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Abstract—Neighborhood preserving embedding (NPE) is an

approximation to locally linear embedding (LLE), which has an

ability to preserve local neighborhood structure on data manifold.

As an unsupervised dimensionality reduction method, NPE can

be applied to face recognition for preprocessing. However, NPE

could not utilize the label information in the classification tasks.

To make the data in a reduced subspace separable, this paper

proposes a supervised neighborhood preserving embedding

which could learn a projection matrix by using both the

geometrical manifold structure and the label information of the

given data. In addition, the projection matrix could be found by

solving a linear set of equations. Experimental results on ORL

and Yale face image datasets show that the proposed method has

a high recognition rate.

Keywords—face recognition; dimension reduction; label

information; local preserving embedding

I. INTRODUCTION

In the real world, data exists in the form of high-

dimensionality, including image data. Dealing with high-

dimensional data directly would cause a large computational

complexity, the curse of dimensionality and other problems

[1]. It is an effective way to overcome the problems caused by

high-dimensional data by projecting the high-dimensional data

into low-dimensional subspaces. Therefore, dimensionality

reduction plays an important role in their specific applications,

including data visualization, data compression [2], pattern

recognition and classification [3], multimedia information

retrieval and others.

The two classical linear embedding methods are linear

discriminant analysis (LDA) [4] and principal component

analysis (PCA) [5]–[6], which are demonstrated to be

computationally efficient and suitable for practical

applications. LDA is a supervised dimensionality reduction

algorithm. This algorithm aims to find the optimal projection

vector on which the data points of different classes are far

from each other and the data points of the same class are to be

as close to each other as possible. PCA, an unsupervised

method, is famous for the low-dimensional representation of

high-dimensional data. In other words, LDA tries to find the

expected projection direction of the data for classification

tasks, while PCA seeks for an effective way to represent data

for compressing data.

Manifold learning is a typical nonlinear dimensionality

reduction method. Usually, manifold learning is first to

construct a data adjacency graph to characterize the data

distribution or geometry, and then seek for an optimal

mapping or a projection direction to effectively maintain the

structure. Most manifold learning algorithms, such as

laplacian eigenmaps (LE) [7], locally linear embedding (LLE)

[8], locality preserving projection (LPP) [9] and neighborhood

preserving embedding (NPE) [10], even including the classic

PCA and LDA which can be unified under the framework of

adjacency graph construction and dimensionality

reduction.LPP is a linear approximation to LE. The goal of

LPP is to project the high-dimensional data into a low-

dimensional manifold subspace that can better preserve the

original data’s locality. In other words, the adjacent data

points in the original data space can also maintain adjacent

relationship respectively in the projection subspace.

NPE is a linear approximation to LLE and has an ability

to maintain the local neighborhood information of data

manifold. NPE has received extensive attention in face

recognition [11-19]. However, in face recognition tasks, NPE

is used as an unsupervised dimensionality reduction method,

and cannot take advantage of the label information on given

data. To utilize the label information, Du et al proposed a new

subspace learning method called neighborhood preserving

discriminant embedding (NPDE) [20]. NPDE keeps the data

information in the local neighborhood manifold structure

while emphasizing the discrimination information of high-

dimensional data. It can ensure the minimum reconstruction

error of local neighborhood and make the projection sample

points with minimum within-class scatter and maximum

between-scatter. Unlike many existing techniques such as LPP

and NPE, in which the local neighborhood information is

preserved during the dimension reduction procedure, sparsity

preserving projection (SPP) [21] aims to preserve the sparse

reconstructive relationship of the data, which is achieved by
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minimizing a
1l regularization-related objective function. It is

well known that maximum margin criterion (MMC) [23] is a

method proposed to maximize the trace of the difference of

the between-class scatter matrix and within-class scatter

matrix. Thus, discriminant sparse neighborhood preserving

embedding (DSNPE) [22] was proposed by introducing MMC

into the objective function of SPP, which has two advantages:

(1) it retains the sparsity characteristic of SPP; (2) it

emphasizes the discriminative information by incorporating

MMC, which can make the class mean vectors have a wide

spread and make every class scatter in a small space.

Furthermore, to further increase the discriminative power of

DSNPE, it integrates additional discriminant information.

This paper proposes a novel supervised neighborhood

preserving embedding (SNPE). Different from NPDE, SNPE

utilizes the label information to construct attraction vectors

each of which would attract points in the same class.

Meanwhile, SNPE requires preserving the local neighborhood

structure on data manifold. By doing so, the embedded points

in the same class would be close to each other, while the

points in the different classes would be far away from each

other. In addition, SNPE is cast into a linear set of equations,

which is easier to solve. .
The rest of this paper is organized as follows. In Section 2,

we briefly review NPE and NPDE. Section 3 proposes SNPE.
In Section 4, we compare SNPE with some related works and
give experimental results. Conclusions are made in Section 6.

II. RELATED WORK

A. Neighborhood Preserving Embedding

Let the training samples matrix be 1 2[ ]n�X x ,x , ..., x ,

where �x
m

i R , m is the dimensionality of the training

samples and n is the number of the training samples. NPE is

intended to reduce the dimensionality of data and maintain the

inherent local neighbor manifold structure at the same time. It

seeks for an optimal transformation matrix
1 2[ ]�A a ,a , ...,am ,

where �a
d

i R , which can map the high-dimensional data into

a relatively low-dimensional feature subspace.

Similar to LLE, NPE evaluates the affinity weight matrix

by using local least squares approximation. The local

approximation error in NPE is measured by minimizing the

following cost function:
2

1 1

( )
n n

i ij j

i j

�
� �

� �� �W x W x (1)

under two constraints: (1) if
jx is not one of k neighbors of

ix , then 0ij �W ; otherwise, 0ij �W and
1

1
n

ij

j�

��W , 1, 2,...,j n� .

A reasonable criterion for choosing a “good” projection is

minimizing the cost function:
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which subject to T T �A XX A I , where  �tr � is the trace of

matrix � , I is the identity matrix, �Y AX and

 �  �T
� � �M I W I W is a sparse, symmetric, and semi-

positive definite matrix.

By using Lagrange multiple technique, NPE leads to the

following generalized eigenvector problem:
T T��XMX A XX A (3)

B. Neighborhood Preserving Discriminant Embedding

NPE is an unsupervised learning method, and it could not

utilize the label information on given data in classification

tasks. Therefore, NPDE was proposed in [20]. NPDE keeps

the local neighborhood structure on data manifold and

simultaneously emphasizes the discrimination information of

data. It can make the local neighborhood reconstruction error

minimal, and maintain points with minimum within-class

scatter and maximum between-scatter in the subspace.

Similarly, both of two methods involve solving the

characteristic of the matrix decomposition problem.

Let
1 2[ ]C�X X ,X , ...,X represent the training samples

matrix in original subspace, where
cX denotes the sample

matrix belonging to the thc class, and C is the total number

of classes. Let
cn be the number of the training samples in the

thc class. So, the total number of the training samples is

1�

��
C

c

c

n n . Let 1 2[ , , ]�Y Y ,Y ... Y
T

C be the projected

training sample matrix in the low dimensional subspace, we

have the objective function of NPDE:

1 1 1

1

[ ]

min    

( )( )

c cn nC
c c c

i ij j

c i j

C
T

c c c

c

J

n

� � �

�

�

�
� �

�� �

�

y W y

u u u u

(4)

where c

iy and c

jy respectively denote the thi and thj embedded

vectors in the thc class, c

ijW denotes the reconstruction

weighting coefficient of training samples in the thc class,

cu denotes the mean of embedded vectors in the thc class and

u denotes the mean of all embedded vectors.

The objective function of NPDE can be reduced to (5)

min    
T T

T

B

J �
α XMX α

α S α
(5)
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where

1

( )( )
C

T

B c c c

c

n
�

� � ��S m m m m denotes the between-

class scatter matrix in the original space,

1

1 cn
c

c i

icn �

� �m x ,

1 1

1

� �

� ��m x
cnC

c

i

c in
, the matrix M is

1

2

0 ... 0

0 ... 0

0 0 0

0 0 ... C
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� �

M

M
M

M

�

with ( ) ( )T

c c c� � �M I W I W , cn n

c R
��W whose ith row and jth

column is c

ijW .In addition, the rank of BS is 1C � .

The optimal transformation matrix can be obtained by
minimizing the objective function of (5). Minimizing the
objective function of (5) is equivalent to minimize the
numerator term and maximize the denominator term of the
objective function simultaneously.

III. SUPERVISED NEIGHBORHOOD PRESERVING EMBEDDING

In order to incorporate the label information on the given

data, this paper proposes an alternative supervised NPE

method, called SNPE. In our method, we construct attraction

vectors by using the label information of training samples and

make the samples in the subspace drawn to these attraction

points.

Assume that there has a set of training

samples
1{ , }ni i�x y

i
, where �x

m

i R , {1,2, , }i c�y � , m is

the dimensionality of the training samples, n is the total

number of the training samples, and C is the number of

classes. Let
1 2[ , ] m n

n R �� �X x x x, ..., be the training samples

matrix. For each training sample, we construct an attraction

point �h
C

i R by using its label information. If
i c�y , then

the thc entry of
ih is 1 and other entries are zero. Thus

training samples belonging to the same class share the same

attraction point. We hope that each sample in the subspace

could be attracted to its attraction point.

To make the tradeoff between the geometric

characteristics of low-dimensional coordinate point and

label information, we seek for an optimal projection

matrix m CR ��A , which can project training points into a

relatively low-dimensional feature subspace. The sample

matrix in the subspace could be represented as �Y A X
T

.

Based on NPE, we introduce a discriminate information

term and obtain the following optimal problem:
2

2

1 1 1

1
min    

2

n k n

i ij j i i

i j i

�
� � �

� � �� � �
A

y W y y h (6)

where [0, )� � �� is a balance parameter which is used to

balance the importance of the label information. The

reconstruction weighting coefficient W can be obtained by

solving (1).

From (2) we can know that the first term in (6) can be

written as
2

1 1

=
n k

T T

i ij j

i j� �

� �� �y W y YMY A XMX A (7)

and the second term in (6) can be modified as

 �  �

 � �

2

1

n
T

i i

i

T
T T

� �

�

�

� � � �

� � �

� y h Y H Y H

A X H A X H

(8)

where the attraction matrix � �1, , �� �H h h�
C n

n R .

Obviously, (6) is equivalent to the following optimal problem

 � � �min    
T

T T T Ttr � � �
A

A XMX A A X H A X H� (9)

We show the solution to (9) in the following theorem.

Theorem 1. Given the symmetric, and semi-positive

definite matrix
n nR ��M , the real matrix

C nR ��H , R���

and a full rank matrix
m nR ��X , the object function of (9) has

its optimal value when ( )T T T T� � �� �A XMX XX XH .

Proof. Let  �  � �� � � �A A XMX A A X H A X H
T

T T T TL � .

Obviously  � �tr L A will have the minimal value when the

derivative of  �L A equals to 0, that is

 �
0 ( ) 0T T T T

L
�

�
� � � � �

�

A
A XMX A X H X

A
(10)

(10) can be modified as

 �� �XMX XX A XH
T

T T T� � (11)

Now we need to certify that T T�XMX XX� is invertible,

which could be rewritten as

 �� � �XMX XX X M I X
T T T� � (12)

where
n nR ��I is the identity matrix.

The matrix
��X m nR is a full rank real matrix. Ifm< n ,

X is a row full rank matrix, otherwise X is a column full rank

matrix. Assume X is a row full rank matrix, and the rank of

X ism . The case of column full rank is similar to that of row

full rank. Thus, we only observe that  � T��X M I X is

invertible under the circumstance of row full rank.

Since �M I� is real symmetric positive definite matrix,

we can apply the square root decomposition on �M I� as

follows:

� �M I LL
T�

where
n n��L R is a positive definite full rank matrix. So (12)

can be represented as

 � T T�� �X M I X DD

where �D XL is still a full rank matrix. We only verify T
DD

is invertible as follows.
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For an arbitrary vector mR�s , where s is a nonzero

vector, we can get ( ) ( ) ( )�s D D s Ds Ds
T T T .

Let � �1 2, ,...,
T

mt t t�Ds , thus 2 2 2

1 2( ) ...+ 0� � � �s D D s
T T

mt t t . If

( ) =0s D s D
T T , then

1 2= = = =0mt t t� . The linear set of

equations =Ds 0 has a zero solution, or =s 0 where 0
denotes a vector of all zeros. Thus, we have ( )rank m�D

which contradicts the known or s is a nonzero vector.

Therefore, we can get 2 2 2

1 2 ...+ 0� � �mt t t . Finally we can

observe that T
DD is non-singular, that is,  � T��X M I X is

invertible.

This means  �L A would get the minimal value when

 � T
T T T� �

�
� �A XMX XX XH (13)

This completes the proof.

From Theorem 1, equation (9) is cast into a linear set of

equations, which is very easier to solve. Our approach is a

promotion to the unsupervised NPE algorithm. We add

discriminative information by constructing an attraction

matrix and introduce a parameter � to control the importance

of the label information. If the label information is not

untrustworthy, we can let 0� � . Equation (9) is equivalent to

(2).
The improvement of SNPE algorithm over NPE method

benefits mostly from two aspects: one aspect is that SNPE tries
to find the subspace that best discriminates different face
classes; the other aspect is that SNPE reduces the energy of
noise and transformation difference as much as possible.

IV. EXPERIMENTS

To verify the effectiveness of SNPE, two experiments are

carried out here. The first one is performed on a two-

dimensional artificial dataset. In the second experiment, two

well-known and benchmark face image databases (ORL and

Yale [24]) are used to evaluate the performance of SNPE by

comparing with PCA, LDA, LPP, NPE, and NPDE. To make

the comparison fair, for all the evaluated algorithms, we first

apply PCA on the face data to reduce the dimensionality and

remove the noise. A nearest neighbor (NN) classifier is

employed to classify the projected samples. The experiments

are implemented on MATLAB platform.

A. Artificial dataset

In order to compare SNPE with NPE and NPDE and

analyze the involved parameter, we generate a two-class

synthetic dataset which can better be visualized in the 3-

dimensional space. The first class is generated from the

Gaussian distribution with a mean � �0,0,0
T

and a covariance

matrix 3 3R ��I , while the second class is generated from the

Gaussian distribution with a mean � �2,2,2
T

and a covariance

matrix 3 3R ��I . We randomly generate 100 datasets. Each

class has 100 training and 100 test points in each trial. We try

to project these points into a two-dimensional space. NPE,

NPDE and SNPE all have a neighborhood parameter k when

constructing the adjacent graph. In addition, SNPE is also

involved in a control parameter � which has an effect on

results of embedding projection theoretically.

We first observe the effect of � on the recognition

accuracy of SNPE when setting 5k � . Let � change in the

set � �4 3 42 ,2 , , 2� �
� . We repeat 100 times independently and

report the average recognition accuracy as depicted in Fig 1.

From this figure, we can see that the curve remains flat with

varying the parameter � since the standard deviation on the

whole parameter set is 61.089 10�� , which is very small so

that it can be ignored approximately. Therefore, in order to

make the tradeoff between the original manifold geometry and

label information of training samples, =1� is an ideal choice

in the experiment.

Since NPE, NPDE and SNPE are related to the adjacency

graph neighborhood parameter k , which has different effects

on projection results. For these three methods, k varies from

1 to 15. The experiments are repeated 100 times and the

average accuracy is recorded. Fig. 2 illustrates that recognition

accuracy curves of four methods vary with different

neighborhood parameters. The curve of “NN” in Fig. 2

denotes the result of the nearest neighbor classifier without

dimensionality reduction. Since “NN” is independent of the

graph neighborhood parameter, the result of “NN” is a fixed

value. Observation on Fig. 2 indicates that SPNE is much

better than the other three methods and is relative stable when

varying k . NPE and NPDE are sensitive to selection for

neighbor parameter with different degrees. NPDE has a

relatively large fluctuation. These three methods almost have a

higher accuracy when 3k � . The following experiments, k
is taken to 3.

Fig. 3(a) shows the randomly generated data points in

one trial. Two-class points are represented by '+' and 'o',

respectively. Fig 3 (b), (c) and (d) show the projected points in

the two-dimension space obtained by NPE, NPDE and SNPE,

respectively. Note that the data points overlap significantly in

the original 3-dimensional space, the dimensionality reduction

data points would still overlap. We can see that the projected

point obtained by NPDE is greatly overlapping, which shows

that the method cannot utilize the label information well and

perform even worse than NPE. Relatively speaking, SNPE is

better than the other two methods, which means it is easy to

perform classification tasks. Visualization on points in Fig. 3

also reflects the results of Fig. 2.

B. ORL Database

The ORL face database consists of a total of 400 face

images, and of a total of 40 people (10 samples per person).

For some subjects, the images were taken at different times,

varying the lighting, facial expressions (open/closed eyes,

smiling/not smiling) and facial details (glassed/no glassed).

All the images were taken against a dark homogeneous

background with the subjects in an upright, front position
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(with tolerance for some side movement). All images are

grayscale and normalized to a resolution of 92×112 pixels.
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Fig.1 Recognition accuracy under different control parameters
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Fig.4. Results on the ORL database

In this experiment, we certify the recognition accuracy of

several algorithms with different training samples. We

randomly select n samples of each individual for training, and

the rest  �10 n� for testing. The number of the training sample

set varies from 160 to 320. To overcome the complication of

singular matrices, we first apply PCA on the face data to

reduce dimensionality and remove the noise and remove its

null space so that the resulting matrix is non-singular. Then

the proposed method is used for feature extraction, that is,

other methods are used in this 100-dimensional space,

including LDA, LPP, NPE, NPDE and SNPE. For PCA, the

dimensionality of subspace is 100. Since the rank of BS is

1C � in (5), the final dimensionality of LDA is 39, and the

other approach is 40. Finally, the nearest neighbor classifier is

used for classification.

We perform 100 trials to randomly choose the training

set and calculate the average recognition rates. To compare

PCA, LDA, LPP, NPE, NPDE and SNPE under the condition

of different training samples, we give the average

classification rate curves in Fig. 4. We observe that the
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recognition accuracy of each method increases when

increasing the number of training samples. SNPE is always

better than PCA, NPE and LPP. In addition, SNPE performs

better than other methods in the case of a few training samples.

Compared with NDPE, SNPE is dominant with less training

samples. LDA method is only better than SNPE when the

number of training samples is from 200 to 240.

C. Yale Database

The Yale face database contains 165 gray scale images of

15 individuals, and each individual has 11 images. The images

demonstrate variations in lighting condition, facial expression

(normal, happy, sad, sleepy, surprised, and wink). Fig. 5

shows sample images of one person.

We randomly select some samples of each individual for

training, and the rest of the Yale database for testing. The

number of the training samples set changes from 45 to 120.

The experimental setup is the same as Section 4.2. First, we

reduce dimension of the training samples to 100 by using PCA,

and then other methods are used for the second dimensionality

reduction. The dimension for PCA is 100, for LDA is 14, and

for the other approaches are 15. The average results on 100

independent experiments are shown in Fig. 6.

Fig.5 Images of one person in Yale.

Fig. 6 depicts that the average classification rate curves

of six methods with different number of training samples.

From the experimental results, we can also see that the

performance of supervised techniques (or LDA, NPDE, and

SNPE) is always better than unsupervised techniques (or PCA,

NPE and LPP). In three supervised methods, SNPE is the best

one, which indicates that SNPE can make full use of the label

information.
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Fig.6 Results on the Yale database

V. CONCLUSION

This paper proposes a supervised neighborhood

preserving embedding approach which can not only maintain

the geometrical manifold structure but also use the label

information on the given data. SPNE first builds the neighbor

graph in the high-dimensional space, and then find the weight

matrix of the adjacency graph. Finally, SPNE learns the

projection matrix by using the label information and projects

samples from the high-dimensional space into a low-

dimensional space. As can be seen in the experiment, SNPE

has an advantage in face recognition tasks. SNPE gives better

results than other algorithm under different number of training

samples. Moreover, SNPE also has a higher recognition rate

when the number of training samples is not too much.
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