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Abstract— UAV can work in places that are dangerous,
or not easy to reach for humans. However, due to active
control and operating difficulties, it is still a challenge to
develop fully autonomous flight in complex environments. This
paper applies a novel heuristic dynamic programming for
the UAV heading optimal tracking controller design, using
kernel-based heuristic dynamic programming (KHDP). Kernel-
based HDP is developed by integrating kernel methods and
approximately linear dependence (ALD) analysis with the critic
learning of HDP algorithm. Compared with conventional HDP
where neural networks are widely used and their features
were manually designed, the proposed algorithm can obtain
better generalization capability and learning efficiency through
applying the sparse kernel machine into the critic learning
process of HDP algorithm. Simulation and experimental results
of UAV heading optimal tracking control problems demonstrate
the effectiveness of the proposed kernel-based HDP algorithm.

I. INTRODUCTION

IN recent years, with the development of embed-
ded processor, micro-sensor technology, control theory,

and Micro-Electro-Mechanical Systems (MEMS) technology
widely used in military weapons and civilian products, the
application and research of Unmanned Aerial Vehicles (UAV)
have attracted great attention, as one kind of hight-speed and
high-efficiency agent. UAV can work in the places where are
dangerous, or not easy to reach by humans. UAV resembling
helicopters become one of the typical unmanned aircraft
research platforms, and expand the potential applications
of UAV. An UAV containing weather image sensors can
implement reconnaissance and surveillance on a target at
close range. It can also complete a variety of complex tasks,
such as the low altitude reconnaissance, monitoring, which
plays an important role in the military. It also provides
accurate, real-time target detection information, and imple-
ments the control on roll, pitch and rotation by adjusting the
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rotation speed of the motor, which has strong requirements
for controlling frequency and speed.

Many foreign laboratories and universities have UAV
research projects, and many research institutions successfully
developed with UAV autonomous flight capabilities in a
simple constraint environment. However, due to the active
control and operating difficulties, it is still a challenge to
develop fully autonomous flight in complex environments.
Research and development on UAV have been relatively slow
in the domestic.

In recent years, many international researchers have been
studying UAV control problem using a variety of control
algorithms[1], [2], [3], [4]. These methods can control the
UAV gesture, but there exists corresponding drawbacks. The
DI control theory has no strong robustness, especially under
the condition of airflow disturbance and model parameters
perturbation. PID and LQ control methods ignore the non-
linear factor in model, which affects the control effect due to
poor model accuracy [5]. UAV itself is an unstable system,
very vulnerable to the impact of the wind, which will cause
the flight direction to change, or even crash.

As is well known, the ADP algorithm improves the
control performance by online interaction with the system
or environment.” Also, ADP is not introduced. Multilayer
perceptron neural networks (MLPNNs) [7], [6] were used for
policy evaluation in ADP usually [8], [12], [9], [10], [11].
Dierks et al. [13] applied the neural dynamic programming
technique into solving the Hamilton-Jacobi-Bellman (HJB)
equation for optimal control of unknown affine nonlinear
discrete-time systems with proof of convergence. Zhang et
al. [14] studied MLPNN-based optimal control algorithm for
a class of discrete-time nonlinear affine systems with control
constraints. Wang et al. [15] utilized the MLPNNs to design
a finite-horizon optimal controller for a class of discrete-
time nonlinear systems with 𝜀 error bound. Nevertheless,
the manual settings of critic networks and empirical design
of basis functions were still depended on in the above
works. Therefore, we demand to develop automatic feature
representation and selection methods for the critic learning
module of ADP approaches.

According to the theoretical and empirical results from sta-
tistical learning [16], [17], the structures designed by sparse
kernel machines have better generalization capability than
conventional MLPNNs. Consequently we apply the sparse
kernel machines into the critic learning of ADP algorithm.
Werbos classified ADP approach into four main schemes
[18], [22], [23], [24]: heuristic dynamic programming (HDP),
dual-HDP (DHP), action-dependent HDP (ADHDP), and
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action-dependent DHP (ADDHP). Among ADP architec-
tures, HDP is the most popular one. Inspired by [19], this
paper integrate HDP algorithm with sparse kernel machines,
that is kernel-based HDP algorithm. We apply the kernel-
based HDP algorithm to optimal tracking controller design
for UAV heading system. As well as we know, there are
very few works on kernel-based HDP algorithm in the field
and applying it to optimal tracking controller design for
UAV heading system. Simulation and experimental results
on UAV heading system demonstrate that kernel-based HDP
can obtain good performance.

The rest of this paper is organized as follows. In Section 1,
the problem statement is given. The Online kernel-based HD-
P optimal tracking controller design is presented in Section
2. The simulation results of UAV heading optimal tracking
controller using kernel-based HDP algorithm are presented
to show the satisfactory performance of the proposed scheme
in Section 3. Finally, the conclusions are drawn in Section
4.

II. PROBLEM STATEMENT

This paper introduces a detailed mathematical UAV model,
as is shown in (1) [20].

𝑥(𝑘 + 1) = 𝑓(𝑥𝑘) + 𝑔(𝑥𝑘)𝑢𝑝𝑘 = 𝐴(𝑥𝑘) +𝐵𝑢𝑝𝑘 (1)

Here, the system state is determined by the heading angle 𝜃
and heading angular velocity 𝜃, i.e. 𝑥 = [𝜃; 𝜃] ∈ ℜ2 is system
state vector. The tail total moment 𝑢𝑝 ∈ ℜ is the only control

input of the system. Parameters 𝐴 =

[
0.9993 0.0197
−0.0657 0.9721

]

and 𝐵 =

[
0.0143
1.4251

]
are system parameter constants.

Assume that the system (1) is controllable.
Optimal tracking control problem of UAV heading aims

to determine optimal control law 𝑢∗𝑝, so as to make the UAV
heading system (1) to track a desired trajectory 𝑟𝑘 satisfying

𝑟𝑘+1 = 𝜙 (𝑟𝑘) (2)

where 𝑟𝑘 ∈ ℜ2 and 𝜙 (𝑟𝑘) ∈ ℜ2. Then, the tracking error is
defined as

𝑒𝑘 = 𝑥𝑘 − 𝑟𝑘 (3)

From [25], [26], the steady control corresponding to the
reference trajectory 𝑟𝑘 is defined as

𝑢𝑑𝑘 = 𝑔−1 (𝑟𝑘) (𝜙 (𝑟𝑘)− 𝑓 (𝑟𝑘)) (4)

where 𝑔−1 (𝑟𝑘) 𝑔 (𝑟𝑘) = 𝐼𝑚 and 𝐼𝑚 is an 𝑚 × 𝑚 identity
matrix.

By denoting
𝑢𝑘 = 𝑢𝑝𝑘 − 𝑢𝑑𝑘 (5)

and using equations (1)-(4), a new system can be obtained
as follows
⎧
⎨

⎩

𝑒𝑘+1 = 𝑓 (𝑒𝑘 + 𝑟𝑘) + 𝑔 (𝑒𝑘 + 𝑟𝑘) 𝑔
−1 (𝑟𝑘) (𝜙 (𝑟𝑘 − 𝑓 (𝑟𝑘))

− 𝜙 (𝑟𝑘)) + 𝑔 (𝑒𝑘 + 𝑟𝑘)𝑢𝑘
𝑟𝑘+1 = 𝜙 (𝑟𝑘)

(6)

Note that in system (6), we regard [𝑒𝑘; 𝑟𝑘] and 𝑢𝑘 as the
system variables and system input, respectively.

Definition 1: The system (6) is said to be stabilizable on
a compact set Ω ∈ ℜ2, if for all random initial conditions
𝑒0 ∈ Ω, there exists a control sequence 𝑢0, 𝑢1, . . . , 𝑢∞ ∈ ℜ,
such that the final state 𝑒𝑘 → 0 as 𝑘 →∞.

For infinite-horizon optimal tracking control problem, the
purpose is to find the control sequence which can minimize
the value function as follows:

𝑄 (𝑒𝑘, 𝑢𝑘) =

∞∑

𝑖=𝑘

𝛾𝑖−𝑘𝑈 (𝑒𝑖, 𝑢𝑖) (7)

where 𝑈 (𝑒𝑖, 𝑢𝑖) ≥ 0 is the utility function, which has the
quadratic form as follows:

𝑈 (𝑒𝑖, 𝑢𝑖) = 𝑒𝑇𝑖 𝑄𝑒𝑖 + 𝑢𝑇𝑖 𝑅𝑢𝑖

This value function can force both the UAV heading system
state to track the desired trajectory and the tail total moment
𝑢𝑝 ∈ ℜ to approximate to the steady value.

Definition 2: A control sequence 𝑢𝑘, 𝑢𝑘+1, . . . , 𝑢∞ ∈ ℜ
is said to be admissible for a state 𝑒𝑘 ∈ ℜ𝑛 with respect
to (7) on Ω if 𝑢𝑘, 𝑢𝑘+1, . . . , 𝑢∞ ∈ ℜ is continuous on a
compact set Ω𝑢 ∈ ℜ, 𝑢0 = 0, 𝑒∞ = 0 and 𝑄 (𝑒𝑘, 𝑢𝑘) is
finite.

According to Bellman’s optimality principle, the optimal
cost function 𝑄∗ (𝑒𝑘) satisfies the discrete-time HJB equation

𝑄∗ (𝑒𝑘) = min
𝑢𝑘

{
𝑒𝑇𝑘𝑄𝑒𝑘 + 𝑢𝑇𝑘𝑅𝑢𝑘 +𝑄∗ (𝑒𝑘+1)

}
(8)

The optimal control 𝑢∗ satisfies the first-order necessary
condition, which is given by the gradient of the right-hand
side of (8) with respect to 𝑢𝑘. Then,

𝑢∗ (𝑒𝑘) = −1
2
𝑅−1𝑔𝑇 (𝑒𝑘 + 𝑟𝑘)

∂𝑄∗ (𝑒𝑘+1)

∂𝑒𝑘+1
(9)

Then, the optimal tracking control input for UAV heading
system (1) can be computed by

𝑢∗𝑝𝑘 = 𝑢∗ (𝑒𝑘) + 𝑢𝑑𝑘 = 𝑢∗ (𝑒𝑘) + 𝑔−1 (𝑟𝑘) (𝜙 (𝑟𝑘)− 𝑓 (𝑟𝑘))
(10)

III. IMPLEMENTATION FOR UAV HEADING OPTIMAL

TRACKING CONTROLLER USING KERNEL-BASED HDP
ALGORITHM

A. Framework of Kernel-based HDP

A general framework of the HDP algorithm with sparse
kernel machines is shown in Fig. 1. Its main components
consist of a model of the system (6), a reward function, an
actor, a critic module and a kernel-based feature learning
module. The kernel-based feature learning module aims to
implement data-driven feature representation and learning so
that we can obtain better generalization performance and
learning efficiency for HDP. The objective of the critic is to
approximate the performance index function. In kernel-based
HDP algorithm, the kernel function and its induced feature
space play very important roles in the critic learning process.
Because of kernel-based features which are in linear forms,
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the critic can employ the RLS-TD learning algorithms. The
actor receives the current tracking error state 𝑒𝑘 and outputs
the control 𝑢𝑘. The output of the critic is used in the actor
training process to compute the policy gradients, which will
be shown in the following section. Given the control 𝑢𝑘, the
plant model estimates the next trajectory tracking error 𝑒𝑘+1.
The state tracking error data are input to the critic and to the
utility function. The solid lines represent signal flow, while
the dashed lines are the paths for network weight updating
in the critic and actor networks.

Critic

Actor

Model

Reward 

function

Kernel-based 

feature learning

1+te

( )teQ

tu

te

tU

UAV

+

dtu

ptu

-

tx
tr

Fig. 1. Learning tracking control structure based on KHDP

There are two main procedures included in the proposed
kernel-based HDP algorithm, that is, a kernel-based fea-
ture construction process and an online learning control
process. The sample collection process for kernel feature
construction is realized by observing the MDP running
with an initially random control policy of the actor in this
paper. The data samples are in the form of state transitions
{(𝑒1, 𝑢1) , (𝑒2, 𝑢2) , . . . , (𝑒𝑛, 𝑢𝑛)}. Before the online control
learning process of HDP, we need to perform the ALD-based
kernel sparsification procedure offline on the data samples.

After the sample collection process, we construct the
kernel-based features in a data-driven way in the ALD
analysis[27]. Let 𝑆𝑛 = {𝑠1, 𝑠2, ⋅ ⋅ ⋅ , 𝑠𝑛} denote a set of
data samples and 𝜙 be a feature mapping on 𝑆𝑛, which
can be determined by the Mercer kernel function defined
in equation (11). We can obtain a feature vector set as
Φ𝑛 = {𝜙 (𝑠1) , 𝜙 (𝑠2) , ⋅ ⋅ ⋅ , 𝜙 (𝑠𝑛)}, 𝜙 (𝑠𝑖) ∈ 𝑅𝑚×1, 𝑖 =
1, 2, . . . , 𝑛. According to the Mercer theorem [16], there
exists a Hilbert space 𝐻 and a mapping 𝜙 from 𝑆 to 𝐻
such that

𝑘 (𝑠𝑖, 𝑠𝑗) = ⟨𝜙 (𝑠𝑖) , 𝜙 (𝑠𝑗)⟩ (11)

where ⟨⋅, ⋅⟩ represents the inner product in 𝐻 . The dimension
of 𝐻 may be infinite and the nonlinear mapping 𝜙 is usually
unknown, but all the computation in the feature space can
still be performed if it is in the form of inner products.

To perform the ALD analysis on the feature vector set,
we need to define a data dictionary as a subset of the feature
vector set, denoted by 𝐷. The data dictionary 𝐷 is initialized
as empty and the ALD analysis is implemented by testing
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Fig. 2. The ALD analysis procedure

every feature vector in Φ𝑛, one at a time. The detailed steps
are shown in Fig. 2, where 𝑑 (𝑡− 1) is the length of the data
dictionary, 𝜇 is a predefined threshold. Consequently, after
the ALD analysis process, all the feature vectors of the data
samples in 𝑆𝑛 can be approximately represented by linear
combinations of the feature vectors in the dictionary within
𝜇.

After the sparsification procedure, we can obtain a data
dictionary 𝐷𝑛 with less number of data sample vectors, and
the approximated value function is represented as follows:

𝑄̃ (𝑠) =

𝑑(𝑛)∑

𝑗=1

𝛼𝑗𝑘 (𝑠, 𝑠𝑗) (12)

where 𝑑 (𝑛), usually much smaller than the original sample
size 𝑛, is the length of the dictionary 𝐷𝑛. 𝑠𝑗 = 𝑠 (𝑒𝑗 , 𝑢𝑗),
and 𝑒𝑗 (𝑗 = 1, 2, . . . , 𝑑 (𝑛)) are the elements of the data
dictionary.
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The critic aims at approximating the performance index
functions. Hence, in the proposed kernel-based HDP, we will
apply a recursive algorithm of KLSTD [28], [29]. The kernel-
based HDP algorithm is implemented as follows.

B. Implementation of Kernel-based HDP Algorithm

Now we implement the kernel-based HDP algorithm using
NNs and sparse kernel function. In the kernel-based HDP
algorithm, there are three modules, which are model module,
critic module and action module. The model module and
action module are chosen as three-layer feedforward NNs.
The flowchart of the proposed algorithm is shown in Fig. 3.

Start

Initialize:
 kernel dictionary D=null,

System state      and desired trajectory 
 control input 

Update model network weights  
until the termination criterion is satisfied

get a sample set
with the initial policy in the actor 
network:                 

Draw action
get reward     
next tracking error
compute feature vector 

Update 

Return the final policy

Return the final tracking 
control policy

End

caamm WWWWW ,,,, 2121
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21, aa WW

Implement ALD analysis process 
over

( ){ }Niiii uxssS
1

,==

21, mm WW

( ){ }Niiii uxssS
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,==
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The termination 
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NO
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NO
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Fig. 3. The flowchart of the kernel-based HDP algorithm

1) The model network: The model network is designed to
approximate the error dynamics. We should train the model
network before carrying out the kernel-based HDP algorithm.
For given 𝑒𝑘 and 𝑢𝑘, we can obtain the output of the model
network as

𝑒𝑘+1 =𝑊𝑚2𝜎 (𝑊𝑚1𝑧𝑘) (13)

where 𝑧𝑘 =
[
𝑒𝑇𝑘 𝑢𝑇𝑘

]𝑇
. The error function of the model

network is defined as follows

𝑒𝑚𝑘 = 𝑒𝑘+1-𝑒𝑘+1

The weights of the model network are updated to minimize
the following performance measure:

𝐸𝑚𝑘 =
1

2
𝑒𝑇𝑚𝑘𝑒𝑚𝑘 (14)

Using the gradient-based adaptation rule, the weights can
be updated as

𝑊𝑚1 (𝑡+ 1) =𝑊𝑚1 (𝑡)− 𝑙𝑚
[

∂𝐸𝑚𝑘
∂𝑊𝑚1 (𝑡)

]
(15)

𝑊𝑚2 (𝑡+ 1) =𝑊𝑚2 (𝑡)− 𝑙𝑚
[

∂𝐸𝑚𝑘
∂𝑊𝑚2 (𝑡)

]
(16)

where 𝑙𝑚 > 0 is the learning rate of the model network. After
the model network is trained, we should keep its weights
unchanged.

2) The critic network: In the critic of kernel-based HDP
algorithm, the performance index function 𝑄 (𝑒, 𝑢) is approx-
imated in a linear weighted form, where a Mercer kernel
function 𝑘 (𝑥, 𝑦) = ⟨𝜙 (𝑥) , 𝜙 (𝑦)⟩ is employed to realize
the feature mapping in a reproducing kernel Hilbert space
(RKHS). Let 𝑠𝑡 = (𝑒𝑡, 𝑢𝑡) denote the trajectory tracking
error-action pair at time step 𝑡. Then, the performance index
function 𝑄 (𝑒𝑡, 𝑢𝑡) can also be expressed as 𝑄 (𝑠𝑡). As
studied in [29], the regression equation for the linear LS-
TD(0) (𝜆 = 0) algorithm is

𝜙 (𝑠𝑡)
(
𝑄̃ (𝑠𝑡)− 𝛾𝑄̃ (𝑠𝑡+1)

)
= 𝜙 (𝑠𝑡) 𝑟𝑡 (17)

and
𝑄̃ (𝑠) = 𝜙𝑇 (𝑠)𝑊, 𝜙,𝑊 ∈ ℜ𝑞×1 (18)

Equation (17) can be rewritten as
[
𝜙 (𝑠𝑡)

(
𝜙𝑇 (𝑠𝑡)− 𝛾𝜙𝑇 (𝑠𝑡+1)

)]
𝑊 = 𝜙 (𝑠𝑡) 𝑟 (𝑠𝑡) (19)

The observation equation of (19) is as follows:

𝜙 (𝑠𝑡)
(
𝜙𝑇 (𝑠𝑡)− 𝛾𝜙𝑇 (𝑠𝑡+1)

)
𝑊 = 𝜙 (𝑠𝑡) 𝑟 (𝑠𝑡) + 𝜀𝑡 (20)

where 𝜀𝑡 is the one-step observation noise.
According to the property of RKHS, the weight vector 𝑊

in equation (20) can be represented by the weighted sum of
the state feature vectors

𝑊 =

𝑑(𝑛)∑

𝑖=1

𝜙 (𝑠𝑖)𝛼𝑖 (21)

where 𝑠𝑖 (𝑖 = 1, 2, . . . , 𝑑 (𝑛)) are the selected tracking error-
action pairs after the ALD analysis, 𝑑 (𝑛) is the length of the
dictionary 𝐷𝑛, and 𝛼𝑖 are the coefficients.

Let

Φ𝑇 =
(
𝜙𝑇 (𝑠1) , 𝜙

𝑇 (𝑠2) , . . . , 𝜙
𝑇 (𝑠𝑇 )

)𝑇
(22)

𝑘⃗ (𝑠𝑡) = (𝑘 (𝑠1, 𝑠𝑡) , 𝑘 (𝑠2, 𝑠𝑡) , . . . , 𝑘 (𝑠𝑇 , 𝑠𝑡))
𝑇 (23)

By multiplying Φ𝑇 to both sides of the observation equation
(20), we get

𝑘⃗ (𝑠𝑡)
[
𝑘⃗ (𝑠𝑡) 𝛼⃗− 𝛾𝑘⃗𝑇 (𝑠𝑡+1) 𝛼⃗

]
= 𝑘⃗ (𝑠𝑡) 𝑟𝑡 (24)

and
𝛼⃗ = [𝛼1, 𝛼2, . . . , 𝛼𝑇 ]

𝑇 (25)

Let

𝐴𝑇 =

𝑁∑

𝑡=1

𝑘⃗ (𝑠𝑡)
[
𝑘⃗𝑇 (𝑠𝑡)− 𝛾𝑘⃗𝑇 (𝑠𝑡+1)

]
(26)

𝑏𝑇 =

𝑁∑

𝑡=1

𝑘⃗ (𝑠𝑡) 𝑟𝑡 (27)

where 𝑁 is the total number of samples.
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Then, the kernel-based least-squares fixed point solution
is as follows:

𝛼⃗ = 𝐴−1𝑇 𝑏𝑇 (28)

To realize online learning in the critic, the following update
rules on the basic of kernel RLS-TD(0) algorithm are applied
in the critic of kernel-based HDP, as are shown in equations
(29)-(31).

𝛽𝑡+1 = 𝑃𝑡𝑘⃗ (𝑠𝑡)
/(

𝜇+
(
𝑘⃗𝑇 (𝑠𝑡)− 𝛾𝑘⃗𝑇 (𝑠𝑡+1)

)
𝑃𝑡𝑘⃗ (𝑠𝑡)

)

(29)
𝛼⃗𝑡+1 = 𝛼⃗𝑡 + 𝛽𝑡+1

(
𝑟𝑡 −

(
𝑘⃗𝑇 (𝑠𝑡)− 𝛾𝑘⃗𝑇 (𝑠𝑡+1)

)
𝛼⃗𝑡

)
(30)

𝑃𝑡+1 =
1

𝜇

⎡

⎣𝑃𝑡 −
𝑃𝑡𝑘⃗ (𝑠𝑡)

(
𝑘⃗𝑇 (𝑠𝑡)− 𝛾𝑘⃗𝑇 (𝑠𝑡+1)

)
𝑃𝑡

[
𝜇+ 𝑘⃗

(−→
𝑘 𝑇 (𝑠𝑡)− 𝛾𝑘⃗𝑇 (𝑠𝑡+1)

)
𝑃𝑡𝑘⃗ (𝑠𝑡)

]

⎤

⎦

(31)
where 𝛽𝑡 is the step size in the critic, 𝜇 (0 < 𝜇 ≤ 1) is the
forgetting factor, 𝑃0 = 𝛿𝐼 , 𝛿 is a positive number, and 𝐼 is
the identity matrix.

3) The actor network: In the actor network in kernel-
based HDP, 𝑒𝑡 is used as input to obtain the optimal control.
The output can be formulated as

𝑢̂𝑘 =𝑊𝑎2𝜎 (𝑊𝑎1𝑒𝑘) (32)

The target control input is shown as

𝑢𝑘 =
1

2
𝑅−1𝑔𝑇 (𝑒𝑘 + 𝑟𝑘)

∂𝑄 (𝑠𝑘+1)

∂𝑒𝑘+1
(33)

When Gaussion kernels are applied, the approximated
value function is

𝑄̃ (𝑒, 𝑢) =

𝑑(𝑛)∑

𝑖=1

𝛼𝑖𝑘 (𝑠, 𝑠𝑖) =

𝑑(𝑛)∑

𝑖=1

𝛼𝑖𝑒
−∥𝑠⃗−𝑠⃗𝑖∥/𝜎2

(34)

where 𝑠⃗ =
(
𝑒(1), 𝑒(2), . . . , 𝑒(𝑚), 𝑢

)
is the combined vector of

the tracking error-action pair. The dimension of the tracking
error state is defined as 𝑚. ∥⋅∥ is defined as

∥𝑠⃗− 𝑠⃗𝑖∥ =
√√
√
⎷

𝑚∑

𝑗=1

(
𝑒(𝑗) − 𝑒𝑖(𝑗)

)2
+ (𝑢− 𝑢𝑖)2 (35)

On the basic of the definition in equation (34), we have

∂𝑄̃ (𝑒, 𝑢)

∂𝑒
=

𝑇∑

𝑖=1

2𝛼𝑖
(𝑒− 𝑒𝑖)
𝜎2

𝑒−∥𝑠⃗−𝑠⃗𝑖∥/𝜎
2

(36)

We can define the error function of the action network as

𝑒𝑎𝑘 = 𝑢̂𝑘 − 𝑢𝑘 (37)

The actor network is trained to minimize the following
performance error measure:

𝐸𝑎𝑘 =
1

2
𝑒𝑇𝑎𝑘𝑒𝑎𝑘 (38)

Similarly, the actor learning rule in KHDP is as follows.

𝑊𝑎1 (𝑡) =𝑊𝑎1 (𝑡)− 𝑙𝑎
[

∂𝐸𝑎𝑘
∂𝑊𝑎1 (𝑗)

]
(39)

𝑊𝑎2 (𝑡) =𝑊𝑎2 (𝑡)− 𝑙𝑎
[

∂𝐸𝑎𝑘
∂𝑊𝑎2 (𝑗)

]
(40)

IV. SIMULATION STUDY

We set the original system state as [0.8;-0.5]. The ref-
erence trajectory for the above system is selected as 𝑟 =
[sin(𝑡); cos(𝑡)]. In the UAV heading system tracking sim-
ulation experiment, the optimal trajectory tracking control
problem is transformed into designing an optimal regulator
for the tracking error dynamics firstly. Note that the weights
in the action and the model networks are trained using their
internal cycles. The weights in the model and the actor
networks are initialized randomly in the range of (-1,1). The
simulation results are shown in the following figures. We
only give part-time steps in order to better observe the results
in Fig. 4(a).
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(a) 𝑥 and 𝑟
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(b) The tracking error 𝑒𝑘

Fig. 4. The system state trajectories and tracking error

In the example, we used Gaussian kernel 𝑘 (𝑠𝑖, 𝑠𝑗) =

exp
(
−(𝑠𝑖 − 𝑠𝑗)𝑇 (𝑠𝑖 − 𝑠𝑗)

)/(
2𝜎2
)
. Thus, in the tracking

control procedure is used to find the value of the kernel width
parameter 𝜎 for which each algorithm performed best. In this
experiment, we set 𝜎 = 6.

It should be mentioned that the model network should be
trained first. 1000 trials of samples are collected by a random
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Fig. 5. The tracking control law for the UAV heading system
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(b) The tracking control law for the error system

Fig. 6. The convergence process

policy to construct the dictionary of kernel features. The
threshold parameter for the ALD analysis is set as 𝜇 = 0.001.

The convergence processes of the value function of the
kernel-based HDP algorithm and optimal tracking control
for the error dynamics are shown in Fig. 6(a) and Fig. 6(b).
We can see that the iterative value function sequence does
converge to the optimal cost function quite rapidly, which in-
dicates the effectiveness of the kernel-based HDP algorithm.
Next, we compute the near-optimal tracking control law for
original system (1) using equation (10) and apply it to the
controlled system. The obtained UAV system state curves
are shown in Fig. 4(a). In order to evaluate the tracking
performance, the corresponding reference trajectories are
also plotted simultaneously in Fig. 4(a). The tracking control
curves and the tracking errors are shown in Fig. 5 and 4(b).
These simulation results verify the excellent performance of
the tracking controller developed by the KHDP algorithm.

V. CONCLUSION

In this paper, the kernel-based HDP algorithm is intro-
duced to design the optimal tracking controller for UAV
heading system, which obtains a infinite-horizon near-
optimal tracking controller that makes both the performance
index function close to its optimal value and the UAV
heading system dynamics tracking the desired trajectories
simultaneously. Due to MLPNNs with manually designed
features, conventional HDP has difficulties in improving
the generalization capability and learning efficiency. This
paper presents a novel framework of HDP by integrating
kernel methods and ALD analysis into the critic learning for
the optimal tracking controller design. The kernel methods
can obtain better generalizaiton capability than MLPNNs.
Moreover, the simulation results confirmed the validity of
the proposed tracking control approach. This research in this
paper shows that it is a very promising work to integrate
sparse kernel machines into online learning ADP control
algorithms.
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