
Data Dimensionality Reduction Approach To Improve Feature
Selection Performance Using Sparsified SVD

Pengpeng Lin
Computer Science Department

University of Kentucky
Lexington, KY 40506-0633, USA

Email: M.Lin@uky.edu

Jun Zhang
Computer Science Department

University of Kentucky
Lexington, KY 40506-0633, USA

Email: J.Zhang@uky.edu

Ran An
Department of Plant and Soil Sicences

University of Kentucky
Lexington, KY 40546-0073, USA

Email: ran.an@uky.edu

Abstract—Feature selection is a technique of selecting a subset
of relevant features for building robust learning models. In this
paper, we developed a data dimensionality reduction approach
using sparsified singular value decomposition (SSVD) technique
to identify and remove trivial features before applying any
advanced feature selection algorithm. First, we investigated how
SSVD can be used to identify and remove nonessential features
in order to facilitate feature selection performance. Second, we
analyzed the application limitations and computing complexity.
Next, a set of experiments were conducted and the empirical
results show that applying feature selection techniques on the
data of which the nonessential features are removed by the data
dimensionality reduction approach generally results in better
performance with significantly reduced computing time.

I. INTRODUCTION

As our world expands virtually at an unprecedented rate,
large scale data are collected every day. As a result, analysis
of data becomes computationally infeasible when it comes
to a point of too much. The existence of large quantities of
data is useless if there are no effective data analysis methods
[1]. Extensive efforts have been devoted to feature selection
research, due to increasing demands for data dimensionality
reduction. The general goal of feature selection is to find a
minimum set of features such that the resulting probability
distribution of data is as close to the original data as possible.
Through feature selection, nonessential (irrelevant) features
can be removed without affecting learning performance [2].
Otherwise, nonessential features may cause confusion for the
mining algorithm employed [3].

To search for the essential features, various search strategies
have been developed and can be broadly categorized as
exhaustive, heuristic, and randomized. An exhaustive search
would certainly find the optimal solution. however, for a
dataset with N features, a search on 2N possible feature
combinations is obviously computationally impractical for
large value of N [1]. More practical search strategies for
large data have been studied. Marill and Green [4] pro-
posed the sequential backward selection, which starts with
full feature space and sequentially eliminates features that
contribute least to the criterion function one at a time. Whitney
[5] introduced sequential forward selection which starts with
an empty set and sequentially adds one feature at a time.
These greedy sequential search methods generally result in an

O(N2) worst case scenario. Heuristic search methods such
as genetic algorithms add some randomness in the search
procedure to escape from a local optimum. Individual search
methods evaluate each feature individually and select features
that either satisfy the condition or are top-ranked. However,
these search strategies often trade optimality for efficiency
by avoiding searching feature space completely. There is no
guarantee that the best possible solution can be found using
these techniques. However, one can improve the probability
of obtaining the best solution by reducing the proportion of
nonessential features, i.e., making the good sampling choices
to occur more frequently than that for the bad choices. In
this work, we applied a sparsified SVD to reduce dimension
of a given data, in an effort to achieve high solution quality
and reduce computing time. There have been some works
introducing the use of SVD for feature selection methods in
recent years. Chen et al., combined SVD and Monte Carlo
Decision Tree to fine tune selected biomarker set in terms of
classification accuracy [6]. Fallucchi and Zanzotto proposed a
novel way of using SVD to compute the pseudo-inverse matrix
needed in logistic regression [7]. Phillips et al., claimed that a
classification operation that can be applied to a m× n matrix
A can be equivalently applied to a k× n matrix ΣV T , where
k < m [8]. However, all of them used the general mathemati-
cal properties of SVD on various applications without building
a systematic model for feature selection or data dimension
reduction. The promising results obtained when applying SVD
to various applications indicate that more works need to be
devoted in order to explore its full potential.

The paper is organized as follows. In Section 2, we proposed
to use the sparsified SVD for reducing data dimensionality. In
Section 3, we presented and discussed the sparsification strat-
egy. In Section 4, we summarized the approach and analyzed
its complexity. In Section 5, we conducted experiments and
the empirical results were presented and discussed. Finally,
we concluded this work and laid out possible future works in
Section 6.

II. REDUCING DATA DIMENSIONALITY USING SPARSIFIED
SINGULAR VALUE DECOMPOSITION TECHNIQUE

Throughout this paper, the notations are consistent and
defined as followings. We use lower case letters for scalar,

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1393



lower case letters with under bar for vector, and capital letters
for data matrix. For example, A is a matrix in Rm×n with
m ≥ n, a is a scalar, a is a column vector and the row vector
is denoted as aT . Aij denotes for elements in the ith row and
jth column of A. R(A) denotes for the matrix range and r
denotes for the matrix rank where r ≤ n. We also assume
the use of numerical data type and any data can be treated as
a matrix. This assumption is made without loss of generality.
Since both the quantitative and categorical data domains can be
represented in binary form, the results can be easily extended
to categorical data.

A. Singular Value Decomposition

SVD is a low rank approximation technique well known for
the dimension reduction problem [9]. The insight underlying
the use of SVD for dimension reduction is that it takes a data
and breaks it into linearly independent components. These
components are in some sense an abstraction away from
the noisy correlations and close to sets of values that best
approximate the underlying data structure. Essentially, SVD
factors a matrix A into a product of three matrices: U , D, V T

(Figure 1), where U is an m×m orthogonal matrix, V is an

Fig. 1. Singular Value Decomposition

n × n orthogonal matrix, and D is a m × n diagonal matrix
whose diagonal entries are called singular values such that
σ1 ≥ σ2 ≥, . . . ,≥ σr ≥ 0. Let λi be the eighenvalues of ATA,
then λi ⊆ (σ2

1 , σ
2
2 , . . . , σ

2
r), ∀i ∈ [1, n] [6]. SVD has numerous

applications in data mining, information retrieval and image
compression in which it is often used to approximate a given
matrix by a lower rank matrix with the minimum distance
between them.

B. Eliminating nonessential features with SSVD

1) Define nonessential features: For a dataset A with n
features and m tuples, its column vectors form a vector space.
Each vector in the space can be built up by applying operations
of addition and scalar multiplication on a set of vectors that
are referred to as spanning set. Particularly in linear algebra,
it is desirable to find a minimal spanning set called ‘basis’
such that the base vectors in the ‘basis’ are indispensable to
span the linear space. The base vectors form the axis of a
plane, where each vector in the plane can be represented by
its magnitude and direction with respect to the origin. On one
hand, vectors in the plane can be grouped together according
to certain criterion to make clusters, i.e., a group of i or more
vectors with similar directions and lengths. On the other hand,
vectors that do not belong to any group might also represent a
unique property of the data. In contrast, those vectors with
“relatively short length”, either measured by vector norm

or in terms of individual element value, can be deemed as
having insignificant inference on data utility and hence can
be considered as nonessential features. Correspondingly, We
define the nonessential features (εi, A) as:

Definition 1: A column vector of an m × n dataset A =
[a1, a2, . . . , an] is a nonessential feature (εi, A), if there exists
a small number φ (Threshold) such that (εi, A) = {ai | ai ∈
[a1, a2, . . . , an] ∧Aji < φ,∀j = 1, 2, . . . ,m}.

Note that we used the term “relatively short length” to
describe nonessential features because, as it will be illustrated
in the following sections that not all vectors with small
entries can be regarded as nonessential. Sometimes, vectors
having small magnitudes measured by vector norms can be as
important to the data utility as those with large magnitudes.

2) Identify and remove nonessential features: As our objec-
tive is to identify and eliminate the nonessential features, we
propose an approach that combines sparsification procedure
and SVD technique. Sparsifying a matrix or a vector refers
to a procedure that sets the entries to zero with a threshold
value. To see how sparsified SVD can be used to identify
nonessential features, we look at the following statement.

Statement 2.1: Applying SVD to a given data A to obtain
three factor matrices which are then sparsified and multiplied
to produce a perturbed data Ã can help identify nonessential
features.

To see the Statement 2.1 is true, let data A be a n × m
matrix with rank r where m ≥ n and A = UDV T by SVD.
Then Ur = [u1, u2, . . . , ur] forms an orthonormal basis for
R(A). Similarly, it can be proved that the decomposed matrix
V with SVD is also an orthonormal basis for A [9], [6]. Let
U ∈ Rm×m, V ∈ Rn×r and D ∈ Rm×r,

D =


σ1 · · · 0
...

. . .
...

0 · · · σr
...

...
0 · · · 0


it follows that

A =
[
u1, u2, . . . , un

]

σ1 · · · 0
...

. . .
...

0 · · · σr
...

...
0 · · · 0



vT1
vT2
...
vTr



=
[
u1, u2, . . . , un

]


σ1v
T
1

...
σrv

T
r

0
...
0



1394



. If we set σj = 0, j = k + 1, . . . , r, then we get A:

A =
[
u1, u2, . . . , uk

]

σ1v

T
1

σ2v
T
2

...
σkv

T
k


or equivalently,

A =
k∑

i=1

uiσiv
T
i = U × D̃ × V T .

Since Ai = uiσiv
T
i (∀i ∈ [1, r]), A can be represented as:

A = A1 +A2+, . . .+Ak.

The difference between A and original matrix A is:

A−A = Ak+1 +Ak+2+, . . .+Ar =
r∑

i=k+1

Ai.

If we use Frobenius norm to map a matrix into a number, then
‖Ai‖F = σi

∥∥uivTi ∥∥F , i ∈ [1, k]. Since σ1 ≥ σ2 ≥, . . . ,≥ σr
by definition, it follows that:

∥∥A∥∥
F
≥

∥∥∥∥∥∥
r∑

i=1

uiσiv
T
i −

k∑
j=1

ujσjv
T
j

∥∥∥∥∥∥
F

for some k ∈ [1, r].

Since, in the data mining applications,
r∑

i=k+1

Ai can be

considered as noise [10], therefore A can be thought as an
approximation of A with less noise information. To further
surface the nonessential vectors (features), a sparsification
process is applied to matrices U and V to obtain Ũ and Ṽ
using a threshold φ such that values less than φ are set to zero.
We then multiply all three sparsified matrices Ũ , D̃ and Ṽ to
get Ã :

Ã = ŨD̃Ṽ T .

If we define S as the sparsification function, then it is easy to
see that:

Ã = S(A).

And since after sparfication process, many small column
vectors in U and V are dropped to zero:

Ã = S(A1) + S(A2)+, . . . ,+S(Ak)

= S(u1σ1v
T
1 ) + S(u2σ2v

T
2 )+, . . . ,+S(ukσkv

T
k ) =

σ1S(u1)S(vT1 ) + σ2S(u2)S(vT2 )+, . . . ,+σkS(uk)S(vTk )

= S(A1)+, . . . ,+0 + S(Aj)+, . . . ,+0+, . . . ,+S(Ak).

As the result, these zero vectors can be seen as nonessential
features and easily determined, which would otherwise be
difficult to identify in the original data set.

Our empirical results show that after applying the above
described procedure to a given data A, a set of “small”
column vectors measured by 2-norm such that ‖a′i‖2 ∼= 0
can be easily distinguished from other vectors in the resulting

matrix Ã = [a
′

1, a
′

2, . . . , a
′

n]. These vectors can be considered
as nonessential features by definition and removed from the
original data to obtain a new data matrix with smaller feature
dimension.

C. Geometric illustration

We name the process of applying the sparsified SVD
for eliminating nonessentials S2R, short for sparsified rank
reduction process. In this section, we strive to use vector
space concept to geometrically interpret how S2R identifies
nonessential features. Perhaps, the most elementary vector
space is the Euclidean vector space Rn, n = 1, 2, . . . [11].
For simplicity, we only consider R2. Given a vector v in R2,

v =

[
x1
x2

]
. (1)

we can associate it with a direction and magnitude in a 2-
dimensional plane. The direction is defined with respect to the
origin (0,0), and the length is defined by Euclidean 2-norm:

‖v‖2 =
√
x21 + x22.

In order for a better illustration and analysis, we define a
definition of cluster (zk, A):

Definition 2: A group of i or more column vectors of an
m × n dataset A = [a1, a2, . . . , an] is a cluster (zn, A), if
every vector in the group can be represented with similar
magnitude and direction in a m-dimensional plane.

For example, (zq, A) is a cluster containing q or more
vectors with similar magnitudes and directions defined in a
vector space. Naturally, those vectors that do not belong to any
cluster are considered as “outliers”. With the concepts of the
cluster and outlier, we illustrate nonessential vectors in Figures
2 and 3 where, without loss of generality, only one cluster
is involved. In general, short vectors in terms of Euclidean
norm can be considered as nonessentials. For example, vectors
v5 and v6 (Figure 2) are considered as nonessentials, since
they are the two short vectors in contrast to other vectors. v7
does not belong to the cluster since it is in different direction
compared to the vectors in cluster (z4, A) = {v1, v2, v3, v4}.

Furthermore, it can be shown that nonessential vectors can
be produced with other short nonessentials by applying linear
combination operations. As an illustration, a short vector v6 is
resulted from the linear combination of two short vectors: u4
and u5 (right picture in Figure 3). By comparison, vector v3 as
a result of the linear combination of u1 and u2 is considered
essential for its larger magnitude (left picture in Figure 3).

D. Restrictions and limitations

Although it has been illustrated that nonessential vectors
may be resulted from linearly combination of short base vec-
tors, we can not just simply toss away all the vectors with small
magnitude when determining nonessential features. As men-
tioned in the previous sections, the outliers may also hold great
inference on the mining algorithm’s behaviors. Those outliers
can be of small magnitude and could be members of base that

1395



Fig. 2. Illustration of nonessentials and outliers in a 2-D plane.

Fig. 3. Two vectors v3 (left) and v6 (right) are resulted by spanning other
vectors (u1,u2) and (u4,u5), respectively.

spin to produce essential features. An example is illustrated in
Figure 4 which describes the transpose of a 2×8 matrix A in a
two dimensional plane. Vector set {u1, u2, u3, u4, u5} forms a
basis of A, and vectors {v1, v2, v3} are linearly dependent on
the base set. Let vector set {v1, v2, u2, u4} be considered as
essentials and form a cluster (z4, A) based on the definition,
then vector set {v3, u1, u3, u5} can be treated as outliers.
Clearly, we can not throw away the short base vectors u3
and u5, because they are used to produce v2 and v3.

Fig. 4. Spanning outliers.

One immediate intuition from the above example is that
those outlier vectors tend to have unbalanced shapes, i.e.,
one portion of elements in a vector may be extremely larger

than the other portion. For example, the projection of u3 on
x2 is greater than that on x1. Accordingly, when trying to
separate essential outliers from nonessentials, we could look
at the value distribution of entries in a vector. However, in
practice, this can not be used as golden rule to distinguish
exactly between essential outliers and nonessential vectors.
Nevertheless, an effort is made in this work to identify the true
nonessential features. Specifically, our strategy is to develop a
threshold function that is able to produce customized threshold
values according to individual element for the vectors being
evaluated.

Furthermore, we should not expect S2R being able to
identify all the nonessentials. As an example illustrated in
Figure 5, two essential base vectors u5 and u6 in two almost
completely opposite directions in the plane can also produce
nonessentials vector v6, as opposed to examples illustrated
in Figure 3. Clearly, it is hard to identify base vectors that
produce v6 with S2R. In such a situation, we can rely on the
ordinary feature selection methods to identify the remaining
nonessentials. We will show, in Section 5, that after applying
the proposed S2R approach, the work load for feature search
algorithm is significantly reduced whereas the probability of
obtaining optimal feature subset is increased.

Fig. 5. Linear spanning nonessentials by essential base vectors.

III. SPARSIFICATION STRATEGY

A Sparsification procedure evaluates elements in each col-
umn vector of a given matrix with a threshold value φ.
Elements with values less than φ are set to zero. In this
work, we define a smooth threshold function similar to the
one used in [12], which uses an exponential function in which
the threshold value is calculated differently for each column

1396



of the matrix:

Tj =
ε

m

m∑
i=1

|aij | ej·k
−2

(2)

where k is the number of the singular values to keep. The
computed threshold value for each column is adjustable with a
positive scaling factor ε, which works similar to the parameter
λ in the L1-Regularization, such that smaller threshold values
are obtained with lower ε values. In the implementation,
we set ε = 0.6 as its default value for all the test cases.
Other practitioners can try different settings that may increase
or decrease the sparseness of the resulted matrix. Note that
different from the function defined in [12], the absolute value
of aij is computed. This is because SVD process may result
in some negative entries in the decomposed matrices U and
V . If we add up their entry values directly (without absolute
operation), the threshold value calculated may be larger for
essential vectors and smaller for nonessential vectors. There-
fore, taking absolute value is necessary so that larger value
entries would remain whereas smaller value entries would
reduce to zero after the sparsification process. There are other
sparsification approaches available in the literature such that
L1-Regularization [13], etc. However, most of them sparsify
a matrix by multiplying matrix entries with a fractional value.
In contrast, the smooth threshold function calculates different
threshold values which are customized for the column vectors
being considered. Intuitively, one would expect more properly
sparsified matrices using the smooth threshold function in
comparison to that of other sparsification methods.

IV. ANALYZING COMPUTING COMPLEXITY

A. S2R procedure
Now, we are ready to summarize the S2R, as described in

Procedure 1. The dataset A which consists of large number of
features is treated as a matrix and is decomposed into three
matrices by the SVD process. The factored matrices are then
sparsified and used to compose a new dataset Ã with perturbed
entry values which helps identify nonessential features. After
removing the identified nonessentials, we obtain a new matrix
B with fewer number of features, which is expected to
facilitate any feature selection algorithm in terms of improved
result quality and reduced computing time.

Procedure 1 Combine Feature Selection with S2R
Input: m× n DataSet A
Ensure: Numerical Data Type

1: Decompose A using SVD, get A = UDV T

2: Reducing rank of A, get D̃
3: Sparsify the decomposed matrices, get Ũ , Ṽ
4: Compose a new matrix Ã = ŨD̃Ṽ T

5: Label the features (vectors) with norm less then some
small number ε in Ã

6: Remove labeled features from the original dataset A, get
a m× k dataset B, where k ≤ n

7: Apply ordinary feature selection algorithms on B

B. Computing complexity

Procedure 1 takes an m×n dataset A as input. In step one,
the input dataset A is decomposed into 3 matrices U ,D, and V
by SVD. The total cost for SVD decomposition is O(n2m). In
step two, the rank of A is reduced by dropping small elements
on the diagonal of D to zero, which takes a constant cost C1.
In step three, the decomposed matrices U and V are sparsifed
with the threshold function described in Section 3. The total
cost for the sparsification process is no larger than 2m2 and
hence can be estimated as O(m2). In step four, a perturbed
dataset Ã is composed with the sparsified matrices Ũ , D̃ and
Ṽ . Since the running time for multiplication of two n × n
square matrices, if carried out naively, is O(n3), the cost for
composition process of Ã is then bounded by 2m3, with an
assumption that m ≥ n. In steps five and six, the nonessentials
that are manifested in Ã as the result of the S2R process are
labeled and removed from the original dataset A to give a
new matrix B. Assuming the cost for the final two steps is a
constant factor C2, then the total cost can be expressed as:

O(n2m) + C1 +O(m2) +O(m3) + C2 (3)

Since m ≥ n by assumption (which is usually true for
large datasets), the cost as summarized in equation 3 is
asymptotically-bounded by O(2m3).

V. EXPERIMENTS AND RESULTS

A. Setup and dataset

The algorithms and procedures proposed and used in this
work were implemented using Oracle Java 7 with Java Run-
time Environment JRE 1.7.0.45 (32-bit) and the programs were
executed on a Dual Intel E5-2670 8 Core (16 processes),
2.6 GHz with 64 GB of 1600 MHz RAM computer. The
tested data sets were first processed to obtain S2R data
set. We then applied various feature selection techniques to
both original and S2R data sets to compare the performance.
Specifically, we applied probabilistic, heuristic and exhaustive
feature selection methods. The experiments were conducted
on “Wisconsin Breast Cancer (Diagnostic)” data set and
Connectionist Bench (Sonar, Mines vs. Rocks) dataset [14],
[15]. The Wisconsin Breast Cancer dataset has 32 features
including diagnosis, texture, smoothness, concavity, concave
points, fractal dimension, etc. These features are computed
from a digitized image of a fine needle aspirate (FNA) of a
breast mass. They described characteristics of the cell nuclei
present in the image. The target feature is Diagnosis: “B” =
benign, “M” = malignant. The dimension of the data matrix is
569×32. Connectionist Bench dataset has 60 features and 208
instances. This dataset contains patterns obtained by bouncing
sonar signals off a metal cylinder or rocks at various angles
and under different conditions. Each pattern is a set of 60
numbers in the range from 0.0 to 1.0, which represents the
energy within a particular frequency band integrated over a
certain period of time. For values of the target feature, the
label associated with each record is letter “R” if the object is
rock and “M” if it is a metal cylinder.

1397



The sparsification procedure was set differently for the three
factor matrices of the decomposed data sets. For the matrix D
where singular values σi are on its diagonal entries, we used
the following function:

σi =

{
σi if σi > 1
0 otherwise (4)

, where singular values greater than one are kept and the rest
are set to zero. For matrices U and V , the smooth threshold
function 2 was applied to compute threshold value φ for
each column vector. The scaling parameter ε was set to 0.6.
The absolute values in U and V less than φ are reduced to
zero. Note that the optimal number of singular values and the
best scaling parameters to be set vary with the dataset and
often depend on specific requirements. To be consistent, both
datasets were sparsified using the same parameter setting.

B. Experiment 1

In this experiment, we implemented an Exhaustive Search
that enumerates complete feature subset space. Each feature
subset is evaluated with the information gain. Since the
Exhaustive search takes exponentially long computing time,
we set maximum running time to 20 hours on the original
data and 40 minutes on the S2R data. Our objective is to test
if Exhaustive Search would perform the same or even better
on S2R data within a less computing time compared to that
of original data. First, S2R process was applied to the original
data sets of which the number of features reduced from 31 to
26 for WBC data and from 60 to 48 for Sonar data, resulting in
20.00% and 16.12% feature size reduction respectively (Table
I). The experimental results show that Exhaustive Search
yielded the same result for both original and S2R datasets with
12 features selected for WBC data and 16 features selected
for Sonar data. Furthermore for WBC data, the computing
time is significantly reduced with S2R data compared to that
with the original data (15 minus vs 1.48 hours). For Sonar
data, Exhaustive Search shopped at the maximum allowable
running time for both original and S2R data sets. However,
with considerably less running time, Exhaustive Search was
able to reduce the same number of features from S2R data.
This demonstrates that applying Exhaustive Search on the
S2R data can produce equally good feature selection results
with reduced computing time compared to applying it on the
original data.

TABLE I
EXPERIMENTAL RESULTS FOR APPLYING EXHAUSTIVE SEARCH ON

ORIGINAL AND S2R DATASETS

Feature Size Total Cost

DataSet: WBC Sonar WBC Sonar
Original 31 60 231 260

S2R 26 48 2× 5693 + 226 2× 2083 + 248

Reduction Rate 16.12% 20.00%
ExhaustiveOnOriginal 12 16 1.48 (hour) 20 (hour)
ExhaustiveOnS2R 12 16 15 (minute) 40(minute)

Fig. 6. Cost Comparisons between original and preprocessed Sonar and
WBC data sets.

In addition, Table I also lists the number of feature subset
that will be evaluated by Exhaustive Search. Theoretically,
for an m × n dataset, the cost of Exhaustive Search on
original dataset is estimated as evaluating complete feature
space 2n, whereas the cost for the S2R data is bounded by
2m3 + 2n, which is summation of the costs for S2R process
and Exhaustive Search on the S2R data. Filling in the numbers,
we get that Exhaustive Search will evaluate 231 feature subsets
for original WBC data and 260 feature subsets for Sonar
data, and the number of feature subsets to be evaluated for
the corresponding S2R datasets are 2 × 5693 + 226 and
2×2083+248. To give a more concrete idea for the differences
between these values, we illustrate their proportions using two
pie charts (Figure 6). As we can see, Exhaustive Search on
S2R data only has to evaluate about 15% of the complete
feature subsets for the original WBC data. In the extreme case
where the data consists of large feature space and relatively
small number of records such as Sonar data, the number
of feature subsets to be evaluated for original data greatly
dominates that for S2R data, making the cost proportion of
S2R data insignificant and close to zero percent. In fact, our
experimental results have shown that the cost for S2R can be
neglected in that, including the SVD matrix decomposition, it
only took 46 milliseconds for WBC data and 49 milliseconds
for Sonar data.

C. Experiment 2

In this experiment, we applied a Probabilistic Search named
Las Vegas Filter (LVF) [16], which is a specification of
the Las Vegas algorithm family [17]. It randomly generates
feature subsets with equal probability, and evaluates the feature
subset with an evaluation function. LVF stops generating new
feature subset after a user defined number of iterations. The
objective of this experiment is to test if a random feature
search procedure would improve its performance on the S2R
data. The correlation-based Feature Selector (CFS) [18] is used
to assess the worthiness of a feature subset by considering
the individual predictive ability of each feature along with

1398



the degree of redundancy between them, i.e., the bias of the
evaluation function is toward subsets that contain features that
are highly correlated with the class and uncorrelated with
each other. CFS’s feature subset evaluation function is shown
below:

MS =
krcf√

k + k(k − 1)rff
(5)

where MS is the heuristic merit of a feature subset S con-
taining k features, rcf is the mean feature-class correlation,
and rff is the average feature-feature inter-correlation. Higher
value of MS indicates better predictive power of a feature
subset.

We run LVF algorithm using CFS as evaluator for 14 times
with different stop settings (number of iterations before LVF
stops) on both original and S2R-resulted WBC and Sonar
datasets. The merit measured by CFS for the best feature
subset selected for each run were recored.

Fig. 7. Correlation merits comparison between original and S2R WBC Data.

We can observe from the results shown in Figure 7 and 8
that, as expected, feature subsets resulted from larger number
of iteration settings yield higher CFS values than that from
lower number iteration settings. For both WBC and Sonar
datasets, CFS values are higher for the S2R data than for
the original data for all stop settings, which indicates the
utility of original data was well preserved in S2R data and
consequently resulted in better feature selection results since
the probability of selecting better feature subset by a stochastic
algorithm is higher for data with smaller feature dimensional-
ity. Furthermore, the CFS value stops increasing at the sixth
iteration number setting for applying LVF on the S2R Sonar
data whereas the CFS value for original data continues to
increase as the number of iterations to stop is set higher (Figure
8). This indicates potential computing time savings by S2R
since fewer number of iterations are required to converge.

Fig. 8. Correlation merits comparison between original and S2R Sonar Data.

D. Experiment 3

In this experiment, data utility preserved in S2R data is
further investigated with heuristic feature search strategies
in which the accuracy is often traded for the efficiency.
A Backward Sequential Search (BestFirst) algorithm and a
Genetic algorithm (GA) were applied. The Sequential Search
algorithm searches the space of feature subsets by greedy hill-
climbing augmented with a backtracking facility. It starts with
the full set of features and searches backward by considering
all possible single feature deletions at a given point [19].
Genetic algorithm performs a randomized search and has
shown to be less susceptible for being stuck in a local optimal
solution [20] as opposed to other heuristic methods that would
otherwise produce a result prematurely [1]. In the experiment,
we used the well known data mining software Weka [21]
which integrates both the Backward Sequential Search and
Genetic algorithm. The default parameter settings are used
for both heuristic algorithms and the feature subsets were
evaluated by the CFS which was used in the experiment 2.

TABLE II
NUMBER OF FEATURES SELECTED USING HEURISTIC FEATURE SELECTION

ALGORITHMS FOR ORIGINAL AND S2R DATA

# of Selected Features

DataSet: Sonar A Sonar B WBC A WBC B
SequentialSearch 19 16 12 12
RandomSearch 13 15 13 18

The results show difference in sizes of selected feature sets
obtained by Sequential Search and GA in Table II where
WBC A and Sonar A denote for original data, WBC B and
Sonar B denote for the resulting data by S2R. Number of

1399



TABLE III
SVM PREDICT RATE (%) FOR ORIGINAL AND S2R DATA

Correct Predict Rate (Percentage)

DataSet: Sonar A Sonar B WBC A WBC B
SequentialSearch 77.41 78.37 96.66 96.66
RandomSearch 75.58 79.33 96.49 97.89

features selected by Sequential Search for the original data is
slightly more than that for the S2R data (19 vs 16 for Sonar, 12
vs 12 for WBC), while GA selects fewer number of features
from the original data compared to the S2R data (13 vs 15 for
Sonar, 13 vs 18 for WBC). This indicates that different feature
subsets were selected between original data and S2R data.
The selected feature subsets were then evaluated using support
vector machine (SVM) [22]. Ten folds cross validation is set
to split the data in 10 approximately equal parts D1, . . . , D10.
Training set Dt

i is obtained by removing part of Di from D.
Feature subsets with the higher predict rate are considered
better. Table III shows the predict rate is the same for feature
subset obtained by Sequential Search for WBC data (96.66%
vs 96.66%), whereas the results are slightly better for S2R in
other cases. This indicates there may be more than one feature
subset that could produce same predict rate and better feature
selection results can be obtained with the S2R data where the
nonessential features were removed a priori.

VI. CONCLUSION & FUTURE WORKS

In this paper, a data dimensionality reduction approach that
we call S2R is developed by using sparsified SVD matrix
decomposition technique. We investigated how S2R identifies
nonessential features and analyzed its computing time com-
plexity. The identified nonessential features are removed from
the original data, which forms a new data with smaller feature
dimension and facilities to improve performance of feature
selection algorithms. We illustrated S2R using the 2-D plane
and addressed its limitations. The empirical results showed,
when compared to the cost of a feature selection procedure,
the extra cost of S2R is a small price to pay for data with
large feature size. Although the cost of S2R, which is O(2m2),
can not be neglected, the reduced feature space, as a result,
also mitigates work load for the conducted data analysis.
In conclusion, S2R procedure can significantly reduce the
computational cost inflicted by large scale datasets on feature
search related data mining process without compromise of
solution quality. In addition, although we used S2R to improve
feature selection performance, it could be extended to any data
mining algorithm.

The future works should focus on testing the performance of
S2R with different parameter settings on more larger data sets
and make comparisons with other feature selection techniques
and existing feature dimension reduction techniques such as
Principal Component Analysis (PCA). In addition, we would
like to explore the data utility preserved in the S2R data in

terms of different feature selection metrics (apart from the ones
used in this work i.e., information gain, SVM and CFS).

REFERENCES

[1] H. Liu and H. Motoda, Computational methods of feature selection.
Chapman and Hall/CRC, 2007.

[2] G. H. John, R. Kohavi, K. Pfleger et al., “Irrelevant features and the
subset selection problem.” in ICML, vol. 94, 1994, pp. 121–129.

[3] J. Han, M. Kamber, and J. Pei, Data mining: concepts and techniques.
Morgan kaufmann, 2006.

[4] T. Marill and D. Green, “On the effectiveness of receptors in recognition
systems,” Information Theory, IEEE Transactions on, vol. 9, no. 1, pp.
11–17, 1963.

[5] A. W. Whitney, “A direct method of nonparametric measurement selec-
tion,” Computers, IEEE Transactions on, vol. 100, no. 9, pp. 1100–1103,
1971.

[6] S. Chen, B. Han, L. Li, L. Zhu, H. Lai, and Q. Dai, “Svd based
monte carlo approach to feature selection for early ovarian cancer
detection,” in Bioinformatics and Biomedical Engineering (iCBBE),
2010 4th International Conference on. IEEE, 2010, pp. 1–4.

[7] F. Fallucchi and F. M. Zanzotto, “Singular value decomposition for fea-
ture selection in taxonomy learning,” in Proceedings of the International
Conference RANLP-2009. Association for Computational Linguistics,
2009, pp. 82–87.

[8] R. D. Phillips, L. T. Watson, R. H. Wynne, and C. E. Blinn, “Feature
reduction using a singular value decomposition for the iterative guided
spectral class rejection hybrid classifier,” ISPRS Journal of Photogram-
metry and Remote Sensing, vol. 64, no. 1, pp. 107–116, 2009.

[9] G. H. Golub and C. F. Van Loan, Matrix computations. JHU Press,
2012, vol. 3.

[10] M. W. Berry, Z. Drmac, and E. R. Jessup, “Matrices, vector spaces, and
information retrieval,” SIAM review, vol. 41, no. 2, pp. 335–362, 1999.

[11] G. Williams, Linear algebra with applications. Jones & Bartlett
Publishers, 2012.

[12] J. Gao and J. Zhang, “Sparsification strategies in latent semantic
indexing,” in Proceedings of the 2003 Text Mining Workshop, 2003,
pp. 93–103.

[13] A. Y. Ng, “Feature selection, l 1 vs. l 2 regularization, and rotational
invariance,” in Proceedings of the twenty-first international conference
on Machine learning. ACM, 2004, p. 78.

[14] W. H. Wolberg and O. L. Mangasarian, “Multisurface method of pattern
separation for medical diagnosis applied to breast cytology.” Proceedings
of the national academy of sciences, vol. 87, no. 23, pp. 9193–9196,
1990.

[15] R. P. Gorman and T. J. Sejnowski, “Analysis of hidden units in a layered
network trained to classify sonar targets,” Neural networks, vol. 1, no. 1,
pp. 75–89, 1988.

[16] M. Dash and H. Liu, “Consistency-based search in feature selection,”
Artificial intelligence, vol. 151, no. 1, pp. 155–176, 2003.

[17] G. Brassard and P. Bratley, Fundamentals of algorithmics. Prentice
Hall Englewood Cliffs, 1996, vol. 524.

[18] M. A. Hall, “Correlation-based feature selection for machine learning,”
Ph.D. dissertation, The University of Waikato, 1999.

[19] D. W. Aha and R. L. Bankert, “A comparative evaluation of sequential
feature selection algorithms,” in Learning from Data. Springer, 1996,
pp. 199–206.

[20] J. Jarmulak and S. Craw, “Genetic algorithms for feature selection and
weighting,” in In Proceedings of the IJCAI, vol. 99. Citeseer, 1999,
pp. 28–33.

[21] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[22] J. A. Suykens and J. Vandewalle, “Least squares support vector machine
classifiers,” Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

1400




