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Abstract—This paper proposes a multi-kernel linear 
programming support vector regression with prior knowledge 
in order to obtain an accurate regression model in the case of 
the scarcity of measured data available. In the algorithm, 
multi-kernel and prior knowledge which may be exact or 
biased from a calibrated simulator have been incorporated into 
the framework of linear programming support vector 
regression by utilizing multiple feature spaces and modifying 
optimization formulation. Some experiments from a synthetic 
example have been carried out, and the results show that the 
proposed algorithm is effective, and that the obtained model is 
sparse and accurate. The proposed algorithm shows great 
potential in some practical applications where the 
experimental data is few and the prior knowledge from a 
simulator is available. 

Keywords—support vector regression; multi-kernel; s prior 
knowledge; linear programming 

I. INTRODUCTION  
Support vector regression (SVR), which is based on the 

theory of structure risk minimization in statistical learning , 
has been successfully applied to many problem [1]. 
Traditionally, support vector regression can find an 
estimating function by solving a quadratic program 
problem, which is also known as QPSVR [2-4]. 
Subsequently, Smola has proposed the linear programming 
support vector regression (LPSVR) [5, 6]. Both LPSVR and 
QPSVR adopt ε - insensitive loss function and the kernel 
function in feature space. However, LPSVR is advantageous 
over QPSVR in the model sparsity, ability to use more 
general kernel functions and fast learning ability [2, 7-9] . 

Support vector regression aims at learning an unknown 
function based on some training data samples. However, in 
some practical applications, it is complex and costly to 
obtain sufficient experimental data. Utilizing the fewer data, 
one can find that it is a little difficult to obtain an accurate 
model. Moreover, there are many complex functions which 
comprise both the steep variation and the smooth variation 
in the engineering. It is more difficult to obtain an accurate 
model from a small data set [10]. In this paper, we will 

focus on the problem that how to obtain an accurate model 
from a limited amount of experimental data. 

In order to improve the accuracy of regression model, 
Lanckriet has proposed a multi-kernel support vector 
regression by using the conic combinations of kernel 
matrices, and formulated the algorithm as a convex 
quadratically constrained quadratic program (QCQP) [11, 
12]. Although the formulation yields global optimal 
solutions, it is computationally inefficient and requires a 
commercial solver. Subsequently, the multi-kernel learning 
algorithm has been reformulated as a semi-infinite linear 
programming to obtain a general and efficient algorithm 
[11, 13]. Based on the principle of kernel-target alignment 
and predictive accuracy, Qiu has proposed three heuristics 
methods to speed up the computation of QCQP formulation 
[14]. In [15], a multi-kernel semi-parametric support vector 
regression is proposed by using quadratic program solver 
and a semi-parametric algorithm. Instead of a single kernel, 
multi-scale support vector regression has been presented by 
using the same kernel with multiple scales [16, 17]. All of 
multi-kernel support vector regression can establish an 
accurate model, if there is sufficient amount of data samples 
[18, 19]. However, the number of measured data is usually 
so little in some practical applications that the model 
developed by the algorithms cannot meet the desired 
requirement. 

In a real application, a certain amount of knowledge on 
the problem is usually known beforehand [20]. The prior 
knowledge can take many forms such as a simulation model 
from a practical engineering, the shape of the function on a 
particular region and some equality and inequality 
constrains [21, 22]. By utilizing the prior knowledge, one 
can improve the predictive accuracy of support vector 
regression. In [21, 23], the author has reviewed three 
methods of incorporating prior knowledge in support vector 
machine for classification, which comprise sample methods, 
kernel methods and the optimization method. In [24], the 
author explores the incorporation of different types of prior 
knowledge in support vector regression by the modification 
of the problem formulation. In addition, prior knowledge 
over arbitrary region is incorporating into kernel 
approximation problem, and the region has to be discretized 
before including the prior knowledge to be in the learning as 
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a finite set of inequalities [25, 26]. Though the prior 
knowledge could make up a small amount of measured data 
and improve the modeling accuracy, all of the algorithms 
incorporating prior knowledge above have exploited a single 
kernel, and do not employ the advantages of multi-kernel 
functions. 

In this paper, in order to obtain an accurate model from a 
limited amount of measured data, we have presented a novel 
multi-kernel prior knowledge linear programming support 
vector regression (MKPLPSVR). In the algorithm, multi-
kernel and prior knowledge which may be exact or biased 
from a calibrated simulator have been incorporated into the 
framework of linear programming support vector regression 
by utilizing multiple feature spaces and modifying 
optimization formulation. Some experiments from a 
synthetic example have been carried out, and the results 
show that the proposed algorithm is effective, and that the 
obtained model is sparse and accurate.  

II. REVIEW OF LINEAR RROGRAMMING SUPPORT 
VECTOR REGRESSION 

Let { }M ( , ), 1,...,i i i N= =x y  be an experimental dataset, 

where the input is R d
i ∈x  and the output is Ri ∈y . The 

regression is considered as a linear function in the feature 
space which induced by a nonlinear mapping ( )ϕ x . The 
regression function is written as: 

( ) ( )f bϕ= ⋅ +x ω x                  (1) 

where ω  is a normal vector in the feature space, and b  is a 
bias term.  

The normal vector ω  can be considered as a linear 

combination of the training patterns, i.e. ( )
1

N

i i
i

α ϕ
=

=∑ω x . 

Therefore, the regression function in the original space is 
expressed as: 

   ( ) ( )
1

,
N

i i
i

f k bα
=

= +∑x x x                               (2) 

where ( ) ( ) ( ), i ik ϕ ϕ= ⋅x x x x  is the kernel function which 
usually includes Gaussian radial basis function, polynomial 
kernel, and even non-Mercer kernel [6-8]. 

Instead of choosing the flattest function, LPSVR seek the 
smallest combination of training patterns. According to the 
statistical learning theory [1, 2], the coefficient iα  and the 
bias term b  can be solved by minimizing the regularized 
risk function: 

( ) ( )( )
1

Min:  2
N

i i
i

Q C L y f
=

+ −∑a x                    (3) 

where ( )Q a  is a regularization term, and it is defined as 

( ) 1
1

n

i
i

Q α
=

= =∑a α . The vector [ ]T
1, ,i Nα α α=α "  in 

( )Q a  determines the function complexity. A hyper-
parameter 0C >  is introduced to tune the trade-off between 

the error minimization and the function sparsely. 
( )( )i iL y f− x  denotes the ε -insensitive loss function:  

( )( ) ( )
( )

0,                       

,  otherwise
i i

i i
i i

y f
L y f

y f

ε

ε

⎧ − ≤⎪− = ⎨
− −⎪⎩

x
x

x
    (4) 

By introducing a slack variable iξ  and using ε -
insensitive loss function, LPSVR is formulated as: 

        
( )

( )

1
1

1

1

Min: 2

,

,s.t. 

0
1,2, ,

N

i
i

N

i i i j i
i

N

i i j i i
i

i

C

y k b

k b y

i N

ξ

α ε ξ

α ε ξ

ξ

=

=

=

+

⎧ − − ≤ +⎪
⎪
⎪

+ − ≤ +⎨
⎪
⎪ ≥
⎪
∀ =⎩

∑

∑

∑

α

x x

x x

"

                    (5) 

In order to solve the optimization above, we can 
decompose iα  and iα  as follows: 

i i iα α α+ −= − ,    i i iα α α+ −= +                          (6) 

where , 0i iα α+ − ≥ . Due to the nature of the constraints, 
typically only a subset of iα  is non-zero, and the associated 
training data are called support vectors [7, 8].  

Substituting (6) into (5), LPSVR can be expressed as: 

( )

( ) ( )

( ) ( )

( )

1 1

1

1

Find:  , , ,

Min:   2

,

,s.t.

0,  0

0. 1, 2, ,

j j i

N N

j j i
j i

N

i j j i j i
j

N

j j i j i i
j

j j

i

b

C

y k b

k b y

i N

α α ξ

α α ξ

α α ε ξ

α α ε ξ

α α

ξ

+ −

+ −

= =

+ −

=

+ −

=

+ −

+ +

⎧ − − − ≤ +⎪
⎪
⎪⎪ − + − ≤ +⎨
⎪
⎪ ≥ ≥
⎪

≥ ∀ =⎪⎩

∑ ∑

∑

∑

x x

x x

"

            (7) 

The coefficients , ,j j iα α ξ+ − and b in (7) are solved by 
using linprog in Matlab. Substituting (6) into (2), one is 
express as: 

( ) ( ) ( )
1

,
N

j j j
j

f k bα α+ −

=

= − +∑x x x                    (8) 

III. PROPOSED ALGORITHM  
In order to improve the modeling accuracy from few 

experimental data, this subsection has proposed an 
algorithm which can incorporate multi-kernel and prior 
knowledge into LPSVR. Fig.1 shows the basic idea of 
developing the algorithm.  

From Fig. 1, multiple feature spaces have been utilized to 
develop multi-kernel linear programming support vector 
regression (MKLPSVR). Subsequently, the optimization 
objectives and inequality constraints in MKLPSVR have 
been modified to incorporate the prior knowledge from a 
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simulation model, which leads to multi-kernel linear 
programming prior knowledge support vector regression 
(MKPLPSVR). By incorporating the prior knowledge from 
a calibrated simulator into MKLPSVR, one can reduce the 
effect of the biased data from a simulation model on the 
accuracy of the data-based model. The development of 
MKPLPSVR is explained in the followings. 

 
Fig.1. Block diagram of MKPLPSVR development 

A. MKLPSVR 
As far as LPSVR, the function in the feature space is 

expressed as (1). However, the non-flat function or 
complicated data trend cannot be described properly in a 
single feature space. It is promising to seek a space which 
can utilize the advantage of different feature spaces [16]. 
Therefore, it may be better choice to consider the regression 
problem in the multiple feature spaces 1, Lω ω" , and the 
function in multiple feature spaces can be written as: 

( ) ( )
1

L

r
r

f bϕ
=

= ⋅ +∑x ω x                              (9) 

Substituting ( )
1

N

i i
i

α ϕ
=

=∑ω x  into(9), one can express the 

regression function as: 

( ) ( )
1 1

 ,   
L N

ri r i
r i

f k bα
= =

= +∑∑x x x                   (10) 

where L  denotes the number of the kernels which are 
induced by a set of different feature spaces 1, Lω ω" . The 
function ( ) ( ) ( ),r i rik ϕ ϕ= ⋅x x x x  denotes the r -th kernel, 
and riα is the coefficient of the corresponding kernel.  

Utilizing the method in (6), one can reformulate the 
function in (10) as: 

( ) ( ) ( )
1 1

,
L N

ri ri r i
r i

f k bα α+ −

= =

= − +∑∑x x x                (11) 

Eq.(11) can be estimated by minimizing the risk  (3) like 
the previous method. Since the target to be estimated is a 
complicated data-trend function, the minimization of the 
regularization term means the maximum of the function 
fatness, which may result in under-fitting result  [16]. To 
avoid the problem, we have utilized the generalization 
theory to control the regularization term by introducing a 
non-negative constant rC . Therefore, analogous to (3), the 

risk function in a multi-kernel framework can be expressed 
as: 

 ( )( )1
1 1

Min:  2
L N

r r i i
r i

C C L y f
= =

+ −∑ ∑α x          (12) 

where ( ) 1
1

L

r r
r

Q C
=

=∑a α  is a regularization term, and the 

constant rC  penalizes nonzero coefficients rα . The vector 

[ ]T
1, ,r r ri rNα α α=α "  denotes the coefficient of the r -th 

kernel, and non-zero elements in the vector rα  are also 
called support vectors.  

Utilizing the method in (6) and (7), MKLPSVR is 
expressed as: 

  

( )

( ) ( )

( ) ( )

( )

1 1 1

1 1

1 1

Find:  , , ,

Min:  2

,

,s.t.

0, 0

0 1,2, ,

ri ri i
L N N

r ri ri i
r i i

L N

i rj rj r i j i
r j

L N

rj rj r i j i i
r j

rj rj

i

b

C C

y k b

k b y

i N

α α ξ

α α ξ

α α ε ξ

α α ε ξ

α α

ξ

+ −

+ −

= = =

+ −

= =

+ −

= =

+ −

+ +

⎧ − − − ≤ +⎪
⎪
⎪⎪ − + − ≤ +⎨
⎪
⎪ ≥ ≥
⎪

≥ ∀ =⎪⎩

∑ ∑ ∑

∑∑

∑∑

x x

x x

"             

        (13) 

where  rC  depends on the kernel parameter of the used 
kernel function. The coefficient ,ri riα α+ −  satisfy 

ri ri riα α α+ −= −  and ri ri riα α α+ −= + .  
Utilizing linear programming to solve (13), one can obtain 

the function as shown in (11).  

B. MKPLPSVR 
In practice, it is complex and costly to obtain sufficient 

measured data. The amount of experimental data is so little 
that a satisfactory model cannot be obtained. On the other 
hand, a simulation model built from some physical 
knowledge is available [27, 28]. Using a calibrated 
simulator, one can obtain enough prior data, but which may 
be biased from the measured results. In order to reduce the 
effect of the biased prior data, this subsection will present an 
approach to incorporate the prior data from a calibrated 
simulator into MKLPSVR. 

Let the prior dataset 

( ){ }P , , R , R, 1,2,p p p d p
k k k k ky y k N= ∈ ∈ =z z "  from a 

simulator. The superscript p  and the subscript k  refer to 
the prior knowledge and the number of prior data, 
respectively. Obviously, the prior data will satisfy the 
equation in the simulator: 

( ) ( )  1, 2, ,p p
k k kf y k N= =z "                        (14) 

The equality constraints can be added to the formulation 
(13) without changing the linear programming nature. 
However, this will lead to an exact fit to the data points, 
which may not be advised if the prior data is biased from the 
measured results. Moreover, all the equality constraints may 
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lead to an unfeasible problem if they cannot be satisfied 
simultaneously [24, 27-29].Therefore, some soft constraints 
have been utilized in Eq.(14) by introducing a positive slack 
variable [ ]T

1 1, , , ku u u=u " . The slack variable can bound 

the errors between the prior data ( ),p p
k kyz  and the 

regression function ( )p
kf z  in the following inequality: 

( ) ( ) 1 2, ,p p
k k k ky f u k N− ≤ ∀z   = , "            (15) 

In order to include almost exact or biased knowledge 
from a prior simulator, it is possible to authorize violations 
of the constraints (15) that are less than a threshold pε . 
Therefore, by applying ε -insensitive loss function to the 
errors ku , one can obtain the following inequality: 

( ) ( ) 1 2, ,p p p
k k k ky f u k Nε− ≤ + ∀z  = , "        (16) 

In order to minimize the errors [ ]T
1 1, , , ku u u=u " , the 1l  

norm of u  is added to (12) by introducing a trade-off 
parameter λ  which can tune the influence of the prior data 
on the regression function. Therefore, by adding inequality 
constraints (16) and the 1l  norm of the slack vector, 
MKLPSVR in (13) has been modified to reduce the 
influence of biased prior data from a simulator on the 
modeling accuracy. The modified algorithm which is called 
as MKPLPSVR is expressed as: 

( )

( ) ( )

( ) ( )

( ) ( )

( )

1 1 1 1

1 1

1 1

1 1

1

Find:  , , , ,

Min: 2

,

,   

,s.t.

k

ri ri i k
NL N N

r ri ri i k
r i i k

L N

i rj rj r i j i
r j

L N

rj rj r i j i i
r j

L N
p p p
k rj rj r k j k

r j

N

rj rj
j

u b

C C u

y k b

k b y

y k b u

α α ξ

α α ξ λ

α α ε ξ

α α ε ξ

α α ε

α α

+ −

+ −

= = = =

+ −

= =

+ −

= =

+ −

= =

+ −

=

+ + +

− − − ≤ +

− + − ≤ +

− − − ≤ +

−

∑ ∑ ∑ ∑

∑∑

∑∑

∑∑

x x

x x

z x

( )
( )
( )

1
,

0,  0    1, 2, ,       

0,    0    1,2,

L
p p p

r k j k k
r

rj rj

i k k

k b y u

i N

u k N

ε

α α

ξ

=

+ −

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪

+ − ≤ +⎪
⎪
⎪ ≥ ≥ ∀ =
⎪
⎪ ≥ ≥ ∀ =⎩

∑∑ z x

"

"     (17) 
Using linear programming to solve the formulation, one 

will obtain a regression function in (11). The solution 
procedure is summarized below. 
Algorithm: MKPLPSVR 
1. Prepare a training dataset which includes a measured  

dataset { }( , ), 1,...,i i mi N=x y  from a fine model and a prior 

dataset ( ){ }, , 1, 2,p p
k k ky k N=z " from a simulator. 

2. Determine the total number m kN N N= + of the training  
dataset. 
3. Define the number L and kernel parameters of the used  

kernel functions. 
4. Select some hyper-parameters such as the parameters  

C , λ , ε  and pε . 
5. Calculate the N N×  kernel matrix ( )1, 2, ,r r L=K "  

from the training dataset. 
6. Calculate the kN N×  kernel matrix ( )1,2, ,p

r r L=K "  
from the prior dataset 

7. Construct the vector form of  the formulation (17). 
8. Solve the optimization by using linprog in Matlab. 
9. Computer ri ri riα α α+ −= − and obtain the function (11). 
 

IV. EXPERIMENTAL RESULTS 
In this section, we will exploit a complex function 

approximating experiment to validate the algorithm 
proposed in the paper. Moreover, the following two criteria 
are used for evaluating the generalization performance 
based on the same test dataset  

                  (18) 

   ( )( ) ( )max    1, 2, ,i iMAE y f i N= − =x …         (19) 

where ( )if x is the predicted value, iy  is the corresponding 
actual value, N is the number of testing samples. 

A. Example1 
In this example, we will utilize the algorithms above to 

identify a model from a control system. For realizing the 
identification process, we will use the following equation 

with the input ( ) 2sin
250

kx k π⎛ ⎞= ⎜ ⎟
⎝ ⎠

 to obtain some data. 

( ) ( ) ( ) ( )( )
( )( ) ( )( )

1 0.3 0.6 1 0.6sin

             0.3sin 3 0.1sin 5

y k y k y k x k

x k x k

π

π π

+ = + − +

+ +
 (20) 

From the function, we have generated 10 training data 
and 10 priori data separately by adding an independent 
Gaussian noise ( )20,0.1N . In the range [ ]0,300  of input 
space of the function, 300 points are taken uniformly for a 
testing data. Fig. 2 shows the testing data, the training data 
as well as the priori data.  
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Fig. 2. Data samples 
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The identified model ( )g k  can be expressed as:  

( ) ( ) ( ) ( )( )( )1 , 2 , 1y k g y k y k f x k= − − −          (21) 

Utilizing the data above, we will identify the function 
( )g k  separately by LPSVR, PLPSVR in [29], MKLPSVR 

and MKPLPSVR. Two groups of experiments have been 
also designed to validate the proposed algorithm. In the first 
group, 10 training samples are used to train the regression 
function; meanwhile, 10 samples from the prior knowledge 
are only used during the course of calculating the constraints 
of the optimization formulation. In the second group, we 
will firstly extend the 10 training samples with the 10 prior 
samples, and then use the extended data to train the model. 
After we have obtained a regression model, we will use the 
300 testing data to separately validate the model.  

The method of 5-fold cross-validation is used to choose 
proper model parameters of the four algorithms. In the first 
group, we choose 100C = , 0.01ε = , 0.001pε = for all the 
algorithms, and both LPSVR and PLPSVR exploit only a 
Gaussian kernel with the kernel parameter 1σ = , however, 
MKLPSVR and MKPLPSVR use a Gaussian kernel and a 
polynomial kernel, the kernel parameters of which are 1 and 
0. 8, respectively. In the second group, we 
choose 100C = , 0.01ε = , 0.001pε = . Similarly, both 
LPSVR and PLPSVR exploit a Gaussian kernel with 1σ = , 
however, MKLPSVR and MKPLPSVR use a Gaussian 
kernel and a polynomial kernel, the kernel parameters of 
which are 1.5 and 0.8, respectively. 

According to the data samples and parameters above, we 
will establish the models separately by using four 
algorithms. Fig. 3 shows the approximating results in the 
first group experiment. Table 1 gives the comparing results 
of the four regression models calculated by 300 testing data 
in the first group of experiment. From the table, we can find 
that the result obtained by MKPLPSVR has the smallest 
RMSE  and MAE , in spite of the same number of the 
support vector.  

Fig. 4 gives the approximating results of four algorithms 
in the second group experiment. Table 2 shows the results of 
the four functions separately calculated by 300 testing data 
in the second group of experiment. 
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(b) 

Fig. 3. Comparison in the first group of experiment (a) (b) 
TABLE 1  ERRORS AND  NUMBER OF  SUPPORT VECTOR 
Algorithm NSV RMSE  MAE  

LPSVR 3 0.482555 1.241319 

PLPSVR 3 0.368077 0.982214 

MKLPSVR 3 0.324137 0.76772 

MKPLPSVR 3 0.114968 0.334509 
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(b) 

Fig. 4. Comparison in the second group of experiment (a) (b) 
TABLE 2  ERRORS AND  NUMBER OF  SUPPORT VECTOR 
Algorithm NSV RMSE  MAE  

LPSVR 4 0.296777 0.745348 

PLPSVR 4 0.285432 0.716359 

MKLPSVR 4 0.112244 0.329322 

MKPLPSVR 4 0.109848 0.324031 
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Compared Table 1 with Table 2, we can find that the 
model developed in the second group of experiment is more 
accurate than the one developed in the first group of 
experiment. The reason is that the prior knowledge has been 
incorporated into LPSVR, which has improved the accuracy 
of data-based model. The results can also indicate that that it 
is feasible to improve the modeling accuracy from a limited 
amount of experimental data by simultaneously 
incorporating prior knowledge and multiple kernels into 
LPSVR, and that the proposed algorithm MKPLPSVR is 
more effective to approximate a real function than the others 
which have only exploited multiple kernel or prior 
knowledge in the framework of LPSVR or QPSVR. 

B. Example 2 
In this experiment, we approximate the following single-

variable function which is modified from.  

( )( )
3 2

4 8,                             3 1
3 5 5 3,            1 1

2sin exp 1.2 0.3552,     1 3

x x
y x x x x

x x

⎧− − − ≤ < −
⎪

= − − + + − ≤ <⎨
⎪ + ≤ ≤⎩

     (22) 

From the function, we have generated 13 training data 
and 35 priori data by adding an independent Gaussian 
noise ( )20,0.1N . In the range [ ]3,3− , 201 points are also 
taken uniformly for a test data. Figure 5 shows the test data, 
the training data as well as the priori data. 

-3 -2 -1 0 1 2 3
-5

0

5

 

Test data

Train data

Prior data

 
Fig.5 Data samples 

Utilizing the data, we will approximate the function 
separately by LPSVR, MKLPSVR and MKPLPSVR. In 
addition, SimpleMKL in [31] and PLPSVR in [29] have 
been used to compare their performance with MKPLPSVR.  

During the course of data-driven modeling, we have 
designed two groups of experiments. In the first group of 
experiment, 13 training data will used to develop a 
regression function, and 35 data samples from prior 
knowledge are only used during the course of calculating 
the constraints of the optimization formulation. In the 
second group of experiment, we will utilize the 35 data 
samples from prior knowledge to extend the 13 training 
samples, and then apply the extended data samples to 
develop a regression function. After obtaining a regression 
model, we will verify the model by using the 201 testing 
data.  

In the first group of experiment, we have chosen 
100C = , 0.01ε = , 0.04pε =  for all the algorithms. Both 

LPSVR and PLPSVR exploit only a Gaussian kernel with 
the kernel parameter 0.0803σ = . However, MKLPSVR, 
SimpleMKL and MKPLPSVR have employed a Gaussian 
kernel, a polynomial kernel and a wavelet kernel [30] with 
the kernel parameters 2, 0.058 and 0.0125, respectively. In 
the second group, we have chosen 150C = , 0.01ε = , 

0.04pε =  for all the algorithms. Similarly, both LPSVR 
and PLPSVR only exploit a Gaussian kernel with the kernel 
parameter 0.013σ = . MKLPSVR, SimpleMKL and 
MKPLPSVR have utilized a Gaussian kernel, a polynomial 
kernel and a wavelet kernel with the kernel parameters 2, 
0.055 and 0.0122, respectively. 

Utilizing the data samples and parameters above, we will 
establish the models separately by using five algorithms. Fig. 
6 shows the approximating results in the first group of 
experiment. 
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Fig. 6 Comparison of predicted results in the first group of experiment  

(a) (b) 
Fig. 6 shows that all of the algorithms cannot accurately 

approximate the steep variation of the actual function, due 
to only the 13 training samples. However, compared with 
Fig.6 (a) and Fig.6 (b), we can find that the multi-kernel 
algorithms such as MKLPSVR, MKPLPSVR and 
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SimpleMKL are able to more accurately approximate the 
flat variation than other algorithms.  

In order to clearly show the performance, we have 
presented some results verified by 201 testing data in Table 
3. From the Table 3, we can also find that the number of 
support vector (NSV) is almost the same among the 
functions. However, the model calculated by MKPLPSVR 
has the smallest RMSE  and MAE  among the five models. 

TABLE 3 ERRORS AND NUMBER OF SUPPORT VECTOR 
Algorithm NSV RMSE  MAE  

LPSVR 11 1.848857 5.735477 

PLPSVR 12 1.328779 3.880107 

MKLPSVR 12 1.845337 5.735477 

SimpleMKL 12 1.4378 3.8105 

MKPLPSVR 12 0.972362 2.486516 

Fig. 7 shows the approximating results in the second 
group of experiment. From Fig.7(a), we can find that all of 
the algorithms can approximate the steep variation of the 
function. However, the results from Fig.7 (b) show that 
other algorithms besides MKPLPSVR and MKLPSVR 
cannot accurately approximate the flat variation. A possible 
explanation is that incorporating multi-kernel into LPSVR 
has improved the accuracy of approximating a function with 
both the steep variation and smooth variation.  
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Fig. 7 Comparison of predicted results in the second group of experiment  
(a) (b) 

Table 4 shows the results of the five regression functions 
separately calculated by 201 testing data. From the Table 4, 

we can find that the function developed by MKPLPSVR is 
the most accurate among all of the functions. In addition, 
compared with SimpleMKL, MKPLPSVR is also 
advantageous over SimpleMKL in the aspects of model 
sparsity and generation performance.  

TABLE 4 ERRORS AND NUMBER OF SUPPORT VECTOR 
Algorithm NSV RMSE  MAE  

LPSVR 37 0.737101 2.988316 

PLPSVR 37 0.736426 2.053115 

MKLPSVR 37 0.325079 1.573869 

SimpleMKL 42 0.7522 2.7198 

MKPLPSVR 37 0.212162 0.955358 

Compared with Table 3 and Table 4, we can find that the 
function developed in the second group of experiment is 
more accurate than the one developed in the first group of 
experiment. The reason is that the prior knowledge has been 
incorporated into LPSVR. The results also indicate that that 
it is feasible to improve the modeling accuracy from a 
limited amount of experimental data by simultaneously 
incorporating prior knowledge and multi-kernel function 
into the learning framework of LPSVR, and that 
MKPLPSVR is more effective to approximate a real 
function than the other algorithms. 

V. CONCLUSION 
This paper has presented a multi-kernel linear program 

support vector regression with prior knowledge to solve the 
modeling problem of small data set. By modifying 
optimization objectives and inequality constraints, we can 
incorporate the data which is possible biased from a prior 
simulator into the multi-kernel linear programming support 
vector regression. Synthetic examples show the 
effectiveness of the proposed algorithm, and comparing 
results show that the proposed MKPLPSVR algorithm is 
more effective to approximate a real function than the others 
which have only exploited multiple kernel or prior 
knowledge in the framework of LPSVR or QPSVR. The 
proposed algorithm can be exploited in some engineering 
such as computer-aided modeling, system identification as 
well as auto-tuning system of microwave filters. In 
particular, if there is an insufficient amount of measured 
data, one can improve the data-based modeling accuracy by 
using MKPLPSVR. In the future, we will solve the problem 
how to choose a proper parameter for the MKPLPSVR.  
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