
 
 

 

Abstract—In this paper an optimized AdaBoost Regression 
and Threshold (AdaBoost.RT) algorithm based on feed-forward 
neural networks is evaluated. The AdaBoost.RT algorithm is 
used to combine an ensemble of feed-forward neural networks 
trained by using backpropagation algorithm (FFN-BP). The 
ensemble model is validated by using two typical time-series 
data, namely Chua’s circuit and CATS benchmark data. The 
performance of the ensemble models is shown to outperform 
several existing approaches.  

Index Terms—AdaBoost.RT algorithm, ensemble learning, 
feed-forward neural networks, time-series prediction. 

I. INTRODUCTION 

Over the last several decades, nonlinear time-series 
forecasting has been a popular and challenging research 
subject arising in a wide range of application areas. The 
artificial neural networks (ANNs) have been extensively 
employed, independently or as an auxiliary tool, to predict 
nonlinear time series [1]. They possess such characteristics as 
self-organization, data-based learning, and associative 
memory. Among all types of ANN models, the feed forward 
network model with backpropagation training procedure 
(FFN-BP) is one of the most commonly used networks [2]. 
However, this network is also notorious in being trapped to 
local optima [3], hence many variants have been proposed to 
overcome some of its drawbacks. 

The ensembling is a typical tool for improving the 
performance of the individual regressive models since it was 
found that an ensemble of individual predictors usually 
outperforms a single predictor [4]. The Adaptive Boost 
(AdaBoost) scheme is one of the most popular techniques for 
generating ensemble models due to its adaptability as well as 
its simplicity. The main idea of AdaBoost is to construct a set 
of base learners by using different training datasets that are 
derived by resampling the original data. Through a weighted 
voting mechanism, these learners are combined to predict a 
new test instance. Normally, the performance of a base 
learner is slightly better than random guess [5]. In this paper, a 
more recent boosting scheme, that is AdaBoost Regression 
and Threshold (AdaBoost.RT), first outlined in (Solomatine 
and Shrestha, 2004) [6], is used to enhance the performance 
of “individual” learner, here, “individual” learner is FFN-BP. 

This method utilizes the embedding theorem to “unfold” the 
nonlinear time series and reconstruct the points in phase 
space. 

The simulations results are presented by considering two 
typical nonlinear time-series data, say Chua’s Circuit (1998) 
and the CATS Benchmark (2004). In the latter simulation 
example, we constructed and compared two different 
ensemble models trained by using different choice of training 
dataset. The prediction problem of the two time-series has 
been widely explored in literature [4], [7]—[14], thus 
allowing us to concretely compare the performance of our 
method and other methods in a quantitative way.  

The paper is organized in the following structure. In the 
next section we will present the basics of FFN-BP. Section Ⅲ 
derives the Adaboost.RT algorithm and the ensemble model. 
Section Ⅳ presents the simulation results. Finally, Section Ⅴ 
draws conclusions and outlines some of future work along 
this line of research.  

II. FEED FORWARD NETWORK BASED PREDICTIVE MODEL 
The well-known three layer feed forward network is the 

modeling technique chosen, due to its success in single time 
series forecasting, simplicity of operation, ability to perform 
universal function approximation and robustness when 
compared to other techniques.  

The feed forward network architecture is data dependent, 
but fixed for each time series. The neuron number of the input 
layer is selected to be equal to the dimensions of input data so 
that we can achieve better performance of prediction [15]. For 
the simplification of calculation, the neuron number of the 
hidden layer is selected to be 2d ൅ 1  ( d  represents the 
dimension of input data) [16]. The output layer has only one 
neuron. Of course, the numbers of the neurons in the input 
layer or the hidden layer can be set to different numbers 
according to actual requirement. Meanwhile, the hyperbolic 
tangent function was used for the hidden layer and the linear 
transfer function-for the output layer. For all dataset, default 
value of the 0.1 was taken as learning rate. The number of 
epochs was 20. From our experience, the above setting is 
enough for the simulations in Section Ⅳ. 
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III. ADABOOST.RT-FNN-BP BASED PREDICTIVE METHOD 
The AdaBoost algorithm is an adaptive ensemble method 

which has been proved to be an effective method in 
classification and regression problems [17], [18]. In this paper， 
more recent boosting algorithm for regression problems 
called AdaBoost.RT is used (here R stands for regression and 
T for threshold) [19]. 

A. AdaBoost.RT Algorithm 
AdaBoost.RT Algorithm 

1) Input: 
 Sequence of m examples ሺݔଵ, ଵሻݕ ڮ , , ሺݔ௠, ௠ሻݕ , 

where output  ݕ א Թ 
 Weak learning algorithm Weak Learner 
 Integer T specifying number of iterations 

(machines) 
 Threshold ׎ ሺ0 ൏ ׎ ൏ 1ሻ for demarcating correct 

and incorrect predictions 
2) Initialize: 

 Machine number or iteration t ൌ 1 
 Distribution D୲ሺiሻ ൌ ଵ୫ for all i 
 Error rate ε୲ ൌ 0 

3) Iterate: While t ൑ T   
 Call weak learner, providing it with distribution D୲ 
 Build the regression model: f୲ሺxሻ ՜ y 
 Calculate absolute relative error for each training 

example as: ܧܴܣ௧ሺ݅ሻ ൌ ቤ ௧݂ሺݔ௜ሻ െ ௜ݕ௜ݕ ቤ.                                       ሺ1ሻ 

 Calculate the error rate of f୲ሺx୧ሻ: ߝ௧ ൌ ෍ ׎௧ሺ݅ሻ.௜:஺ோா೟ሺ௜ሻவܦ                                              ሺ2ሻ 

 Set β୲ ൌ ε୲୬ , where n = power coefficient (e.g. 
linear, square or cubic ) 

 Update distribution D୲ as 

௧ାଵሺ݅ሻܦ ൌ ۔ۖەۖ
௧ሺ݅ሻܼ௧ܦۓ ൈ ,௧ߚ ௧ሺ݅ሻܧܴܣ      ൑ ௧ሺ݅ሻܼ௧ܦ         ,׎ ൈ 1, otherwise.             ሺ3ሻ  

In Eq. (3), Z୲ is a normalization factor chosen such 
that ܦ௧ାଵ will be a distribution 

 Set t ൌ t ൅ 1 
4) Output the final hypothesis: 

௙݂௜௡ሺݔሻ ൌ ∑ ቄሺ݈݃ ଵఉሻ ௧݂ሺݔሻቅ௧ ∑ ሺ݈݃ ଵఉሻ௧ .                                 ሺ4ሻ 

B. AdaBoost.RT-FFN-BP Based Predictive Model 
It is of great significance to improve the performance of 

prediction in time series research areas. Although optimize 
single predictor such as FFN-BP can in some degree improve 
the accuracy of prediction, such simple neural networks 
cannot well forecast when it is applied to the complex 
nonlinear time-series prediction. 

In order to enhance the performance of FFN-BP predictor, 

an ensemble model: AdaBoost.RT-FFN-BP is used. 
The methodology developed in this study is as follow:  
START 

Input: ሺݔଵ, ,ଵሻݕ ڮ ሺݔ௠, ,௠ሻݕ ,ݔ ݕ א Թ; 
Initialize the distribution for all i: D୲ሺ݅ሻ ൌ ଵ௠; 

FOR t ൌ 1, ڮ , T 
Select the training data depend on distribution ܦ௧ሺ݅ሻ and 
train FFN-BP; 
Obtain the FFN-BP: ௧݂ሺݔሻ; 
Calculate ܧܴܣ௧ሺ݅ሻ ൌ ቚ௙೟ሺ௫೔ሻି௬೔௬೔ ቚ; 
Calculate the error rate of  ௧݂ሺݔሻ    ߝ௧ ൌ ෍ ׎௧ሺ݅ሻ௜:஺ோா೟ሺ௜ሻவܦ  

Calculate  ߚ௧ ൌ  ;௧௡ߝ
Update  ܦ௧ାଵሺiሻ; 

End loop; 
Output:  ௙݂௜௡ሺݔሻ; 

END 

C. The Bias-Variance Decomposition 
If we average the output of several different models ௧݂ሺݔሻ , 

we call it an ensemble model መ݂ሺݔሻ ൌ ෍ ௧ݓ ௧݂ሺݔሻ௧்ୀଵ .                                                              ሺ5ሻ 

We further assume that the model weights ݓ௧  sum to one ∑ ௧ݓ ൌ 1௧்ୀଵ . The central feature of this method its 
generalization ability. It was shown by several authors, that 
the generalization error of an ensemble model could be 
improved if the single models on which averaging is done 
disagree and if their output is uncorrelated [20], [21]. This 
becomes obvious, if we investigate the expected 
generalization error: Errሺܠሻ ൌ ฮ መ݂ሺݔሻ െ  ฮଶ.                                                             ሺ6ሻݕ
and its bias/variance decomposition given by German in [3]. Errሺܠሻ ൌ ଶߪ ൅ ሺݏܽ݅ܤሺ መ݂ሺ࢞ሻሻሻଶ ൅ ݎܸܽ ቀ መ݂ሺ࢞ሻቁ.                   ሺ7ሻ 

In Eq. (7), ߪଶ is the variance of y given x. The variance 
term could be decomposed in the following way:  Var൫ መ݂൯ ൌ ෍ ሾܧ௧ଶ൫ݓ ௧݂ଶሿ െ ଶሺܧ ௧݂ሻ൯்

௧ୀଵ ൅ 2 ෍ ൣܧ௝൫ݓ௧ݓ ௧݂ ௝݂൧ െ ሾܧ ௧݂ሿൣ ௝݂൧൯௧ழ௝ .       ሺ8ሻ 

where the expectation is taken with respect to the data set 
under investigation. The first sum in Eq. (8) marks the lower 
bound of the ensemble variance and is the weighted mean of 
the variances of the ensemble members. The second sum 
contains the cross-terms of the ensemble members and 
vanishes if the models are completely uncorrelated. This 
shows that the reduction in the variance of the ensemble is 
related to the degree of the independence of the single models. 
There are several ways to introduce model diversity to the 
ensemble in order to decorrelate the output of the individual 
ensemble members. A typical approach is to use AdaBoost 
algorithm as a training method to increase the diversity which 
have proved our idea in theory. 

150



 
 

 

IV. SIMULATION RESULTS AND DISCUSSIONS 

A. Phase Space Reconstruction 
If we consider an equidistant sampled time series: ሼݔଵ, ,ଶݔ ڮ ,  ௜ሽ, we can construct a d-dimensional state spaceݔ

vector ࢞௜ in the form ࢞௜ ൌ ቀݔ൫௜ିఒሺௗିଵሻ൯, ,൫௜ିఒሺௗିଶሻ൯ݔ ڮ ,  ௜ቁ.                                   ሺ9ሻݔ
In Eq. (9), ߣ  denotes the time lag. A “one-step ahead 

prediction” model ݂ሺ࢞ሻ for iterated time series prediction has 
the form: ݂: ܴௗ ՜ ܴ.                                                                                  ሺ10ሻ ݂ሺ࢞௜ሻ ൌ  ௜ାଵ.                                                                             ሺ11ሻݔ

we perform the iterated prediction in such a way, that we 
use the predicted value ݔ௡ାଵ to construct the next state space 
vector ࢞௡ାଵ  which is used to predict the next time series 
sample ݔ௡ାଶ and so on. In the field of nonlinear time series 
analysis, this method was suggested by Farmer and 
Sidorowich [22] in order to make short term predictions of 
chaotic systems. 

B. Predictive Performance Indices Used 
The formulas of the indices use the notation ݔሺݐሻ for the 

series actual value, ݔොሺݐሻ for its predicted value, and I for the 
number of observations (ܫ ൌ 20). 

The three metrics: mean absolute error (MAE), mean 
squared error (MSE), root mean squared error (RMSE), are 
calculated according to Eq.  (12) — (14) respectively. MAE ൌ ሻݐሺݔ| െ ሻ|.                                                             ሺ12ሻ MSEݐොሺݔ ൌ ܫ1 ෍ሺݔሺݐሻ െ ሻሻଶூݐොሺݔ

௧ୀଵ .                                                 ሺ13ሻ 

ܴMSE ൌ ඩ1ܫ ෍൫ݔሺݐሻ െ ሻ൯ଶூݐොሺݔ
௧ୀଵ .                                          ሺ14ሻ 

In order to evaluate the prediction performance and 
compare it with the results reported in the literature, two error 
criterions are used for ranking different methods in the CATS 
Benchmark [23]. One is the mean square error ܧଵ (Eq.  (15)) 
which will be computed on the five data segments using: ܧଵ ൌ ∑ ሺݔ௧ െ ො௧ሻଶଵ଴଴଴௧ୀଽ଼ଵ100ݔ ൅ ∑ ሺݔ௧ െ ො௧ሻଶଶ଴଴଴௧ୀଵଽ଼ଵ100൅ݔ ∑ ሺݔ௧ െ ො௧ሻଶଷ଴଴଴௧ୀଶଽ଼ଵ100ݔ  ൅ ∑ ሺݔ௧ െ ො௧ሻଶସ଴଴଴௧ୀଷଽ଼ଵ100൅ݔ ∑ ሺݔ௧ െ ො௧ሻଶହ଴଴଴௧ୀସଽ଼ଵ100ݔ .                              ሺ15ሻ 

Another is the mean square error ܧଶ (Eq. (16)) which will be 
computed on the four data segments using: ܧଶ ൌ ∑ ሺݐݔ െ ൌ981ݐሻ21000ݐොݔ 80 ൅ ∑ ሺݐݔ െ ൌ198180൅ݐሻ22000ݐොݔ ∑ ሺݐݔ െ ൌ298180ݐሻ23000ݐොݔ ൅ ∑ ሺݐݔ െ ൌ398180ݐሻ24000ݐොݔ . 
                                                                                         ሺ16ሻ 

The main difference between the two metrics defined by 
eqn. (15) and (16) is that the 5th data segment of 20 data 
samples is missing in the latter formula due to the 
unavailability of the real data for some participants in the 
competition [23].  

C. Illustrative Example #1: Chua’s Circuit time-series 
prediction 
The data set was part of the time-series competition of the 

International Workshop on Advanced Black-Box Techniques 
for Nonlinear Modelling in 1998 in Leuven, Belgium. It 
stems from a nonlinear transform of a 5-scroll generalized 
Chua’s circuit (see [24] for a detailed description). The data 
set consists of 2000 points and the prediction of the following 
200 data is shown in Fig. 1. To allow a comparison with 
previous results in this work, the value of dimension d ൌ 50 
and time lag λ ൌ 1 are used to construct time delay vectors.  

We construct an ensemble model AdaBoost.RT-FFN-BP 
based on 30 rounds training and the final outcome of the 
ensemble method is obtained. The output generated by 
AdaBoost.RT-FFN-BP and FFN-BP is shown in Fig. 2(a), 
and Fig. 2(b) shows the differences in prediction error 
between the ensemble model: AdaBoost.RT-FFN-BP and the 
base learner: FFN-BP. 

 
Fig.1. Chua’s circuit time-series data 

 
Fig.2. Comparison of the Chua’s circuit time-series prediction results of 

AdaBoost.RT-FFN-BP and FFN-BP 
The results of the simulation on Chua’s circuit data are 

shown in Table Ⅰ. It is noteworthy that the MSE value of 
AdaBoost.RT- FFN-BP is 4.4499e-05 and the RMSE value is 
0.0067; the MSE value of FFN-BP is 6.4729e-05 and the 
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RMSE value is 0.0080. It is clear that the ensemble method: 
AdaBoost.RT-FFN-BP performs better than the single 
FFN-BP. 

TABLE Ⅰ 
 Comparison of time-series predictive performance of 

AdaBoost.RT-FFN-BP and FFN-BP 
 FFN-BP AdaBoost.RT-FFN-

BP 
MAE 0.0048 0.0040 
MSE 6.4729e-05 4.4499e-05 

RMSE 0.0080 0.0067 

D. Illustrative Example #2: CATS Benchmark time-series 
prediction 
The data set of the CATS Benchmark was provided by 

Lendasse [23] and consists of an artificial time-series with 
5000 data points (see Fig. 3), wherein 100 values are missing. 
These missing values are divided in five blocks of 20 points 
that have to be predicted (circled portion). In order to cope 
with this complex time-series, we examined two different 
cases to construct the ensemble models from different choice 
of training datasets. Also, the ensemble size is selected to 30. 

 
Fig.3. The CATS Benchmark 

Case1:Multiple Local Models  
To allow a comparison with previous results in this work, 

the value of dimension d ൌ 14 and time lag λ ൌ 1 are used to 
build time-delay vectors. The structure of FFN-BP is 14 ൈ 29 ൈ 1  and the high-level diagram of multiple local 
model is shown in Fig. 4.  Table Ⅱ  illustrates the five 
segments which have been divided to predict. 

 
Fig.4. The structure of multiple local model 

 

TABLE Ⅱ 
 Division of Training and Test (for prediction) Dataset  

Segment Training data Predicting data 
1 1:980 981:1000 
2 1001:1980 1981:2000 
3 2001:2980 2981:3000 
4 3001:3980 3981:4000 
5 4001:4980 4981:5000 

The Fig. 5(a) illustrates the AdaBoost.RT-FFN-BP and 
FFN-BP forecast for the time series (segment 1), along with 
their actual data. The comparison of the forecasts against the 
actual data shows the differences in performances. 
Meanwhile, the differences in mean absolute error between 
the ensemble model and single model are presented in Fig. 
5(b). 

 
Fig.5. Comparison of time-series (segment 1) prediction results of 

AdaBoost.RT-FFN-BP and FFN-BP 
The Fig. 6(a) and Fig. 7(a) illustrate the 

AdaBoost.RT-FFN-BP and FFN-BP forecast for the time 
series (segment 2 and segment 3 respectively), along with 
their actual data. The comparison of the forecasts against the 
actual data shows the differences in performances.   
Meanwhile, the difference in mean absolute error between the 
ensemble model and single model are presented in Fig. 6(b) 
and Fig. 7(b). 

 
Fig.6. Comparison of time-series (segment 2) prediction results of 

AdaBoost.RT-FFN-BP and FFN-BP 
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Fig.7. Comparison of time-series (segment 3) prediction results of 

AdaBoost.RT-FFN-BP and FFN-BP 

 
Fig.8. Comparison of time-series (segment 4) prediction results of 

AdaBoost.RT-FFN-BP and FFN-BP 
The Fig. 8(a) illustrates the AdaBoost.RT-FFN-BP and 

FFN-BP forecast for the time series (segment 4), along with 
their actual data. The comparison of the forecasts against the 
actual data shows the differences in performances. 
Meanwhile, the difference in mean absolute error between the 
ensemble model and single model is presented in Fig. 8(b). 

The Fig. 9(a) illustrates the AdaBoost.RT-FFN-BP and 
FFN-BP forecast for the time series (segment 5), along with 
their actual data. The comparison of the forecasts against the 
actual data shows the differences in performances. 
Meanwhile, the difference in mean absolute error between the 
ensemble model and single model is presented in Fig. 9(b). 
 

 
Fig.9. Comparison of time-series (segment 5) prediction results of 

AdaBoost.RT-FFN-BP and FFN-BP 
Table Ⅲ  presents the results of the CATS benchmark 

time-series prediction. It is noteworthy that the best MAE 
value of AdaBoost.RT-FFN-BP is 10.0611, the MSE value is 
148.8750 and the RMSE is 12.2014 in segment 2. In contrast, 
the best results, which are produced by FFN-BP, are the MAE 
value: 11.8036, the MSE value: 191.6047 and the RMSE 
value: 13.8421. From comparison, we can conclude that 
ensemble model performs better than single model. 

TABLE Ⅲ 
Comparison of the predictive results of AdaBoost.RT-FFN-BP (Ensemble 1) 

and FFN-BP based method 1. (case 1) 
Segment Model MAE MSE RMSE 
981:1000 FFN-BP 

Ensemble 1 
22.6435 
11.3187 

670.8340 
202.8045 

25.9005 
14.2409 

1981:2000 FNN-BP 
Ensemble 1 

11.8036 
10.0611 

191.6047 
148.8750 

13.4043 
12.2014 

2981:3000 FNN-BP 
Ensemble 1 

14.2491 
11.9159 

337.1632 
210.6642 

18.3620 
14.5143 

3981:4000 FNN-BP 
Ensemble 1 

58.6956 
16.9304 

4.99e+03 
394.7494 

67.0270 
19.8683 

4981:5000 FNN-BP 
Ensemble 1 

18.2709 
14.5792 

497.4509 
350.3858 

22.3036 
18.7186 

It is unexpected, however, to observe that in segment 4 
there is an obvious degradation between the performance of 
the AdaBoost.RT-FFN-BP and FFN-BP. In paper (Wichard 
et al., 2004) [4], the author pointed out the drawbacks of local 
model: this local strategy could only characterize local 
features and cannot characterize the global features of the 
whole time-series, so we need to optimize and change this 
local strategy.  

 
Case2: A Single Global Model 
 

The discussion in the previous section has shown that we 
can improve our method by using the strategy of global 
modeling instead of local model. In comparison to multiple 
local model, a single global model is proposed which cope 
with all the training data including the five segments. Finally, 
we use this single global model to predict the 100 missing 
data respectively which have been divided into five blocks.  
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To allow a comparison with previous results in this work, 
the value of dimension d ൌ 14 and time lag λ ൌ 1 are also 
used to build time-delay vectors. The structure of FFN-BP 
neural network is 14 ൈ 29 ൈ 1 and the high-level diagram of 
a single global model is presented in Fig. 10. 

 
Fig.10. The structure of global model 

The Fig. 11(a) illustrates the AdaBoost.RT-FFN-BP and 
FFN-BP forecast for the time series (segment 1), along with 
their actual data. The comparison of the forecasts against the 
actual data shows a difference in performances. Meanwhile, 
the differences in mean absolute error between the ensemble 
model and single model are presented in Fig. 11(b). 

 
Fig.11. Comparison of time-series (segment 1) prediction results of 

AdaBoost.RT-FFN-BP and FFN-BP 
The Fig. 12(a) and Fig. 13(a) illustrate the 

AdaBoost.RT-FFN-BP and FFN-BP forecast for the time 
series (segment 2 and segment 3 respectively), along with 
their actual data. The comparison of the forecasts against the 
actual data shows the differences in performances. 

Meanwhile, the differences in mean absolute error between 
the ensemble model and single model are presented in Fig. 
12(b) and Fig. 13(b). 
 

 
Fig.12. Comparison of time-series (segment 2) prediction results of 

AdaBoost.RT-FFN-BP and FFN-BP 

 
Fig.13. Comparison of time-series (segment 3) prediction results of 

AdaBoost.RT-FFN-BP and FFN-BP 

 
Fig.14. Comparison of time-series (segment 4) prediction results of 

AdaBoost.RT-FFN-BP and FFN-BP 
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Fig.15. Comparison of time-series (segment 5) prediction results of 

AdaBoost.RT-FFN-BP and FFN-BP 
The Fig. 14(a) and Fig. 15(a) illustrate the 

AdaBoost.RT-FFN-BP and FFN-BP forecast for the time 
series (segment 4 and segment 5 respectively), along with 
their actual data. The comparison of the forecasts against the 
actual data shows the differences in performances. 
Meanwhile, the differences in mean absolute error between 
the ensemble model and single model are presented in Fig. 
14(b) and Fig. 15(b). 

The results of the CATS benchmark time-series are shown 
in Table Ⅳ. It is noteworthy that the best MAE value of 
AdaBoost.RT-FFN-BP is 7.8029, the MSE value is 118.3892 
and the RMSE value is 10.8807 in segment 4. In contrast, the 
best results, which are produced by FFN-BP, are the MAE 
value: 9.0218, the MSE value: 129.6210and the RMSE value: 
11.3851. 

For comparison, as in Table Ⅲ and Table Ⅳ, we can see 
that the best results in Global Model are MAE: 7.8029, MSE: 
118.3892, RMSE: 10.8807 while the best result obtained 
from local model are MAE: 10.0611, MSE: 148.8750, 
RMSE: 12.2014. Accordingly, the single global model 
performs better than multiple local model. 

TABLE Ⅳ 
 Comparison of predictive results of AdaBoost.RT-FFN-BP (Ensemble 2) 

and FFN-BP based method 2. (case 2) 
Segment Model MAE MSE RMSE 
981:1000 FFN-BP 

Ensemble 2 
9.0218 
8.8165 

129.6210 
121.0322 

11.3851 
11.0015 

1981:2000 FFN-BP 
Ensemble 2 

10.1799 
9.5166 

143.6330 
126.7921 

11.9847 
11.2602 

2981:3000 FFN-BP 
Ensemble 2 

10.5531 
9.7116 

161.0653 
149.8367 

12.6912 
12.2408 

3981:4000 FFN-BP 
Ensemble 2 

9.2884 
7.8029 

132.6701 
118.3892 

11.5183 
10.8807 

4981:5000 FFN-BP 
Ensemble 2 

12.2897 
12.0716 

205.5321 
200.2973 

14.3364 
14.1526 

The error indices ܧଵ for the missing 100 points and the 
mean square error ܧଶ for the missing 80 points  in the CATS 
Benchmark time series are compared with the results reported 
in the literature and presented in Table Ⅴ and Table Ⅵ. The 
experiment performed for the CATS benchmark confirms 

that the performance of the proposed method is better in 
prediction when compared to other prediction methods 
reported in the literature.  

TABLE Ⅴ 
Comparison of the predictive performance of the former methods and our 

method 
Model ܧଵ Reference 

Kalman Smoother 408 [10] 
Recurrent Neural Networks 441 [9] 
Competitive Associative Net 502 [25] 

Weighted Bidirectional Multi-stream 
Extended Kalman Filter 

530 [26] 

SVCA Model 577 [14] 
MultiGrid-Based Fuzzy System 644 [27] 

Double Quantization Forecasting Method 653 [11] 
Time-reversal Symmetry Method 660 [28] 

BYY Harmony Learning Based Mixture 
of Experts Model 

676 [29] 

Ensemble Models 725 [5] 
Chaotic Neural Networks 928 [7] 

Evolvable Block-based Neural Networks 954 [8] 
Time-line Hidden Markov Experts 1037 [30] 

Fuzzy Inductive Reasoning 1050 [31] 
Business Forecasting Approach to 
Mulitlayer Perceptron Modelling 

1156 [12] 

A hierarchical Bayesian Learning Scheme 
for Autoregressive Neural Network 

1247 [13] 

Hybrid Predictor 1425 [32] 
Multiple local models(case1) 
Single global model(case2) 

261.5  
143.3 

 
TABLE Ⅵ 

 Comparison of the predictive performance of the former methods and our 
method 

Model ܧଶ Reference 
Ensemble Models 222 [5] 

Fuzzy Inductive Reasoning 278 [31] 
Kalman Smoother 346 [10] 

Double Quantization Forecasting Method 351 [11] 
Weighted Bidirectional Multi-stream Extended 

Kalman Filter 
370 [26] 

SVCA Model 395 [14] 
Recurrent Neural Networks 402 [9] 

Time-line Hidden Markov Experts 402 [30] 
Competitive Associative Net 418 [25] 

Time-reversal Symmetry Method 442 [28] 
MultiGrid-Based Fuzzy System 542 [27] 

BYY Harmony Learning Based Mixture 
of Experts Model 

677 [29] 

Chaotic Neural Networks 762 [7] 
Hybrid Predictor 894 [32] 

Evolvable Block-based Neural Networks 994 [8] 
Business Forecasting Approach to 
Mulitlayer Perceptron Modelling 

995 [12] 

A hierarchical Bayesian Learning 
Scheme for Autoregressive 

Neural Network 

1229 [13] 

Multiple local models(case1) 
Single global model(case2) 

239.3  
129.0 

An additional aspect to be measured is the differences in 
performance between the two similar methods: ensemble 
models [5] and the methods used in this paper. The major 
difference between the two methods is complexity. 
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Considering the suggestions that the more complexity the 
models are, the more harder the ensemble model fit the test 
data and will not generalize well [15], that is why the method 
used in this paper performs better in the results on the test 
data. 

V. CONCLUSIONS 
In this work, two famous nonlinear time series are 

predicted by the ensemble method. The time-series prediction 
method uses a combination of AdaBoost.RT algorithm, feed 
forward networks and phase space reconstruction. The 
original time series data is unfolded with embedding 
dimension and time delay and reconstructed into the phase 
space. An ensembling method, that is AdaBoost.RT-FFN-BP, 
is used to predict future values of the embedded phase-space 
points. 

Despite its simplicity in implementation, the ensemble 
model exhibited a superior performance in prediction of 
chaotic time series. Based the simulation results presented 
above, we can conclude that the AdaBoost.RT-FFN-BP 
ensemble method is suitable for time-series prediction in 
terms of smaller predictive error than that of the established 
methods. 

In the future, we would consider to use different types of 
“weak” learners and to incorporate fuzzy logic so as to further 
improve the time-series predictive performance achieved in 
the present investigation. 

ACKNOWLEDGMENT 
This work is supported by the National Natural Science 

Foundation of China under Grant No. 61075070 and Key 
Grant No. 11232005.  

REFERENCES 
[1] D. Karunasinghea, S. Y. Liongb, “Chaotic time series prediction with a 

global model: Artificial neural network,” Journal of Hydrology, vol. 
323, no. 1-4, pp. 92-105, 2006. 

[2] D. M. Wang, L. Wang and G. M. Zhang, “Short-term wind speed 
forecast model for wind farms based on genetic BP neural network,” 
Journal of Zhejiang University (Engineering Science), vol. 46, no. 5, pp. 
837-842, 2012. 

[3] S. Geman, E. Bienenstock and R. Doursat, “Neural networks and the 
bias/variance dilemma,” Neural Computation, vol. 4, pp. 1-58, 1992. 

[4] J. D. Wichard and M. Ogorzalek, “Time Series Prediction with 
Ensemble Models,” In Proceedings of International Joint Conference 
on Neural Networks, vol. 2, pp. 1625-1630, 2004. 

[5] J. D. Wichard and M. Ogorzalek, “Time Series Prediction with 
Ensemble Models Applied to the CATS Benchmark,” Neurocomputing, 
vol. 70, pp. 2371–2378, 2007. 

[6] D. P. Solomatine and D. L. Shrestha, “AdaBoost.RT: a boosting 
algorithm for regression problems,” In Proceedings of International 
Joint Conference on Neural Network, vol. 2, pp. 1163-1168, 2004. 

[7] R. Kozma and I. Beliaev, “Time Series Prediction Using Chaotic 
Neural Networks: Case Study of IJCNN CATS Benchmark Test,” In 
Proceedings of the International Joint Conference on Neural Network, 
vol. 2, pp. 1609-1613, 2004. 

[8] S. G. Kong, “Time Series Prediction with Evolvable Block-based 
Neural Networks,” In Proceedings of the International Joint 
Conference on Neural Network, vol. 2, pp. 1579-1583, 2004. 

[9] X. D. Cai, “Time series prediction with recurrent neural networks 
trained by a hybrid PSO-EA algorithm,” Neurocomputing, vol. 70, no. 
13/15, pp. 2342-2353, 2007. 

[10] S. Sarkka, A. Vehtari and J. Lampinen, “Time Series Prediction by 
Kalman Smoother with Cross Validated Noise Density,” In 

Proceedings of  the International Joint Conference on Neural Network, 
vol. 2, pp. 1653-1657, 2004. 

[11] G. Simon, J. A. Lee, M. Verleysen and M. Cottrell, “Double 
Quantization Forecasting Method for Filling Missing Data in the CATS 
Time Series,” In Proceedings of  the International Joint Conference on 
Neural Network, vol. 2, pp. 1635-1640, 2004. 

[12] S. F. Crone, H. Kausch and D. Pressmar, “Prediction of the CATS 
benchmark using a Business Forecasting Approach to Multilayer 
Perceptron Modelling,” In Proceedings of  the International Joint 
Conference on Neural Network,  vol. 4, pp. 2783-2788, 2004. 

[13] A. Eleuteri, F. Acemese, F. Barone, R. De. Rosa and L. Milano, “A 
hierarchical Bayesian learining scheme for autoregressive neural 
networks:application to the CATS benchmark,”  In Proceedings of  the 
International Joint Conference on Neural Network, vol. 2, pp. 
1585-1590, 2004.  

[14] F. Palacios-Gonzalez, “A SVCA Model for The Competition on 
Artificial Time Series,” In Proceedings of  the International Joint 
Conference on Neural Network, vol. 4, pp. 2777-2782, 2004.  

[15] T. Hastie, R. Tibshirani and J. Friedman, “The Elements of Statistical 
Learning,” Springer Series in Statistics, Springer, Berlin, 2001. 

[16] H. Y. Wang and G. D. Shi, “Artificial Neural Network Technology and 
Its Applications,” China petrochemical Press, pp. 34-36, 2002. 

[17] Y. Freund and R. E. Schapire, “Experiments with a new boosting 
algorithm” In: Proceedings of the international conference on Machine 
Learning, pp. 148-156, 1996.  

[18] Y. Freund and R. E. Schapire, “A decision theoretic generalization of 
on-line learning and an application to boosting,” Journal of Computer 
and System Sciences, vol. 55, no. 1, pp. 119-139, 1997. 

[19] D. L. Shrestha and D. P. Solomatine, “Experiments with AdaBoost.RT, 
an improved boosting scheme for regression,” Neural Computation, 
vol. 18, no. 7, pp. 1678-1710, 2006. 

[20] A. Krogh and P. Sollich, “Statistical mechanics of ensemble learning,” 
Phy. Rev. E, vol. 55, no. 1, pp. 811-825, 1997. 

[21] U. Naftaly, N. Intrator and D. Horn, “Optimal ensemble averaging of 
neural networks,” Network, Comput. Neural Syst, vol. 8, pp. 283-296, 
1997.  

[22] J. Farmer and J. Sidorowich, “Predicting chaotic time series,” Phys. Rev. 
Lett. vol. 59, no. 8, pp. 845-848, 1987. 

[23] A. Lendasse, E. Oja, O. Simula and M. Verleysen, “Time series 
prediction competition: the CATS Benchmark,” In  Proceedings of the 
International Joint Conference on Neural Networks, vol. 2, pp. 
1615-1620, 2004. 

[24] J. McNames, J. Suykens, and J. Vandewalle, “Winning Entry of the 
K.U.Leuven Time Series Prediction Competition,” International 
Journal of Bifurcation and Chaos, vol. 9, no. 8, pp. 1485-1500, 1999. 

[25] S. Kurogi, M. Sawa and T. Yeno, “Time series prediction of the CATS 
benchmark using Fourier bandpass filters and competitive associative 
nets,” Neurocomputing, vol. 70, pp. 2354–2362, 2007. 

[26] X. Hu and D. Wunsch, “Time Series Prediction with a Weighted 
Bidirectional Multi-stream Extended Kalman Filter,” Neurocomputing, 
vol. 70, pp. 2392 – 2399, 2007. 

[27] L. J. Herrera, H. Pomares, I. Rojas, A. Guillen, J. Gonzalez and M. 
Awad, A. Herrera, “MultiGrid-Based Fuzzy Systems for Time Series 
prediction: CATS Competition,” Neurocomputing, vol. 70, no. 13, pp. 
2410-2425, 2004. 

[28] P. F. Verdes, P. M. Granitto, M. I. Szeliga, A. Rebola and H. A. 
Ceccatt, “Prediction of the CATS benchmark exploiting time-reversal 
symmetry,” In Proceedings of  the International Joint Conference on 
Neural Network, vol. 2, pp. 1631-1634, 2004. 

[29] H. W. Chan, W. C. Leung, K. C.  Chiu and L. Xu, “BYY Harmony 
Learning Based Mixture of Experts Model for Non-stationary Time 
Series Prediction,” In Proceedings of the International Joint 
Conference on Neural Network, 2004. 

[30] X. Wang, “Time-line Hidden Markov Experts for the Prediction of 
CATS time series,” In Proceedings of  the International Joint 
Conference on Neural Network,  2004. 

[31] Fr. E. Cellier and A. Nebot, “Multi-resolution Time-Series Prediction 
Using Fuzzy Inductive Reasoning,” In Proceedings of the International 
Joint Conference on Neural Network, Budapest, vol. 2, pp. 1621-1624, 
2004. 

[32] C. Y. Ping, W. S. Nan, and S. H. Shing, “A Hybrid Predictor for Time 
Series Prediction,” In Proceedings of  the International Joint 
Conference on Neural Network, vol. 2, pp. 1597-1602, 2004. 

156




