
the nonlinear phase response of the HPA. We then develop
an efficient alternating least squares algorithm for estimating
the parameters of the Hammerstein channel, including the
channel impulse response coefficients and the parameters of
the two B-spline models. Moreover, we also use another real-
valued B-spline neural network to model the inversion of the
HPA’s nonlinear amplitude response, and the parameters of
this inverting B-spline model can easily be estimated using the
standard least squares algorithm based on the pseudo training
data obtained as a byproduct of the Hammerstein channel
identification. Equalisation of the SC Hammerstein channel can
then be accomplished by the usual one-tap linear equalisation
in frequency domain as well as the inverse B-spline neural
network model obtained in time domain. The effectiveness of
our nonlinear SC-FDE scheme for Hammerstein channels is
demonstrated in a simulation study.

I. INTRODUCTION

The fourth generation (4G) and beyond 4G (B4G) mo-
bile communication systems support high-speed broadband
applications with data rates in tens of Mbps or higher over
the wireless channel of typical delay spread in microseconds.
The intersymbol interference (ISI) of such wireless channels
spans over tens or even hundreds of symbols, which causes
the nightmare senario for time-domain (TD) equalisation,
requiring an impractically long equaliser with excessively
slow convergence and therefore resulting in poor perfor-
mance. Orthogonal frequency-division multiplexing (OFDM)
[1], [2] offers a low-complexity high-performance solution
for mitigating long ISI. Owing to its virtues of resilience
to frequency selective fading channels, OFDM has found
its way into numerous recent wireless network standards.
However, an OFDM signal is notoriously known to have
high peak-to-average power ratio (PAPR), which requires
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the high power amplifier (HPA) at the transmitter to have
an extremely long linear dynamic range. This requirement
may not be met by practical HPAs which exhibits nonlinear
saturation characteristics [3]–[7]. An alternative solution for
long ISI mitigation is to adopt single-carrier (SC) block
transmission with frequency-domain equalisation (FDE) [8],
[9]. Although the total complexity of a SC-FDE based
transceiver is the same as that of an OFDM based transceiver,
the SC-FDE transmitter does not require the fast Fourier
transform (FFT) operation, and therefore it is better suited
for uplink implementation. The long term evolution advanced
(LTE-A) has specified the standard for the uplink of the 4G
and B4G systems based on the SC-FDE solution [10].

In order to enhance the achievable bandwidth efficiency,
SC based high-rate broadband systems typically adopt high-
order quadrature amplitude modulation (QAM) signalling
[11]. The higher the order of QAM signalling, the better
the bandwidth efficiency but also the higher the PAPR of
the resulting transmit signal. This may drive the HPA at the
transmitter into the nonlinear saturation region, which will
significantly degrade the system’s achievable bit error rate
(BER) performance. Therefore, it is important to be able to
effectively compensate the nonlinear distortions of the HPA
in the design of a SC based high-rate wireless system. An
effective approach to compensate the nonlinear distortions of
HPA is to implement a digital predistorter at the transmitter,
which is capable of achieving excellent performance, and
various predistorter techniques have been developed [12]–
[18]. Implementing the predistorter is attractive for the
downlink, where the base station (BS) transmitter has the
sufficient hardware and software capacities to accommodate
the hardware and computational requirements for implement-
ing digital predistorter. In the uplink, however, implementing
predistorter at transmitter is much more difficult, because it is
extremely challenging for a pocket-size handset to absorb the
additional hardware and computational complexity. There-
fore, the predistorter option is not viable for the SC-FDE
based uplink system. Alternatively, the nonlinear distortions
of the transmitter HPA can be dealt with at the BS receiver,
which has sufficient hardware and software resources. With
the nonlinear HPA at transmitter, the channel is a complex-
valued (CV) nonlinear Hammerstein system and, moreover,
the received signal is further impaired by the channel additive
white Gaussian noise (AWGN). Therefore, nonlinear inver-
sion or equalisation of the SC based Hammerstein channel
is a challenging task.

In this contribution, we propose an efficient nonlinear SC-
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FDE scheme for Hammerstein channels based on the B-
spline neural network. In our previous works [18], [19],
the B-spline neural network has been demonstrated to be
very effective in identification and inversion of CV Wiener
systems. We adopt two real-valued (RV) B-spline neural
networks to model the amplitude response and the phase
response of the CV static nonlinearity of the Hammerstein
channel, and we develop a highly efficient alternating least
squares (ALS) identification algorithm for estimating the
channel impulse response (CIR) coefficients as well as the
parameters of the two RV B-spline neural networks that
model the HPA’s CV static nonlinearity. As linear equalisa-
tion is naturally accomplished in SC-FDE based systems by
a one-tap equalisation in frequency domain (FD), nonlinear
SC-FDE of the Hammerstein channel additionally involves
the inversion of the estimated B-spline neural network that
models the HPA’s nonlinear amplitude response in TD, as
the compensation of the HPA’s nonlinear phase response
is straightforward using the estimated phase response. The
previous work [18] considers the inversion of a RV B-
spline model as the root finding problem, and develop an
iterative root finding procedure based on the Gauss-Newton
algorithm for inverting the estimated amplitude response.
This approach requires to carry out the iterative root finding
procedure for detecting every data symbol. We propose a
much faster and more efficient alternative for inverting the
HPA’s nonlinear amplitude response. Specifically, we use
another RV B-spline neural network to model the inversion
of the HPA’s nonlinear amplitude response. Although the
HPA’s output at the transmitter is unobservable at the receiver
for identifying this inverse model, the pseudo training data
obtained as a natural byproduct of the Hammerstein channel
identification can be used to estimate the parameters of the
inverting B-spline model using the standard least squares
(LS) algorithm. We demonstrate the effectiveness of our
proposed B-spline neural network based SC-FDE scheme for
Hammerstein channels in an extensive simulation study.

Throughout this contribution, a CV number 𝑥 ∈ ℂ is
represented either by the rectangular form 𝑥 = 𝑥𝑅 + j ⋅ 𝑥𝐼 ,
where j =

√−1, while 𝑥𝑅 = ℜ[𝑥] and 𝑥𝐼 = ℑ[𝑥] denote
the real and imaginary parts of 𝑥, or alternatively by the
polar form 𝑥 = ∣𝑥∣ ⋅ 𝑒j∠𝑥 with ∣𝑥∣ denoting the amplitude
of 𝑥 and ∠𝑥 its phase. The vector or matrix transpose and
conjugate transpose operators are denoted by ( )T and ( )H,
respectively, while ( )−1 stands for the inverse operation and
the expectation operator is denoted by E{ }. Furthermore, 𝑰
denotes the identity matrix with an appropriate dimension,
and diag{𝑥0, 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛−1} is the diagonal matrix with
𝑥0, 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛−1 as its diagonal elements.

II. HAMMERSTEIN CHANNEL MODEL FOR SC-FDE

We consider the 𝑀 -QAM signalling. Each transmit block
or frame consists of 𝑁 QAM data symbols expressed as

𝒙[𝑠] =
[
𝑥0[𝑠] 𝑥1[𝑠] ⋅ ⋅ ⋅𝑥𝑁−1[𝑠]

]T
, (1)

where [𝑠] denotes the block index, and 𝑥𝑘[𝑠], 0 ≤ 𝑘 ≤ 𝑁−1,
take the values from the 𝑀 -QAM symbol set

𝕏={𝑑(2𝑙−
√
𝑀−1)+ j ⋅𝑑(2𝑞−

√
𝑀−1), 1 ≤ 𝑙, 𝑞 ≤

√
𝑀},

(2)
where 2𝑑 is the minimum distance between symbol points.
For notational simplification, we will drop the block index
[𝑠] in the sequel. Adding the cyclic prefix (CP) of length 𝑁cp

to 𝒙 yields

𝒙̄ =
[
𝑥−𝑁cp

𝑥−𝑁cp+1 ⋅ ⋅ ⋅𝑥−1 ∣ 𝒙T
]T
, (3)

in which 𝑥−𝑘 = 𝑥𝑁−𝑘 for 1 ≤ 𝑘 ≤ 𝑁cp. The signal block
𝒙̄ is amplified by the HPA to yield the actually transmitted
signal vector

𝒘̄ =
[
𝑤−𝑁cp

𝑤−𝑁cp+1 ⋅ ⋅ ⋅𝑤−1 ∣ 𝑤0 𝑤1 ⋅ ⋅ ⋅𝑤𝑁−1
]T

=
[
𝑤−𝑁cp

𝑤−𝑁cp+1 ⋅ ⋅ ⋅𝑤−1 ∣ 𝒘T
]T

(4)

where

𝑤𝑘 =Ψ(𝑥𝑘) , −𝑁cp ≤ 𝑘 ≤ 𝑁 − 1, (5)

in which Ψ( ) represents the CV static nonlinearity of the
transmitter HPA, and 𝑤−𝑘 = 𝑤𝑁−𝑘 for 1 ≤ 𝑘 ≤ 𝑁cp.
We consider the solid state power amplifier [6], [7], whose
nonlinearity Ψ( ) is constituted by the HPA’s amplitude
response 𝐴(𝑟) and phase response Υ(𝑟) given by

𝐴(𝑟) =
𝑔𝑎𝑟

(

1 +
(
𝑔𝑎𝑟
𝐴sat

)2𝛽𝑎
) 1

2𝛽𝑎

, (6)

Υ(𝑟) =
𝛼𝜙𝑟

𝑞1

1 +
(
𝑟
𝛽𝜙

)𝑞2 , (7)

where 𝑟 denotes the amplitude of the input to the HPA, 𝑔𝑎
is the small gain signal, 𝛽𝑎 is the smoothness factor and
𝐴sat is the saturation level, while the parameters of the phase
response, 𝛼𝜙. 𝛽𝜙, 𝑞1 and 𝑞2, are adjusted to match the specific
amplifier’s characteristics. The NEC GaAs power amplifier
used in the standardization [6], [7] has the the parameter set

𝑔𝑎 = 19, 𝛽𝑎 = 0.81, 𝐴sat = 1.4;
𝛼𝜙 = −48000, 𝛽𝜙 = 0.123, 𝑞1 = 3.8, 𝑞2 = 3.7.

(8)

Hence, given the input 𝑥𝑘 = ∣𝑥𝑘∣ ⋅ 𝑒j⋅∠𝑥𝑘 , the output of the
HPA can be expressed as

𝑤𝑘 = 𝐴(∣𝑥𝑘∣) ⋅ 𝑒j⋅
(
∠𝑥𝑘+Υ(∣𝑥𝑘∣)

)

. (9)

The operating status of the HPA may be specified by the
output back-off (OBO), which is defined as the ratio of the
maximum output power 𝑃max of the HPA to the average
output power 𝑃aop of the HPA output signal, given by

OBO = 10 ⋅ log10
𝑃max

𝑃aop
. (10)

The smaller OBO is, the more the HPA is operating into the
nonlinear saturation region.
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The amplified signal 𝒘̄ is transmitted through the channel
whose CIR coefficient vector is expressed by

𝒉 =
[
ℎ0 ℎ1 ⋅ ⋅ ⋅ℎ𝐿cir

]T
. (11)

The CIR length satisfies 𝐿cir ≤ 𝑁cp. It is assumed that ℎ0 =
1 because if this is not the case, ℎ0 can always be absorbed
into the CV static nonlinearity Ψ( ), and the channel impulse
response coefficients are re-scaled as ℎ𝑖/ℎ0 for 0 ≤ 𝑖 ≤ 𝐿cir.
At the receiver, after the CP removal, the channel-impaired
received signals 𝑦𝑘 are given by

𝑦𝑘 =

𝐿cir∑

𝑖=0

ℎ𝑖𝑤𝑘−𝑖 + 𝑒𝑘, 0 ≤ 𝑘 ≤ 𝑁 − 1, (12)

in which 𝑤𝑘−𝑖 = 𝑤𝑁+𝑘−𝑖 for 𝑘 < 𝑖, where 𝑒𝑘 = 𝑒𝑘𝑅+ j ⋅𝑒𝑘𝐼
is the channel AWGN with 𝐸

{
𝑒2𝑘𝑅
}

= 𝐸
{
𝑒2𝑘𝐼
}

= 𝜎2
𝑒 .

Because 𝑁cp ≥ 𝐿cir, the CP removal at the receiver au-
tomatically cancels the inter block interference and transfers
the linear convolution channel into the circular one. Passing
𝒚 =

[
𝑦0 𝑦1 ⋅ ⋅ ⋅ 𝑦𝑁−1

]T
through the 𝑁 -point FFT processor

yields the FD received signal vector

𝒀 =
[
𝑌0 𝑌1 ⋅ ⋅ ⋅𝑌𝑁−1

]T
= 𝑭𝒚, (13)

where

𝑭 =
1√
𝑁

⎡

⎢
⎢
⎢
⎣

1 1 ⋅ ⋅ ⋅ 1
1 𝑒−j2𝜋/𝑁 ⋅ ⋅ ⋅ 𝑒−j2𝜋(𝑁−1)/𝑁
...

...
...

...
1 𝑒−j2𝜋(𝑁−1)/𝑁 ⋅ ⋅ ⋅ 𝑒−j2𝜋(𝑁−1)(𝑁−1)/𝑁

⎤

⎥
⎥
⎥
⎦
,

(14)
is the FFT matrix which has the orthogonal property of
𝑭H𝑭 = 𝑭𝑭H = 𝑰 . The elements of 𝒀 are given by

𝑌𝑛 =𝐻𝑛𝑊𝑛 + 𝛯𝑛, 0 ≤ 𝑛 ≤ 𝑁 − 1, (15)

where 𝛯𝑛 = 𝛯𝑛𝑅 + j ⋅ 𝛯𝑛𝐼 is the FD representation of
the channel AWGN with 𝐸

{
𝛯2
𝑛𝑅

}
= 𝐸

{
𝛯2
𝑛𝐼

}
= 𝜎2

𝑒 , and
the frequency domain channel transfer function coefficients
(FDCTFCs) 𝐻𝑛 for 0 ≤ 𝑛 ≤ 𝑁−1 are given by the 𝑁 -point
FFT of 𝒉

[
𝐻0 𝐻1 ⋅ ⋅ ⋅𝐻𝑁−1

]T
=𝑭𝒉, (16)

while
𝑾 =

[
𝑊0 𝑊1 ⋅ ⋅ ⋅𝑊𝑁−1

]T
= 𝑭𝒘 (17)

is the 𝑁 -point FFT of 𝒘. Note that 𝒘 is unobservable and,
therefore, neither 𝒘 nor 𝑾 is available at the receiver. If
we denote 𝜩 =

[
𝛯0 𝛯1 ⋅ ⋅ ⋅𝛯𝑁−1

]T
, the FD received signal

(15) can be expressed concisely as

𝒀 =diag{𝐻0, 𝐻1, ⋅ ⋅ ⋅ , 𝐻𝑁−1}𝑾 +𝜩

=diag{𝐻0, 𝐻1, ⋅ ⋅ ⋅ , 𝐻𝑁−1}𝑭𝒘 +𝜩. (18)

Given the FDCTFCs 𝐻𝑛 for 0 ≤ 𝑛 ≤ 𝑁 − 1, the FD
one-tap equalisation can be carried out. The zero-forcing
equalisation, for example, is given by

𝑊𝑛 =
𝑌𝑛
𝐻𝑛

, 0 ≤ 𝑛 ≤ 𝑁 − 1. (19)

Performing the 𝑁 -point inverse FFT (IFFT) on 𝑾 =[
𝑊0 𝑊1 ⋅ ⋅ ⋅𝑊𝑁−1

]T
yields

𝒘̃ =
[
𝑤0 𝑤1 ⋅ ⋅ ⋅𝑤𝑁−1

]T
= 𝑭H𝑾 = Ψ(𝒙) + 𝑭H𝜩̃, (20)

where 𝜩̃ = diag{𝐻−10 , 𝐻−11 , ⋅ ⋅ ⋅ , 𝐻−1𝑁−1}𝜩 , and

Ψ(𝒙) =
[
Ψ(𝑥0) Ψ(𝑥1) ⋅ ⋅ ⋅Ψ(𝑥𝑁−1)

]T

=
[
𝑤0 𝑤1 ⋅ ⋅ ⋅𝑤𝑁−1

]T
. (21)

If the HPA Ψ( ) at the transmitter were linear, 𝑤𝑘 would be
an estimate of the transmitted data symbol 𝑥𝑘. But Ψ( )
is nonlinear, and the linear equalisation (19) alone is no
longer sufficient for estimating 𝒙. If the nonlinearity Ψ( )
is known and it is invertible, then the effects of Ψ( ) can be
compensated by inverting it. Specifically, an estimate of the
transmitted data vector 𝒙 is given by

𝒙̂ =Ψ−1
(
𝒘̃
)
=
[
Ψ−1

(
𝑤0

)
Ψ−1

(
𝑤1

) ⋅ ⋅ ⋅Ψ−1(𝑤𝑁−1
)]T

.
(22)

III. NONLINEAR SC-FDE OF HAMMERSTEIN SYSTEM

A. Identification of the Hammerstein channel

Given the input 𝑥𝑘 to the HPA, we model the HPA’s
nonlinear amplitude response and phase response by the two
RV univariate B-spline neural networks

𝐴(∣𝑥𝑘∣) =
𝑁𝑏∑

𝑙=1

𝐵
(𝑃𝑜)
𝑙 (∣𝑥𝑘∣)𝜔𝑙, (23)

Υ̂(∣𝑥𝑘∣) =
𝑁𝑏∑

𝑙=1

𝐵
(𝑃𝑜)
𝑙 (∣𝑥𝑘∣)𝜃𝑙, (24)

where 𝑁𝑏 is the number of B-spline basis functions, (𝑃𝑜−1)
is the order of the piecewise polynomial and the B-spline
basis functions 𝐵(𝑃𝑜)

𝑙 (𝑟) are calculated based on the De Boor
algorithm given in Appendix A, while 𝝎 =

[
𝜔1 𝜔2 ⋅ ⋅ ⋅𝜔𝑁𝑏

]T

and 𝜽 =
[
𝜃1 𝜃2 ⋅ ⋅ ⋅ 𝜃𝑁𝑏

]T
are the parameter vectors of the

two RV B-spline models to be determined. The predicted
HPA’s output can then be expressed as

𝑤𝑘 =𝐴(∣𝑥𝑘∣) ⋅ 𝑒j⋅
(
∠𝑥𝑘+Υ̂(∣𝑥𝑘∣)

)

. (25)

The identification task is to jointly estimate the CV CIR
vector 𝒉 and the RV parameter vectors {𝝎,𝜽} based on the
training data

{
𝑥𝑘, 𝑦𝑘

}𝐾−1
𝑘=0

by minimising the cost function

𝐽1(𝒉,𝝎,𝜽) =
1

𝐾

𝐾−1∑

𝑘=0

∣
∣𝑒𝑘
∣
∣2 =

1

𝐾

𝐾−1∑

𝑘=0

∣
∣𝑦𝑘 − 𝑦𝑘

∣
∣2 (26)

subject to the constraint ℎ0 = 1, in which 𝑦𝑘 is given by

𝑦𝑘 =

𝐿cir∑

𝑖=0

ℎ𝑖𝑤𝑘−𝑖 =
𝐿cir∑

𝑖=0

ℎ𝑖𝐴(∣𝑥𝑘−𝑖∣) ⋅ 𝑒j⋅
(
∠𝑥𝑘−𝑖+Υ̂(∣𝑥𝑘−𝑖∣)

)

,

(27)

where 𝑥𝑘−𝑖 = 𝑥𝑁+𝑘−𝑖 and 𝑤𝑘−𝑖 = 𝑤𝑁+𝑘−𝑖 if 𝑘 < 𝑖. By
denoting 𝒆 =

[
𝑒0 𝑒1 ⋅ ⋅ ⋅ 𝑒𝐾−1

]T
and 𝒚 =

[
𝑦0 𝑦1 ⋅ ⋅ ⋅ 𝑦𝐾−1

]T

over the training data set, the system can be expressed as

𝒚 =𝑷𝒉+ 𝒆, (28)

1836



where the regression matrix 𝑷 ∈ ℂ
𝐾×(𝐿cir+1) is given by

𝑷 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑤0 𝑤−1 ⋅ ⋅ ⋅ 𝑤−𝐿cir

...
...

...
...

𝑤𝑘 𝑤𝑘−1 ⋅ ⋅ ⋅ 𝑤𝑘−𝐿cir

...
...

...
...

𝑤𝐾−1 𝑤𝐾−2 ⋅ ⋅ ⋅ 𝑤𝐾−1−𝐿cir

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (29)

Therefore, given 𝝎 and 𝜽, 𝑤𝑘 for −𝐿cir ≤ 𝑘 ≤ 𝐾 − 1 are
fixed, and we have the LS estimate of 𝒉 readily given by

𝒉̂ =
(
𝑷H𝑷

)−1
𝑷H𝒚. (30)

When 𝒉 is fixed, the FDE (19) can be carried out and the
corresponding TD signal 𝑤𝑘 of (20) can be calculated based
on which we estimate {𝝎,𝜽} by solving the optimisation

min
𝝎,𝜽

𝐽2(𝝎,𝜽)=min
𝝎,𝜽

1

𝐾

𝐾−1∑

𝑘=0

∣
∣
∣𝑤𝑘−𝐴(∣𝑥𝑘∣) ⋅ 𝑒j

(
∠𝑥𝑘+Υ̂(∣𝑥𝑘∣)

)∣
∣
∣
2

.

(31)

However, this is a complex nonlinear optimisation problem,
requiring iterative calculation. To get around this difficulty,
we relax our optimisation task into the two simultaneous
objectives for 𝝎 and 𝜽, respectively,

min
𝝎

𝐽3(𝝎)=min
𝝎

1

𝐾

𝐾−1∑

𝑘=0

(∣
∣𝑤𝑘
∣
∣−

𝑁𝑏∑

𝑙=1

𝐵
(𝑃𝑜)
𝑙 (∣𝑥𝑘∣)𝜔𝑙

)2
, (32)

min
𝜽

𝐽4(𝜽)=min
𝜽

1

𝐾

𝐾−1∑

𝑘=0

(
𝛾𝑘 −

𝑁𝑏∑

𝑙=1

𝐵
(𝑃𝑜)
𝑙 (∣𝑥𝑘∣)𝜃𝑙

)2
, (33)

where −𝜋 < 𝛾𝑘 < 𝜋 is the principle value of arctan
𝑤𝑘
𝑥𝑘

.

The LS estimates of 𝝎 and 𝜽 are given respectively by

𝝎̂ =
(
BTB

)−1
BT
∣
∣𝒘̃
∣
∣, (34)

𝜽 =
(
BTB

)−1
BT𝜸, (35)

where
∣
∣𝒘̃
∣
∣ =

[∣
∣𝑤0

∣
∣
∣
∣𝑤1

∣
∣ ⋅ ⋅ ⋅ ∣∣𝑤𝐾−1

∣
∣
]T

, 𝜸 =
[
𝛾0 𝛾1 ⋅ ⋅ ⋅

𝛾𝐾−1
]T

, and the regression matrix B ∈ ℝ
𝐾×𝑁𝑏 with

B=

⎡

⎢
⎢
⎢
⎢
⎣

𝐵
(𝑃𝑜)
1 (∣𝑥0∣) 𝐵

(𝑃𝑜)
2 (∣𝑥0∣) ⋅ ⋅ ⋅ 𝐵

(𝑃𝑜)
𝑁𝑏

(∣𝑥0∣)
𝐵

(𝑃𝑜)
1 (∣𝑥1∣) 𝐵

(𝑃𝑜)
2 (∣𝑥1∣) ⋅ ⋅ ⋅ 𝐵

(𝑃𝑜)
𝑁𝑏

(∣𝑥1∣)
...

...
...

...

𝐵
(𝑃𝑜)
1 (∣𝑥𝐾−1∣) 𝐵

(𝑃𝑜)
2 (∣𝑥𝐾−1∣) ⋅ ⋅ ⋅ 𝐵(𝑃𝑜)

𝑁𝑏
(∣𝑥𝐾−1∣)

⎤

⎥
⎥
⎥
⎥
⎦
.

(36)
Note that although 𝐽3(𝝎) and 𝐽4(𝜽) are not exactly

equivalent to 𝐽2(𝝎,𝜽), they serves the same purpose of
minimising the misalignment between the predicted HPA
output 𝑤𝑘 by the two B-spline models to the desired output
𝑤𝑘. Using 𝐽3(𝝎) and 𝐽4(𝜽) however can bring significant
computational advantage, since we have the closed-form
LS solutions of 𝝎 and 𝜽 given fixed 𝒉. We adopt the
following ALS algorithm, which is a coordinate gradient
descent algorithm [20], [21], to estimate 𝒉 as well as 𝝎
and 𝜽. The coordinate gradient descent approach transforms
a difficult optimisation task into easier subtasks by fixing

some variables in turn and solving the remaining variables.
Unlike a generic coordinate gradient descent algorithm, in
our case we have the closed-form solutions of 𝒉 as well as
𝝎 and 𝜽 for the both subtasks.
Initialisation. Initialise 𝑤𝑘 = 𝑥𝑘 in 𝑷 of (29). Calculate 𝒉
as the LS estimate given by 𝒉̂(0) =

(
𝑷H𝑷

)−1
𝑷H𝒚. Then

obtain 𝒉̂(0) by normalising ℎ𝑖 ← ℎ𝑖/ℎ0 for 0 ≤ 𝑖 ≤ 𝐿cir.
ALS estimation. For 1 ≤ 𝜏 ≤ 𝜏max, where 𝜏max is the
maximum number of iterations, perform:
a) Fix 𝒉 to 𝒉̂(𝜏−1), and obtain 𝒘̃ using (16), (19) and (20).
Then calculated 𝝎̂(𝜏) and 𝜽(𝜏) using (34) and (35).
b) For 𝑷 of (29), compute 𝑤𝑘 according to (25) based on
𝝎̂(𝜏) and 𝜽(𝜏). Calculate 𝒉̂(𝜏) using (30). Then obtain 𝒉̂(𝜏)

by normalising ℎ𝑖 ← ℎ𝑖/ℎ0 for 0 ≤ 𝑖 ≤ 𝐿cir.
A few iterations, i.e. a very small 𝜏max, are sufficient for

the above ALS estimation procedure to converge.

B. Inversion of the HPA’s Nonlinear Amplitude Response

Given the CV Hammerstein channel’s static nonlinearity
Ψ( ), we wish to compute its inverse defined by 𝑥𝑘 =
Ψ−1(𝑤𝑘). From (9), we have

∣𝑥𝑘∣ =𝐴−1(∣𝑤𝑘∣), (37)

∠𝑥𝑘 =∠𝑤𝑘 −Υ(∣𝑥𝑘∣). (38)

Therefore, given the estimated HPA’s amplitude response
𝐴( ) and phase response Υ̂( ) specified by (23) and (24),
we only need to find the inversion of 𝐴( ). We adopt the
following B-spline neural network1 to model 𝐴−1( )

∣
∣𝑥
∣
∣ =𝐴−1(∣𝑤∣) =

𝑁𝑏∑

𝑙=1

𝐵
(𝑃𝑜)
𝑙 (∣𝑤∣)𝛼𝑙. (39)

In order to learn this inverse mapping or to estimate the
parameter vector 𝜶 =

[
𝛼1 𝛼2 ⋅ ⋅ ⋅𝛼𝑁𝑏

]T
, a training data set

{∣𝑤𝑘∣, ∣𝑥𝑘∣}𝐾−1𝑘=0 would be needed but 𝑤𝑘 is unobservable
and, therefore, is not available. Fortunately, as a byprod-
uct of the Hammerstein channel identification presented in
Section III-A, we already obtain an estimate for 𝑤𝑘 as
𝑤𝑘 which is given in (25). Therefore, the pseudo training
data

{∣
∣𝑤𝑘
∣
∣, ∣𝑥𝑘∣

}𝐾−1
𝑘=0

can be utilised to estimate the inverse
mapping (39). More specifically, by defining

B̂=

⎡

⎢
⎢
⎢
⎢
⎣

𝐵
(𝑃𝑜)
1 (∣𝑤0∣) 𝐵

(𝑃𝑜)
2 (∣𝑤0∣) ⋅ ⋅ ⋅ 𝐵

(𝑃𝑜)
𝑁𝑏

(∣𝑤0∣)
𝐵

(𝑃𝑜)
1 (∣𝑤1∣) 𝐵

(𝑃𝑜)
2 (∣𝑤1∣) ⋅ ⋅ ⋅ 𝐵

(𝑃𝑜)
𝑁𝑏

(∣𝑤1∣)
...

...
...

...

𝐵
(𝑃𝑜)
1 (∣𝑤𝐾−1∣) 𝐵

(𝑃𝑜)
2 (∣𝑤𝐾−1∣) ⋅ ⋅ ⋅ 𝐵(𝑃𝑜)

𝑁𝑏
(∣𝑤𝐾−1∣)

⎤

⎥
⎥
⎥
⎥
⎦
.

(40)

the LS solution of 𝜶 is readily given by 𝜶̂ =(
B̂TB̂

)−1
B̂T
∣
∣𝒙
∣
∣ in which

∣
∣𝒙
∣
∣ =

[∣𝑥0∣ ∣𝑥1∣ ⋅ ⋅ ⋅ ∣𝑥𝐾−1∣
]T

.
During the data detection, given the estimated CIR vector

𝒉̂, the estimated nonlinear phase response Υ̂( ) and the
estimated inverse nonlinear amplitude response 𝐴−1( ), the

1In order to avoid repetitions and for notational simplification, we keep
the same B-spline notations of Section III-A and assume that the same
number of basis functions and the polynomial order are used.
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TABLE I

EMPIRICALLY DETERMINED KNOT SEQUENCES.

Knot sequence for ∣𝑥∣ 0, 10−4, 10−3, 0.01, 0.03, 0.05, 1, 5, 10
Knot sequence for ∣𝑤∣ 0, 10−4, 10−2, 0.2, 0.5, 2, 3, 4, 5

TABLE II

IDENTIFICATION RESULTS FOR THE CIR COEFFICIENT VECTOR 𝒉 OF THE HAMMERSTEIN CHANNEL.

True Parameter estimate under
Parameters 𝐸b

/
𝑁o = 0 dB 𝐸b

/
𝑁o = 10 dB 𝐸b

/
𝑁o = 0 dB 𝐸b

/
𝑁o = 10 dB

OBO = 5 dB OBO = 5 dB OBO = 2 dB OBO = 2 dB
ℎ0 1 1 1 1 1
ℎ1 −0.2145− j0.1867 −0.2140− j0.1870 −0.2143− j0.1868 −0.2133− j0.1873 −0.2140− j0.1871
ℎ2 0.0399 + j0.3675 0.0408 + j0.3676 0.0402 + j0.3675 0.0410 + j0.3677 0.0402 + j0.3675
ℎ3 −0.0900 + j0.4053 −0.0897 + j0.4058 −0.0899 + j0.4055 −0.0893 + j0.4059 −0.0896 + j0.4054
ℎ4 −0.0893 + j0.1287 −0.0895 + j0.1286 −0.0894 + j0.1287 −0.0896 + j0.1286 −0.0895 + j0.1287
ℎ5 −0.1117 + j0.3035 −0.1118 + j0.3034 −0.1117 + j0.3034 −0.1115 + j0.3037 −0.1115 + j0.3038
ℎ6 −0.0766− j0.0264 −0.0770− j0.0266 −0.0768− j0.0264 −0.0769− j0.0266 −0.0765− j0.0264
ℎ7 0.0623− j0.0668 0.0628− j0.0664 0.0625− j0.0667 0.0628− j0.0661 0.0623− j0.0666
ℎ8 0.0282 + j0.0324 0.0272 + j0.0323 0.0279 + j0.0324 0.0264 + j0.0322 0.0275 + j0.0324
ℎ9 −0.0395− j0.0291 −0.0395− j0.0287 −0.0395− j0.0290 −0.0398− j0.084 −0.0397− j0.0288

linear equalised TD signal 𝑤𝑘 can be computed according
to (16), (19) and (20). The estimate of the transmitted data
𝑥𝑘 can then be given by 𝑥𝑘 =

∣
∣𝑥𝑘
∣
∣ ⋅ 𝑒j∠𝑥̂𝑘 with

∣
∣𝑥𝑘
∣
∣ =

𝐴−1
(∣
∣𝑤𝑘
∣
∣
)

and ∠𝑥𝑘 = ∠𝑤𝑘 − Υ̂
(∣
∣𝑥𝑘
∣
∣
)
.

IV. SIMULATION STUDY

We considered a Hammerstein SC-FDE System in which
the HPA employed was described by (6) and (7) with the
parameter set given in (8). The size of the transmitted
data block was set to 𝑁 = 2048 and 64-QAM was used.
We assumed a quasi-static Rayleigh multipath channel with
an exponentially decreasing power delay profile, where the
average gain for the 𝑙th path was given by

∣ℎ𝑙∣ = 𝑒
−
𝑙

𝜂 , 0 ≤ 𝑙 ≤ 𝐿cir, (41)

with 𝜂 being the channel degradation factor. In the simulation
study, we set 𝜂 = 3 and 𝐿cir = 9. The CIR coefficients ℎ𝑙 for
0 ≤ 𝑙 ≤ 𝐿cir remained constant during the communication
session. We used a full data block with 𝐾 = 𝑁 = 2048
training samples in the joint estimation of the CIR coefficient
vector 𝒉 and the parameter vectors 𝝎 and 𝜽 of the two
B-spline models for Ψ( ) as well as the estimation of the
parameter vector 𝜶 of the inverting B-spline model for
𝐴−1( ). The piecewise quadratic polynomial of 𝑃𝑜 = 2 was
chosen as the B-spline basis function, and the number of B-
spline basis functions in all three B-spline neural networks
was set to six. The empirically determined knot sequences
for ∣𝑥𝑘∣ and ∣𝑤𝑘∣ are listed in Table. I. The system’s signal-
to-noise ratio (SNR) was defined as SNR = 𝐸b

/
𝑁o, where

𝐸b was the average power of the input signal 𝑥𝑘 to the HPA
and 𝑁o = 2𝜎2

𝑒 was the channel AWGN’s power.
The identification experiments were conducted under the

HPA operation conditions of OBO = 5 dB and OBO = 2 dB,
respectively, as well as two given SNR conditions of SNR =
0 dB and SNR = 10 dB, respectively. The identification
results of the linear subsystem in the Hammerstein channel
under the four experimental conditions are summarised in

Table II, while the modelling results of the HPA static
nonlinearity Ψ( ) by the estimated Ψ̂( ) as represented by
the two B-spline neural networks are illustrated in Fig. 1. It
can be seen from Table II that the CIR estimates achieve
high accuracy for all the four conditions. The results of
Fig. 1 clearly demonstrate the capability of the proposed two
RV B-spline neural networks to accurately model the HPA’s
nonlinear amplitude and phase response, respectively.

The combined response of the HPA’s true nonlinearity
and its estimated inversion obtained under the condition of
OBO = 2 dB and SNR = 10 dB is depicted in Fig. 2.
The result of Fig. 2 demonstrates the capability of the B-
spline neural network to accurately model the inversion of
the HPA’s nonlinearity based only on the pseudo training
data. The effectiveness of the proposed nonlinear SC-FDE
scheme is illustrated in Fig. 3, where the nonlinear SC-
FDE was constructed based on the estimated CIR 𝒉̂, the
estimated HPA’s phase response Υ̂( ) and the estimated
inverse mapping for the HPA’s amplitude response 𝐴−1( ),
obtained under the two simulation conditions. The achievable
BER performance of the proposed nonlinear SC-FDE are
plotted in Fig. 4 under three different operating conditions
of the HPA, in comparison to the BER performance obtained
by the standard linear SC-FDE. Clearly, the standard SC-FDE
is incapable of compensating the nonlinear distortions of the
Hammerstein channel and its attainable BER performance
is very poor even under the HPA operating condition of
OBO = 5 dB, as can be seen from Fig. 4. By contrast,
the proposed nonlinear SC-FDE constructed based on the
estimated CIR and the inverse mapping of the HPA is able
to compensate most of the nonlinear distortions and attains
a much better BER performance.

V. CONCLUSIONS

A novel nonlinear SC-FDE scheme has been developed for
the Hammerstein channel that includes the significant nonlin-
ear distortions of the HPA at transmitter. We have proposed
to utilise two RV B-spline neural networks for modelling the

1838



0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Amplitude

O
ut

pu
t A

m
pl

itu
de

 

 
True function Model prediction

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Amplitude

O
ut

pu
t A

m
pl

itu
de

 

 
True function Model prediction

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Input Amplitude

O
ut

pu
t P

ha
se

 S
hi

ft

 

 
True function Model prediction

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Input Amplitude

O
ut

pu
t P

ha
se

 S
hi

ft

 

 
True function Model prediction

(a) (b)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Input Amplitude

O
ut

pu
t A

m
pl

itu
de

 

 
True function Model prediction

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Input Amplitude

O
ut

pu
t A

m
pl

itu
de

 

 
True function Model prediction

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Input Amplitude

O
ut

pu
t P

ha
se

 S
hi

ft

 

 
True function Model prediction

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

Input Amplitude

O
ut

pu
t P

ha
se

 S
hi

ft

 

 

True function Model prediction

(c) (d)

Fig. 1. Comparison of the HPA’s static nonlinearity Ψ( ) and the estimated static nonlinearity Ψ̂( ) under: (a) OBO= 5 dB, 𝐸b

/
𝑁o = 0 dB;

(b) OBO= 5 dB, 𝐸b

/
𝑁o = 10 dB; (c) OBO= 2 dB, 𝐸b

/
𝑁o = 0 dB; and (d) OBO= 2 dB, 𝐸b

/
𝑁o = 10 dB.
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Fig. 2. Combined response of the true HPA and its estimated inversion
obtained under OBO = 2 dB and 𝐸b/𝑁o = 10 dB: (a) combined amplitude
response, and (b) combined phase response.

HPA’s nonlinear amplitude and phase responses, respectively,
and have derived an efficient ALS scheme to estimate the
CIR coefficient vector as well as the parameter vectors of the
two B-spline models that represent the HPA’s nonlinearity.
Moreover, an additional RV B-spline neural network has been
utilised to model the inverse mapping of the HPA’s amplitude
response, and we have shown that the parameter vector of
this inverting B-spline model can readily be obtained as
the closed-form LS solution based on the pseudo training
data obtained as a natural byproduct of the Hammerstein
channel identification. Simulation results have demonstrated
that our proposed identification procedure is capable of
accurately estimating the Hammerstein channel as well as
the inverse mapping of the channel’s static nonlinearity. The
results obtained have also confirmed the effectiveness of the
proposed nonlinear SC-FDE scheme constructed based on
the estimated CIR and inverse B-spline mapping.

APPENDIX

A. De Boor Recursion

Univariate RV B-spline basis functions are parametrized
by the order (𝑃0 − 1) of a piecewise polynomial and a knot
sequence which is a set of values defined on the real line
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Fig. 3. Effectiveness of the proposed nonlinear SC-FDE scheme based
on the estimated CIR 𝒉̂ and the estimated HPA’s CV static nonlinearity as
well as the estimated inverse mapping for the HPA’s amplitude response
under: (a) OBO = 3 dB and 𝐸b/𝑁o = 10 dB; and (b) OBO = 5 dB and
𝐸b/𝑁o = 4 dB. The top two plots in sub-figures (a) and (b) depict one
transmitted QAM symbol block 𝒙 and its received signal block 𝒚, while
the bottom two plots show the corresponding estimated 𝒙̂ obtained by the
linear and nonlinear SC-FDEs, respectively.
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Fig. 4. The bit error rate performance comparison of the proposed nonlinear
SC-FDE with the standard linear SC-FDE.

that break it up into a number of intervals. Let the number
of basis functions be 𝑁𝑏. The knot sequence is specified by
the (𝑁𝑏 + 𝑃0 + 1) knot values {𝑅0, 𝑅1, ⋅ ⋅ ⋅ , 𝑅𝑁𝑏+𝑃0

} with

𝑅0 < 𝑅1 < ⋅ ⋅ ⋅ < 𝑅𝑃0−2 < 𝑅𝑃0−1 = 𝑅min < 𝑅𝑃0
< ⋅ ⋅ ⋅ <

𝑅𝑁𝑏 < 𝑅𝑁𝑏+1 = 𝑅max < 𝑅𝑁𝑏+2 < ⋅ ⋅ ⋅ < 𝑅𝑁𝑏+𝑃0
. (42)

At each end, there are 𝑃𝑜− 1 external knots that are outside
the input region and one boundary knot. As a result, the
number of internal knots is 𝑁𝑏 + 1 − 𝑃0. Given the set
of predetermined knots (42), the set of 𝑁𝑏 B-spline basis
functions can be formed by using the De Boor recursion
[22], yielding for 1 ≤ 𝑙 ≤ 𝑁𝑏 + 𝑃0,

𝐵
(0)
𝑙 (𝑟) =

{
1, if 𝑅𝑙−1 ≤ 𝑟 < 𝑅𝑙,
0, otherwise,

(43)

as well as for 𝑙 = 1, ⋅ ⋅ ⋅ , 𝑁𝑏 + 𝑃0 − 𝑝 and 𝑝 = 1, ⋅ ⋅ ⋅ , 𝑃0,

𝐵
(𝑝)
𝑙 (𝑟)=

𝑟 − 𝑈𝑙−1
𝑈𝑝+𝑙−1 − 𝑈𝑙−1𝐵

(𝑝−1)
𝑙 (𝑟)+

𝑈𝑝+𝑙 − 𝑟
𝑈𝑝+𝑙 − 𝑈𝑙𝐵

(𝑝−1)
𝑙+1 (𝑟).

(44)

Note that, due to the piecewise nature of B-spline functions,
there are only 𝑃0+1 basis functions with nonzero functional
values at any point 𝑟. Hence, the complexity of the De Boor
algorithm is determined by the polynomial order 𝑃0, rather
than the number of knots, and this is in the order of 𝒪(𝑃 2

0

)
.

REFERENCES

[1] J. A. C. Bingham, “Multicarrier modulation for data transmission: an
idea whose time has come,” IEEE Communications Magazine, vol. 28,
no. 5, pp. 5–14, May 1990.

[2] L. Hanzo, M. Münster, B. J. Choi, and T. Keller, OFDM and MC-
CDMA for Broadband Multi-User Communications, WLANs, and
Broadcasting. Chichester, UK: Wiley, 2003.

[3] A. A. M. Saleh, “Frequency-independent and frequency-dependent
nonlinear models of TWT amplifiers,” IEEE Trans. Communications,
vol. COM-29, no. 11, pp.1715–1720, Nov. 1981.
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