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Abstract— Bayesian detection for the symmetric Gaussian
mixture model has recently received great attention for pattern
recognition problems. However, in many applications, the distri-
bution of the data has a non-Gaussian and non-symmetric form.
This study presents a new asymmetric mixture model for model
detection. In this paper, the proposed asymmetric distribution
is modeled with multiple Student’s-t distributions, which are
heavily tailed and more robust than Gaussian distributions. Our
method has the flexibility to fit different shapes of observed data
such as non-Gaussian and non-symmetric. Another advantage
is that the proposed algorithm, which is based on the varia-
tional Bayesian learning, can simultaneously optimize over the
number of the Student’s-t distribution that is used to model
each asymmetric distribution, and the number of components.
The performance of the proposed model is compared to other
mixture models, demonstrating the robustness, accuracy, and
effectiveness of our method.

I. INTRODUCTION

A mixture model is widely used in areas where statistical
modeling of data is needed such as in bioinformatics, pattern
recognition, and machine learning. The main advantage of
this technique lies in its capability to use prior knowledge
to model uncertainty in a probabilistic manner. Among the
algorithms based on the Bayesian technique, the Gaussian
mixture model (GMM) [1], [2] is a well-known method used
for most applications. Although the GMM is a flexible and
powerful tool for data analysis, it is sensitive to outliers
and may lead to excessive sensitivity to small numbers of
data points. Also, for many applied problems, the tail of the
Gaussian distribution is shorter than required.

In order to improve the robustness of the algorithm for
modeling data with different shapes, the Student’s-t mixture
model (SMM) has been proposed in [3], [4]. Compared to
the GMM, each component of SMM has one more parameter
called the degrees of freedom (v). This parameter is viewed
as a robustness tuning parameter. For the particular case of
v = 1, the Student’s-t distribution reduces to the Cauchy
distribution. When v tends to infinity, the Student’s-t distri-
bution approaches the Gaussian distribution. Also, for many
applied problems [5], [6], the tail of the Gaussian distribution
is shorter than required. Hence, SMM provides a more
powerful and flexible approach for modeling data compared
to the GMM. An advantage of GMM and SMM is that they
require a small number of parameters for learning. Also,
these parameters can be efficiently estimated by adopting the
expectation maximization (EM) algorithm [7] to maximize
the log-likelihood function.
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An important issue in mixture modeling is model de-
tection, where the number of components is automatically
selected. In order to overcome this issue, a variational
Bayesian for the Gaussian mixture model (VB-GMM) is
proposed in [8], [9]. In this technique, the mixture model is
started with a large number of components. The competition
among components finally yields a model which is composed
of dominant components, and the redundant components are
removed. In order to improve the robustness of the algorithm,
a variational Bayesian for the Student’s-t mixture model (VB-
SMM), which includes VB-GMM as a special case, has been
proposed in [10]. Compared to the VB-GMM, the VB-SMM
is less sensitive to outliers and can obtain robust estimates
for the mean of a set of data points.

All the mixture models with Bayesian detection [8]—
[10] are based on the symmetric Gaussian distribution for
modeling the underlying distributions. In real applications
[11], [12], however, the intensity distribution of each label
type of the dataset are not symmetric. Motivated by the
aforementioned observations, we introduce in this paper a
new asymmetric mixture model for model detection. Our
approach differs from those discussed above by the following
advantages. First, the Student’s-t distribution, which is heav-
ily tailed and more robust than the Gaussian, is used in this
paper. Secondly, while the previous models are based on the
symmetric distribution, we propose a new distribution that
is applied for the data that has the asymmetric distribution.
Finally, the proposed algorithm, which is based on the
variational Bayesian learning, can simultaneously optimize
over the number of the Student’s-t distribution that is used
to model each asymmetric distribution, and the number of
components. We demonstrate through extensive simulations
that the proposed model is superior to other mixture models.

The remainder of this paper is organized as follows:
section II presents a brief introduction of the mixture model
with Bayesian detection, commonly used in the literature;
section III describes the proposed method in detail; section
IV presents the parameter estimation; section V sets out the
experimental results; and section VI presents our conclu-
sions.

II. RELATED WORKS

Notations used throughout the paper are as follows. Let
x; denote the i-th observation. The main objective is to
cluster a dataset consisting of N real observations into K
labels. Labels are denoted by (£21,{2s,...,Q2 ). Let us consider
the problem of estimating the posterior probability of z;
belonging to label 2;. The mixture model [1] assumes the
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density function f(z;|Q2;) at an observation x; is given by

ZWJGD (2il€25)

Each distribution ¢(x;|€2;) is called a component of the
mixture. Note that, ¢(z;|€2;) can be any kind of distribution.
In GMM [1], [2], ¢(=z;|2;) is the Gaussian distribution
O (z;|p;,7;) with two parameters: the mean p;, and the
precision 7;. Although the GMM is a flexible and powerful
tool for data analysis, it is sensitive to outliers and may
lead to excessive sensitivity to small numbers of data points.
Also, for many applied problems, the tail of the Gaussian
distribution is shorter than required.

In order to improve the robustness of the model, Student’s-
t distribution is used in SMM [3], [4]. In this model,
©(x;]Q;) is the Student’s-t distribution S(x;|u;, 75, v;) with
longer tails and one more parameter compared to the Gaus-
sian distribution ®(z;|p;,0;). Each Student’s-t distribution
has its own mean p;, precision 7;, and degree of freedom
vj. Given function ¢(z;|2;), the likelihood function can be

written as
N K
%) = 1D meleilo)

i=1j=1

f(@i|Q;) (D
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In order to optimize the parameters, we need to maximize
the log-likelihood function given in (2) with EM algorithm
[7], or by variational Bayesian (VB) approximation [8], [9],
[13]. However, for the EM algorithm, in order to estimate
the number of components, other criteria such as entropy
measure or minimal message length are required. Also,
another problem encountered by the EM algorithm is that
singular components lead to infinite likelihood, which is not
the case with VB.

III. PROPOSED METHOD

As shown in section II, the main goal of a mixture model
with Bayesian detection is to establish a model that can best
describe the statistical properties of the underlying source.
The existing mixture models have relied on ¢(x;|€2;), which
is based on the symmetric distribution, for modeling the
underlying distributions. In many applications, the intensity
distribution of each label type of the dataset does not exhibit
exactly a Gaussian shape and is not symmetric. In order
to overcome this problem, we present a new asymmetric
mixture model for model detection, which is useful for
modeling non-Gaussian data.

First, we define a new non-Gaussian and non-symmetric
distribution that is used for the component of our mixture
model. Differing from the above-mentioned mixture models,
each component density in our model is modeled with
multiple Student’s-t distributions. The function ¢(z;|€2;) in
our model is defined as

M,
= > NimS(@ilttjm, Tjm, Vjm)

m=1

o(wi|y) 3)

p(x|z,y, p, 7, u)

where M is the number of the Student’s-t distribution that is
used to model the label §2;. And 7;, is called the weighting
factor that satisfies the followmg constraints: 7;, > 0 and
ZM i = L.

In (3), S(i|ftjm, Tjm, vVjm) is the Student’s-t distribution
with the mean u;,,, the precision 7;,,, and the degree of
freedom vjyy,.
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In (4), T'() is the gamma function. The idea to define the
distribution in (3) is an extension and improvement on the
idea presented in [12]. It is based on the fact that non-
symmetric distribution can be approximated by multiple
Student’s-t distributions. Compared with the original work
in [12], the advantage of our method, which is based on the
variational Bayesian learning, can simultaneously optimize
over the number of the Student’s-t distribution that is used
to model the label €);, and the number of components.

Given the function ¢(z4|€;) in (3), the next objective
is to optimize the parameter. We now consider the VB
approximation [8], [9], [13] for the proposed model through
the hidden variables z;;, where z;; = {0, 1} and Z;il Zij =
1. If a given data point z; is generated from the label
Q; the value of z;; is one; otherwise, it is zero. The
weighting factor is expressed through the hidden variables
Yijm. where vy, = {0,1} and Zﬁfilyijm = 1. The
value of y;;, = 1 indicates that the Student’s-t distribution
S(@i|tjm, Tjm, Vjm) is associated with label €2;.

Given the sets of hidden variables z = {z;;}, and y =
{ijim } the data is assumed to be independently drawn from
a distribution.

N M;
p(x|z,y, 1, 7,0) H H H (@ilttjms Tjms Vjm)) "™
1=17=1 | m=1
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Note that there is no closed form solution for maximizing the
likelihood under a Student’s-t distribution. To overcome this
problem, the Student’s-t distribution in [10] is represented as
an infinite mixture of scaled Gaussians. By adopting the idea
in [10], with the latent variables u = {u;;., }, the Student’s t
distribution in (5) can be equivalent to a Gaussian distribution
as follows

M;

Siithi
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The distribution of the hidden variables z given the prior
probabilities 7;, and the hidden variables y given the weight-
ing factor 7, is given by

N K N K M;
_ Zij Yijm
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The model selection is accomplished by introducing con-
jugate priors over the means, precisions, and degrees of
freedom.

M;

K M; K
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In (8), G(+) is the Gamma distribution. The hyperparameters
0, ¢, a, and 3 control the distributions over (t;y, and 7jy,,. It is
noticed that there is no conjugate prior for v;,,; we set their
value by optimization as part of the variational procedure
[10].

IV. PARAMETER LEARNING

To simplify notation, we define § = {z,y, s, 7,u}, the
set of random variables. And ¥ = {m,p,n} is the set of
parameters. In order to obtain the estimation of parameters,
we maximize the marginal likelihood p(x|¥) by integrating
out the variables as follows

p(x]9) = / p(x.6]9)d6 ©)

Since the integration in the equation above is intractable, an
alternative way to solve this problem is VB approximation
[8], [9], [13], which aims to maximize a lower bound of the
logarithmic marginal likelihood.

L(Q.9) = /Q

where () is an arbitrary distribution, which provides an
approximation to the true posterior distribution. We see that
the function L(Q, ) forms a rigorous lower bound on the
true log marginal likelihood. Although the computation of
original log likelihood function logp(x|1¥) is not tractable,
the lower bound L(Q,?¥) may be tractable to compute
through choosing a suitable form for the () distribution.
The difference between the lower bound L(Q,¥) and the
true log likelihoodlog p(x|) is the Kullback-Leibler (KL)
divergence. The goal in a variational approach is to choose
a suitable form for ) such that the evaluation of the lower
bound becomes tractable. For this purpose, we approximate
p with optimizing the () by minimizing the KL divergence.
Minimizing the KL divergence with respect to all possible
function forms of (), the standard variational approach pro-
vides the following general form of the solutions

X9|19
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where (-)p; denotes an expectation with respect to the
distributions Q) (6y) for all k # i. The factors of the function

@ are given by calculation of (11) as follows
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The variational parameters Tijs Ujms Cms Ojms Vs B
Qs Bijm are given by maximizing and determining the
density involved in (). After some algebra, the following

equations are obtained

T
Tij = e (13)
> TkTik
k=1
= exp{0.5 Z Vijm (= log 2m + ¥ (ag),,)
logﬁUm V(aj,,) — lolg i 1 (14)
logﬁT - m( zgm)_la}—lm( ;—m)_
X (@i = 0f,)" + ()~ ))}
Vigm = o (1)
;1 NjkVijk
Uijm = exp{0. 57’,](7 log 27 + ¥ (« 7Jm)
— log B} V(aj,,) —log B
w nL - 7 (16)
_azjm( Um) 21a]lm( ml)
x (@i — 0f,)" + (Cﬁ-‘m)_ )}
N
4 T T \— u u -1
Cé’m =c+ ajm( jm) ! Zaijm( ijm) TijVijm (17)
i=1
a X —1
oc+ ajm( ;—m) ;a?jm,( ;;m) TijVijmTi
07m = 1_N
T r \—1 u u -1
B (18)
1
Wy = O+ 3 Z TijVijm (19)
i=1
1
;m =P+ = Z;Tijvijmx (20)
(i = ) + () ™) (Bim) ™
Wjm = 5 (Vjm + TijVijm) @n
" 1
ijm = 5 Vi + 57 Vijm X 22)

(i = ) + () ™G (Bfn) ™

287



Fig. 1.

Since no conjugate prior is imposed on the degree of
freedom, we update vj,, with the log-marginal maximum
likelihood estimates by setting the corresponding gradient to
zero and solving the non-linear equations as follows

—U(vjm/2) + log(vjm/2) + 1
N —1
5 rigvigm ((0l,,) — 108 B, = 0l (B) )

=1
=0
+ N
2 TijVijm
=1

(23)
where U(-) is the digamma function. In order to estimate 7,
and 7;,, we need to set the derivative of L with respect to
these parameters, and, equal to zero, we get the following
update rules:

1 N
T = NZT’”‘ and 77jm =

1
N vim  (24)
i=1 i=1
So far, the discussion has focused on estimating the pa-
rameter of the model. The property of the VB algorithm
guarantees that the components with similar parameters
fitting the same Student’s t-distributions generate a dominant
cluster. Thus, we can start the model with a large number

The first experiments, (a): The original data with three labels, (b): VB-GMM, (c): VB-SMM, (d): Our method.

of components and a large number of numbers of the
Student’s-t distribution that is used to model the label €2;
for the [-th feature. The update of the parameters 7; and
7jm can simultaneously optimize over the number of the
Student’s-t distribution that is used to model each asymmetric
distribution, and the number of components.

V. EXPERIMENTS

In this section, the performance of the proposed method
is compared to the VB-GMM [9], VB-SMM [10]. These
compared methods are initialized by the K-mean algorithm
similar to the initialization of the proposed algorithm. For all
methods, we start with K = 20 in this paper, and it is run
until the convergence of the iteration steps. In our method,
for each label, we start with M; = 5. In order to evaluate
the segmentation performance quantitatively, variation of
information (VI) [14], is employed. Note that, the lower the
value of VI, the better the quality of the segmentation.

In the first experiment, in order to explain why the
performance of the proposed distribution is better than the
regular distribution, we show a sample with 5900 simulated
points from three labels. Labels 1, 2, and 3 have 1700, 2200,
and 2000 points, respectively. The ground truth distributions
of the three labels are shown in Fig. 1(a). As shown in this
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Fig. 2.
(4*P column): Our method (VI = 2.6141).

figure, the intensity distribution of each label type does not
exhibit an exact Gaussian shape, and is not symmetric. In
Fig. 1(b)—(d), we show the results of VB-GMM, VB-SMM,
and our method, respectively. As shown in Fig. 1(b) and (c),
the performances of the VB-GMM and VB-SMM are very
poor in this situation. The error of the estimated distributions
compared to the ground truth distributions remains quite
high. Also, the number of the labels detected from these
methods is not correct (K = 4). As shown in Fig. 1(d),
the proposed method can correctly detect the number of the
labels (K = 3), and can better estimate the observed data in
comparison to the two previous results.

In the second experiment, a real-world grayscale image
from Berkeley Dataset is used to evaluate the performance
of the proposed method against VB-GMM and VB-SMM.
As shown in Fig. 2, all compared methods obtain the
same number of the labels (three labels). However, a closer
inspection of the marked box indicates the proposed yields
a better result with a smaller value of VI. Moreover, we
notice that the estimated distribution of the proposed method
obtains a better estimate for the histogram compared to other
methods.

A set of real world images are used to evaluate the
performance of the proposed method against VB-GMM and
VB-SMM methods. Table I contains the cumulative results
obtained for all methods, for the given set of real world
images. As evident from the results, on average, the proposed
method outperforms other methods with a lower VI. Fig.
3 shows some of the other real-world images used for
segmentation by employing VB-GMM, VB-SMM and the
proposed method, respectively. The first row shows the origi-
nal images, followed by the corresponding segmented images
in the second, third, and the last row. Fig. 3 clearly indicates
that our proposed method achieves a better segmentation
accuracy.

02 03 04 05 06 07 08

The second experiments, (15¢ column): The original image, (27 column): VB-GMM (VI = 2.6825), (34 column): VB-SMM (VI = 2.6814),

TABLE I
COMPARISON OF IMAGE SEGMENTATION RESULTS ON BERKELEY’S
GRAYSCALE IMAGE SEGMENTATION DATASET: VI.

Image | VB-GMM | VB-SMM | Our method
2092 2.4421 2.4153 1.4377
24063 1.9504 1.9501 1.6892
43051 1.9352 1.9228 1.3241
43070 2.5762 2.5545 1.1735
65084 4.0060 4.0060 4.0899
76002 4.0867 4.0873 4.0154
105019 2.6563 2.6119 0.4751
106025 1.6133 1.6117 1.4401
117025 2.6053 2.5972 2.2322
118035 2.4264 2.4264 2.0681
147021 1.3078 1.3087 0.9477
176039 2.3272 2.3329 2.0127
179084 24211 2.5475 2.0231
198087 3.5219 3.5200 3.5803
216041 2.6011 2.5438 1.9428
250087 2.9332 2.9088 2.6510
253036 1.9979 1.9691 0.6044
271031 1.8325 1.8319 1.2910
285022 2.4809 2.4869 2.2793
286092 2.5316 2.5299 2.4353
361084 4.0983 4.0971 3.5025
384022 2.4205 2.4139 2.1683
Mean 2.5805 2.5761 2.0629

VI. CONCLUSIONS

We have presented a new non-symmetric mixture model
for model detection in this paper. The distribution of our
method has a non-Gaussian and non-symmetric form. Each
label is modeled with multiple Student’s-t distributions,
which are heavily tailed and more robust than Gaussian
distributions. The advantage of our method is that it has the
flexibility to fit different shapes of observed data such as non-
Gaussian and non-symmetric. Besides that, our method can
simultaneously optimize over the number of the Student’s-t
distribution that is used to model each asymmetric distribu-
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Fig. 3.

tion, and the number of components. We demonstrate through
extensive simulations that the proposed model is superior to
other mixture models.
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