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Abstract—Discriminant neighborhood embedding (DNE) al-
gorithm is one of supervised linear dimensionality reduction
methods. Its nonlinear version kernel discriminant neighbor-
hood embedding (KDNE) is expected to behave well on clas-
sification tasks. However, since KDNE constructs an adjacent
graph in the original space, the adjacency graph could not
represent the adjacent information in the kernel mapping space.
By introducing hidden space, this paper proposes a novel
nonlinear method for DNE, called hidden space discriminant
neighborhood embedding (HDNE). This algorithm first maps
the data in the original space into a high dimensional hidden
space by a set of nonlinear hidden functions, and then builds
an adjacent graph incorporating neighborhood information of
the dataset in the hidden space. Finally, DNE is used to find
a transformation matrix which would map the data in the
hidden space to a low-dimensional subspace. The proposed
method is applied to ORL face and MNIST handwritten digit
databases. Experimental results show that the proposed method
is efficiency for classification tasks.

I. INTRODUCTION

Dimensionality reduction methods have been attracted
a lot of attention in machine learning, pattern recognition
and computer vision etc. As one of important preprocessing
steps in the analysis of high dimensional data, dimensionality
reduction usually makes the data in a high dimensional
space embed in a relatively low dimensional space, mean-
while, with most of the original data information preserved
[1] [2]. Usually, dimensionality reduction methods can be
divided into two groups, or linear and non-linear ones
(4151061718191 1011 LI[12][13][14][15][16].

The most classic linear dimensionality reduction method
is principal components analysis (PCA), of which the vari-
ance of data is used to measure useful information [20].
Typically, the larger the variance of data in some direction is,
the more information this direction has; otherwise, the less
information and value it has.

Since S. Roweis et al. proposed locally linear embedding
(LLE) algorithm [3], manifold learning representing non-
linear dimensionality reduction methods quickly attracted
attention of so many researchers. For the advantage of
both linear dimensionality reduction and manifold learning,
locality preserving projection (LPP), regarded as an upgrade
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version of PCA, was proposed [4]. As an unsupervised
dimensionality reduction method, it could maximally keep
the neighborhood structure of a high dimensional dataset. If
points are close to each other in both the original space,
they remain a relatively close distance after reducing di-
mensionality so as to preserve the local structure. Therefore,
LPP is able to find a better projection direction for the data
belonging to different classes with a far distance between
each other. Some manifold learning methods, such as LLE,
cannot yield a projection matrix, so they cannot perform
incremental learning for new data. To cover this shortage,
neighborhood preserving embedding (NPE) was proposed,
which is a linear approximation of LLE and able to learn a
projection matrix [5].

Usually, classification is a supervised learning with prior
knowledge of class information. However, manifold dimen-
sionality reduction methods discussed above are all unsuper-
vised so that they cannot make full use of the prior knowl-
edge. To remedy this, Zhang et al. proposed a supervised
linear dimensionality reduction method, called discriminant
neighborhood embedding (DNE) [16]. In DNE, if the points
belonging to the same class are close to each other in original
space, they would still remain a relatively close distance after
reducing dimensionality. While if the points belonging to the
different classes are close to each other in original space,
they would remain a relatively far distance after reducing
dimensionality. By introducing kernel tricks into DNE, a
non-linear version called kernel DNE (KDNE) was proposed
[25], where kernel function must satisfy Mercer’s condition
[17] and [18]. Nevertheless, being similar to DNE, KDNE
only constructs the adjacent graph of original space without
taking into account one of mapping space so that local
geometric structure cannot be preserved efficiently when
learning dimensionality reduction of the transition matrix.

Considering that DNE cannot get a better projection with
linearly non-separable samples and KDNE cannot employ
neighborhood relationships efficiently in a high dimensional
space, we introduce the conception of hidden space. By
using a nonlinear hidden function, the data in the original
space are mapped into a high dimensional space. As a
consequence, some linearly non-separable samples in a low
dimensional space are now separable [19]. The novel method



is called hidden space discriminant neighborhood embedding
(HDNE), which is also a nonlinear extension of DNE.

HDNE first maps the data in the original space into the
the high dimensional hidden space in which the data would
be linearly separable, and then builds its adjacent graph so
that the local relationships for samples can be preserved in
the hidden space. Reducing the dimensionality of samples in
the hidden space by applying DNE can make the samples
be linearly separable not only in the hidden space but also
in the discriminant subspace. As a result, the recognition
rate could be significantly improved. Experimental results on
artificial and real-world datasets show that HDNE has higher
recognition rates.

The remainder of the paper is organized as follows. In
Section 2, we briefly review the DNE and KDNE. Section 3
presents HDNE. Simulation experiments are given in Section
4 and conclusions are provided in Section 5.

II. RELATED WORKS

In this section, DNE method and KDNE method will be
reviewed briefly.

A. Discriminant Neighborhood Embedding

To exploit the class information efficiently, Zhang et al.
proposed DNE which requires to build an adjacent graph
between the samples in an original space and meanwhile tries
to preserve the adjacent relationships in a low dimensional
space. If the points belonging to the same class are close
to each other in the high dimensional space, they would
remain a relatively close distance in a discriminant subspace.
If the points belonging to the different classes are close to
each other in the high dimensional space, they would be
separated in a discriminant subspace. Next, we will give a
brief introduction of DNE algorithm.

Given a set of training samples {(x;, yi)}?i \» where x; € R"™,

vi €{1,2,...,c} is the label of x;, and ¢, N and m denote the
number of classes, the number of samples and dimension-
ality, respectively. The goal of DNE is to find a projection
matrix A. If any two samples x; and x; belonging to the
same class are close, v; = ATx; and v; = ATx; are close,
too. Of course, if they belong to different classes, the dis-
tance between them would become far after projection. The
projection matrix is represented as A = [a;, a;, ..., a4] € Rmxd
where d < m and the vectors a; € R™ are independent of each
other. The detail procedure of DNE is listed in Algorithm 1.

B. Kernel Discriminant Neighborhood Embedding

Given X,z € X C R™ and nonlinear function ®, we can
map x and z in the input space X into a feature space F,
where F € R™ and m < M. According to the Mercer
theorem, we have

k(x,z) = O(x)T D(z)

where k(x, z) denotes a Mercer kernel function which makes
M-dimensional inner product operation in a high dimensional
space change to be m-dimensional calculus of function in a
low-dimensional space.
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Algorithm 1 DNE

Input: Training sample matrix X = [Xj,X2,..., xy] € RN,
and the dimensionality of discriminant subspace d;

Output: Projection matrix A;

1). Construct the adjacent graph matrix F, which is defined as:
+1, X; and X; are neighbors and y; = y;

—1, x; and X; are neighbors and y; # y;

0, otherwise

Fij =

2). Solve the following optimization problem:
mAin trace(ATX(S - F)XTA)

st. aTa;=1laTa;=0i#jij=1,...,
where S is a diagonal matrix and its entries are S;; = 3 ; Fj;.
The projection matrix A can be obtained by computing
the eigenvalue problem of X(S — F)X7A = 1A.
Let eigenvalues be A; and their corresponding eigenvectors be
a;. Assume that ] < A <--- <4, .

3). Return A = [a, ay, ..., a4]

As a result, the problems such as curse of dimension-
ality are solved skillfully. Next, three common kernels are
presented below [22]. Polynomial kernel is

k(xixj) = (x;"X; + )

(1)
where p is parameter of this kernel. Gaussian kernel is

2

k(xi, X;) = exp(=ix; = x;I*/s%)
where s > 0 is parameter of this kernel. Linear kernel is

k(x; X)) = x;'X; 3)

By introducing kernel tricks, DNE could be generalized
to its nonlinear version, or KDNE. The goal of KDNE is
also to find a projection matrix A € R¥*? which cannot be
obtained explicitly. Fortunately, we could get samples in the
discriminant subspace space by using an auxiliary matrix
B € R¥*4. Namely, v; = B'K ;, where K is a kernel Gram
matrix with K;; = k(x,-, X j). The detail for KDNE is given in
Algorithm 2.

Algorithm 2 KDNE
Input: A training set {
subspace d

Output: Auxiliary matrix B;

N

(Xi, y)}iL,» and the dimension of discriminant

1). Construct the adjacent graph F which is defined as:
+1, X; and X; are neighbors and y; = y;
{ —1, X; and X; are neighbors and y; # y;
0, otherwise
2). Solve the following optimization problem:
min  rrace(AT(S - F)KTA)
st. ala;=1laTa;=0,i#ji,j=1,...,
where 8 is a diagonal matrix and its entries are S;; = 3; F;.
The auxiliary matrix B can be obtained by computing the eigenvalue
problem of (S — F)K'B = AB.

Let eigenvalues be 4; and their corresponding eigenvectors be
b;. Assume that 1} S Ay < -+ < Ay .

Fij

3). Return B = [by, ba, ..., by]

III. HipbEN SPACE DISCRIMINANT NEIGHBORHOOD EMBEDDING

DNE is a linear feature transform so that it does not work
well for the linearly non-separable data. Although the non-
linear version of DNE, or KDNE, has been proposed, its
adjacent graph is still construed in the original space. Usu-
ally, the local relationship between samples in the original



space cannot be guaranteed in the high-dimensional space
obtained by nonlinear mapping. Taking into account these
shortcomings in DNE and KDNE, we propose a hidden space
discriminant neighborhood embedding method.

A. Hidden Space

Hidden space is derived from neural networks, and is
introduced to support vector machines (SVMs) in [19]. Gen-
erally, SVMs require the Mercer kernel functions. However,
Nonlinear hidden functions could be any kernel ones. Some
learning algorithms have been extended into the hidden space
such as PCA [23] and LDA [24].

With the help of some nonlinear hidden function, data
being linearly non-separable in the original space can be
mapped into a high-dimensional space in which data are
now linearly separable. Given N samples {x,-}l]i |» We map
them into a hidden space by using a hidden function ¢(x).
Let z = ¢(x), where z is the image of x. We take kernel

functions as hidden functions, and we have

z = [k(X, X)), ..., k(x,xy)]"

“4)

In hidden functions, we require only the symmetry for
kernel functions instead of Mercer’s condition. In addition,
we can obtain the mapped samples z. So, it is very convenient
to calculate statistics for samples.

B. HDNE

In a classification task, assume that the set of labeled
training samples is {x,-,y,-}fil, where x; € R™, and y; €
{1,2,...,c}. By employing the hidden function (4), the images
of x; in the hidden space are

z; = [k(Xi, X1), - k(X X)]"
In the hidden space, the training set can be represented as
{z;, yi}¥ | where z; € RV.

Since the concrete form of samples has been known in
the hidden space, so we are able to directly build the adjacent
graph F in this space. The entries of ith row and jth column

in F is

Recall that the dimensionality of hidden space may be
very high, so it needs to reduce dimensionality for efficient
computation. Let the transformation matrix be P € RNxd
where d denotes the dimensionality of discriminant subspace.
In the discriminant subspace, the sample z; € R™ is trans-
formed to be P7z; € R,

+1, z; and z; are neighbors and y; = y;
—1, z; and z; are neighbors and y; # y;
0, otherwise

F; (5)

Let ¢(P) and ¢(P) be the within-class and the between-
class neighborhood scatters, respectively. The within-class
neighborhood scatter ¢(P) is defined as

p@) = > [Pz~ Pz’

LJYi=Yi

(6)
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where z; and z; are neighbors and belong to the same class.
The between-class neighborhood scatter ¢(P) is defined as

e®) = > P72 — Tz )

i,j,y;iy_,

where z; and z; are still neighbors but belong to the different
classes. We hope that if neighbors belong to the same
class they should be close to each other in the discriminant
subspace; otherwise, be far away from each other. We can
implement our demand by minimizing the ¢(P) and maxi-
mizing ¢(P) at the same time, which could be described as

InPin AP) = ¢(P) — ¢(P) (8
Substituting (5) into the expression of A(P), we can
rewritten it as follows:

N
AP) = 3 |IPTz; — PTz|’F;
i,j=1
N
=2 Y (z"PPTz; — 2,"PPTx;)F;;
i,j=1
N
=2 Y tr(PTzz P - P'z;2, P)F;))
i,j=1
N
=2ur( 3 (PTz,F;jz,"P - PTz;F;;2,"P))
i,j=1
=2tr(PTZSZP - PTZFZP)
=21r(P"Z(S - F)Z"P)

(€))

where r(-) denotes the trace of a matrix, and Z
(21,22, ... zy], and 8 is a diagonal matrix with §; Z?’Zl Fij.
As a result, the problem (8) can be rewritten as

r(PTZ(S - F)Z'P)
PP =1

min (10)

S.t.
and where I is the identity matrix.

In the following, we introduce a lemma in [25] and give
a theorem which describes the solution to (10).

Lemma 1: Suppose A € R is a real symmetric
matrix and its minimum eigenvalue is A;. The solution
to the minimization problem of n”An which subjects to
n’n = 1 and n € RY is the eigenvector corresponding to
the eigenvalue 4.

Theorem 2: Assume that the eigenvalues of the matrix
ZS —F)Z" are 1, < ... < A < A < ... < Ay, and
&, is the corresponding eigenvector of eigenvalue A;. Then
optimal P to the minimization problem r+(PTZ(S — F)Z'P)
is the corresponding eigenvectors of the first d eigenvalues.
Name]y’ P= [gh ) %d]

Proof: Since (S — F) is a real symmetric matrix, Z(S —
F)Z” is also a real symmetric matrix. According to Lemma
1,if d = 1, only when P is the eigenvector corresponding to
the minimum eigenvalue A, of matrix Z(S — F)Z” (namely
P =&)) is P"Z(S — F)Z"P minimum. Right now, A, is the
optimal value of 7(PTZ(S - F)ZTP).

Similarly, if let P represent eigenvectors corresponding to
the first d minimum eigenvalues (namely P = [, -+, &;]),
d

then we have +(PTZ(S — F)Z'P) = 3 A, Right now,

i=1



tr(PTZ(S-F)ZTP) achieves its optimal value. This completes
the proof.

Theorem 2 shows that minimizing tr(P”Z(S — F)Z'P) is
equivalent to eigendecompose on the matrix Z(S — F)ZT.
If the projection matrix is composed of the eigenvectors
corresponding to the first d eigenvalues, the value of ob-
ject function with respect to optimization problem (11) is
minimum.

C. Comparison of DNE, KDNE and HDNE

By constructing the adjacent graph for samples in the
original space, DNE makes their local structure be preserved
in a discriminant subspace. In addition, the problem of

finding the projection matrix is equivalent eigendecompose
X(S - F)XT.

Nevertheless, DNE is linear so that it cannot be applied
to the linearly non-separable data in the original space. As a
remedy for this drawback, KDNE makes DNE extend to be
nonlinear, but it still utilizes the adjacent graph constructed
in the original space. For KDNE, the matrix that needs
eigendecomposition is (S — F)KT .

The method proposed here is first to map the data in
the original space into into the hidden space and then
to construct the adjacent graph in this space. The local
structure of samples in the hidden space can be preserved
when performing dimensionality reduction. Thus, HDNE
remedies the drawbacks that DNE is not fit for nonlinear
problems and KDNE cannot preserve the local structure
of high-dimensional space. HDNE tries to eigendecompose
ZS-FZ" .

From the above, the three methods are all based on eigen-
decomposition of some matrix, and then obtain the projection
matrix composed of the eigenvectors corresponding to the
first d minimum eigenvalues.

IV. SmmuLaTION EXPERIMENTS

In this section, to validate the efficiency of HDNE,
we compare it with other methods, including PCA, LDA,
LPP, NPE, DNE, KFDA and KDNE on image classification
problems. Here, we consider two kinds of images: face and
handwritten digit.

For KDNE, KFDA and HDNE, Gaussian kernel k(x,X’) =
exp{—pllx—x'||} with the kernel parameter p > 0 is used. This
parameter p is selected by using 5-fold cross validation.

A. Face Recognition

Consider the widely studied ORL Face dataset (from the
website: http://archive.ics.uci.edu/ml/datasets.html),which is
created by the University of Cambridge and has a total of 400
face images with different illumination intensity and facial
expression etc., each 112 x 92, from 40 persons and 10 for
each one. It also gives considerations to race, gender and
facial expression and is a frequently-used face dataset.

In the face recognition experiment, we mainly focus on
the effect of the dimensionality of discriminant subspace
on recognition rates under different choices for K, where
K is the parameter of the nearest neighbor (NN) classifier.
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Thus, without prior knowledge, K is set to be 1, 3 and
5 respectively. In the experiment, we randomly select 5
samples from the same person for training and the rest are
for test. There are 200 training and test samples, respectively.
All samples are divided by 255 to implement normalization.

For the high-dimensional original images, we first utilize
PCA to reduce dimensionality from 10,304 to 100. In doing
so0, there are two benefits. On the one hand, computations are
greatly reduced. On the other hand, the majority of noises are
diminished. We repeat our experiment 100 trials and report
the average result on test sets.

For PCA, LDA, LPP, NPE and DNE, their dimensionali-
ties of discriminant subspace and recognition rates are plotted
in one figure because their maximal dimensionalities are all
100 after dimensionality reduction. While for KDNE, KFDA
and HDNE, their results are plotted in another one figure
because they have the same maximal dimensionality of N.

When different K value is selected, Fig. 1 presents
the corresponding performance along with the change of
dimensionality for these methods. From Figs. 1, we can know
that, for all the methods, at the beginning the performance
improves all the time along with increasing dimensionality,
and then it tends to be invariable or decreasing. From Figs.
1(a), 1(c) and 1(e), we can know that with different K
values, DNE method is always able to reach a maximum,
being better than PCA, LDA, LPP and NPE, in different
discriminant subspace. As the nonlinear version of DNE,
from Fig. 1(b), 1(d) and 1(f), KDNE,KFDA and HDNE have
great change in recognition rate along with the change of
dimensionality. Obviously, HDNE works better than KDNE
and KFDA no matter which K is selected in our experiment.

Table 1. PERFORMANCE COMPARISONS ON ORL DATASET (K = 1)
Method | Dimensional of subspace | Recognition rate
PCA 79 84.00
LDA 22 84.50
LPP 59 76.00
NPE 100 82.00
DNE 65 92.00
KDNE 194 79.50
KFDA 35 82.00
HDNE 71 96.50

From Fig. 1, we can see that all methods have better
performance when K = 1. The larger K does not mean
better since ORL face data are insufficient. Table 1 provides
the best recognition rates obtained by all methods and the
corresponding dimensionality of discriminant subspace for
K = 1. Compared with KDNE, HDNE always has a better
recognition rate and a lower dimensionality of discriminant
subspace. As a result, our view that although being also a
nonlinear extension of DNE, KDNE does not employ the
adjacent graph to preserve the local structure so that lead to
an unsatisfied recognition rate is verified. By contrast, HDNE
method achieves this, which makes the following view be
persuasive: compared with the practice that use kernel as
nonlinear extension, this method that let the data map into
high-dimensional space, and then construct adjacent graph to
preserve the relationships between neighbors can work better
and get a higher recognition rate in discriminant subspace.



Recognition Rate

30 40 50 60 70 80 90 100
Dimension

(a) K=1

Recognition Rate

= NPE
-« DNE|[]
LDA

30 40 60 80 90 100

50
Dimension

(c) K=3

Recognition Rate

40 60 80
Dimension

(e) K=5

Figure 1. Recognition vs. dimensionality on ORL face dataset

B. Handwritten Digit Recognition

Consider the MNIST dataset (from  website
http:jlarchive.ics.uci.edumli/datasets.html), which has a
total of 60,000 training and 10,000 test images with total 10
classes. Five classes, including digits 1, 3, 7, 8 and 9, are
selected. For each class, we randomly select 50, 100 and
150 samples from the original training set as our training
set, 100 samples from the original test set as our test set.
In this experiment, PCA is stilled utilized to preprocess
in order to obtain the [00-dimensional data, and nearest
neighbor is selected as the classifier.

In this experiment, we will mainly perform analysis on
the effect of the number of samples on the dimensionality of
discriminant subspace and recognition rates. Fig. 2 clearly
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shows that the larger the number of samples is, the higher
recognition rate is under condition of the same dimension-
ality for discriminant subspace. For Figs. 2(a), 2(c) and
2(e), the statuses of recognition rates for four methods are
clearly presented along with the change of dimensionality of
discriminant subspace. With the increase of dimensionality,
the recognition rate of each method improves on the whole.
Figs. 2(b), 2(d) and 2(f) respectively describe the recognition
rates of KDNE and HDNE with respect to the dimensionality
of discriminant subspace under condition of the same number
of samples. We have the conclusion that with the same num-
ber of samples and the same dimensionality of discriminant
subspace, as to recognition rate, HDNE obviously works
better than KDNE and KFDA.
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Figure 2. Recognition vs. dimensionality on MNIST dataset
Table II. PERFORMANCE COMPARISONS ON THE MNIST DATASET Table III. PERFORMANCE COMPARISONS ON THE MNIST DATASET
(50 trainingsamples) (100 trainingsamples)

Method | Dimensional of subspace | Recognition rate Method | Dimensional of subspace | Recognition rate
PCA 24 84.40 PCA 26 86.80
LPP 14 82.20 LPP 22 89.20
NPE 12 83.00 NPE 31 89.40
LDA 4 86.40 LDA 4 87.80
DNE 95 90.10 DNE 88 91.60
KDNE 247 86.80 KDNE 487 89.00
KFDA 3 86.86 KFDA 3 89.20

HDNE 244 91.80 HDNE 480 93.80
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Tables 2-4 show the optimal recognition rates for each
method in the whole discriminant subspace with the certain
number of samples, from which the conclusion is that recog-

nonlinear extension of DNE as well, HDNE also has a higher
nition rate of HDNE is higher than the other methods. As a

recognition rate than KFDA and KDNE.
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Table IV. PERFORMANCE COMPARISONS ON THE MNIST DATASET
(150 trainingsamples)
Method | Dimensional of subspace | Recognition rate
PCA 29 87.00
LPP 27 89.40
NPE 21 89.40
LDA 4 90.00
DNE 96 91.80
KDNE 746 90.60
KFDA 3 86.98
HDNE 739 94.40

V. CONCLUSIONS

HDNE is proposed by introducing hidden functions,
which is a nonlinear extension of DNE. Specifically, it
performs analysis on the preserved local structure in hidden
space. The data being linearly non-separable in original
space are linearly separable in hidden space and at the same
time the adjacent graph is constructed to preserve the local
structure of data. From experimental results on ORL dataset
with different K values in K-nearest neighbor and on MNIST
dataset with the different number of samples, we have the
conclusion that HDNE has a better performance than the
other methods.
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