
A New Weight Initialization Method for Sigmoidal Feedforward

Artificial Neural Networks

Sartaj Singh Sodhi, Pravin Chandra and Sharad Tanwar

Abstract—Initial weight choice has been recognized to be
an important aspect of the training methodology for sigmoidal
feedforward neural networks. In this paper, a new mechanism
for weight initialization is proposed. The mechanism distributes
the initial input to output weights in a manner that all weights
(including thresholds) leading into a hidden layer are uniformly
distributed in a region and the center of the region from which
the weights are sampled are such that no region overlaps for
two distinct hidden nodes. The proposed method is compared
against random weight initialization routines on five func-
tion approximation tasks using the Resilient Backpropagation
(RPROP) algorithm for training. The proposed method is shown
to lead to about twice as fast convergence to a pre-specified
goal for training as compared to any of the random weight
initialization methods. Moreover, it is shown that at least for
these problems the networks reach a deeper minima of the
error functional during training and generalizes better than
the networks trained whose weights were initialized by random
weight initialization methods.

I. INTRODUCTION

W
EIGHT initialization in sigmoidal feedforward arti-

ficial neural networks (FFANN) have been shown

to have an affect on the training speed of the network [1],

[2], [3], [4], [5], [6], [7]. Usually, weights are initialized to

small uniform random values; though efforts have been made

to design weight initialization mechanisms based on the

structure of computation in these networks and the dynamics

of weight evolution during training [3], [4], [5], [6], [7].

For the solution of a learning task, more than one network

starting from different initial points in the weight space are

trained; and the FFANN with the minimum error is utilized

as the solver of the task. This entails that a large number of

networks are trained, using substantial time and resources.

Thus, any mechanism that may allow for faster and better

training of FFANNs is worth investigation. The term “faster

training” is used with the meaning that a network can be

trained (using a specified training mechanism) faster if it

reaches a pre-specified goal / error of training in lesser

number of training epochs, as compared to other training

mechanisms. While the phrase “better training” is used in

two contexts, namely:

1) The network, during training, reaches a lower mini-

mum of the error functional (used for measuring the

S. S. Sodhi and P. Chandra are with the University School of
Information and Communication Technology, Guru Gobind Singh In-
draprastha University, Dwarka, Sector 16C, New Delhi (INDIA) -
110078 (email: {sartaj, pchandra}@ipu.ac.in); sartajsodhi@yahoo.com;
chandra.pravin@gmail.com. S. Tanwar is with Deloitte Consulting India
Private Ltd., Udhyog Vihar Phase 4, Gurgaon Haryana (INDIA) - 122015
(email: sharad tanwar@outlook.com)

quality of training) in equal number of epochs as com-

pared to when trained using other training mechanism,

and

2) The network thus trained has better generalization

capability (error on data not used for training is lower)

as compared to networks trained by other training

mechanisms for equal number of epochs.

The training mechanism for a FFANN (primarily1) in-

volves the following choices:

1) Architectural Choice: The question of how many hid-

den layers and the number of nodes in each hidden

layer must be answered.

2) Activation Function Choice: The choice of activation

functions used at hidden layers’ nodes and the output

layer node must be answered.

3) Training Algorithm Choice: The choice of the training

algorithm must be made.

4) Weight Initialization Choice: The procedure / method-

ology for the choice of the initial weights must be

specified.

Some of the procedures for speeding up the training (or

reducing the time devoted to training) that have been reported

in literature range from efficient choice of initial weights [3],

[4], [5], [6], [7], choice of activation function [8], stopping

training or multiple restart training mechanisms [9], etc.

These questions are detailed and the appropriate choices

made, in context to the work reported in this paper, in

Section II. In this paper a proposal for a new mechanism

for weight initialization is made. The weight initialization

routine proposed is demonstrated to be equivalent to if not

better than the random weight initialization scheme on a set

of 5 function approximation problems.

The paper is organized as follows: Section II describes the

design of experiments including the proposed weight initial-

ization method. Results of the experiments are presented and

discussed in Section III while conclusions are presented in

Section IV.

II. DESIGN OF EXPERIMENTS

Neural networks have been shown to be able to approx-

imate a continuous function arbitrarily well [10], [11], [12]

(Universal Approximation Property (UAP)). The design of

1Other than the choices enumerated, there are other questions that must
be answered for the complete detailing of the training mechanism like the
choice of error functional used for measuring the mismatch between the
desired and the obtained response from the network for any input set, the
pre-proccesing of data before training, etc.

2014 International Joint Conference on Neural Networks (IJCNN) 
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 291



a neural network for a function approximation task involves

the following:

A. Architecture

The number of hidden layers used has to be decided. The

UAP requires that minimum one hidden layer with sigmoidal

nodes be present [10], [11], [12] Thus, in this paper, one

hidden layer networks are used. The number of inputs in the

input layer and the number of outputs in the output layer

are decided by the number of independent variables and

the number of dependent variables, respectively. Moreover,

a vector function (a function with more than one dependent

variable), may be treated as a set of functions with the same

set of independent variable. Thus, in the following, we will

treat functions with one dependent variables only, thereby

implying that the networks used have only one node in the

output layer. The decision of how many sigmoidal nodes

are used in the hidden layer (for the sake of brevity, these

nodes will be called hidden nodes), is decided by exploratory

experiments wherein the number of hidden nodes is varied

and a network trained for a limited number of epochs, the

number of nodes with a satisfactory convergence is taken as

the size of the hidden layer.

B. Activation Function

Hidden nodes output functions are required to be sig-

moidal in nature (see [8] and [13] for a survey of activation

functions). The generally used activation functions are the

anti-symmetric hyperbolic–tangent function:

σ1(x) = tanh(x) =
ex − e−x

ex + e−x
(1)

and the asymmetric logistic or the log-sigmoid function:

σ2(x) =
1

1 + e−x
(2)

Preference is made for anti-symmetric activation [14], [15],

thus in this work, the activation function used at the hidden

nodes is the hyperbolic tangent function (1).

C. Training Algorithm

The algorithms used for adjusting the weights, so as to

minimize the error (the mismatch between the desired output

from a network and the obtained output, for a given input

tuple), are based on local nonlinear optimization methods

[16], [17], [15] , though global optimization techniques have

also been utilized for the training of sigmoidal FFANNs (for

example, see [18]) . The local nonlinear optimization meth-

ods based training algorithms range from gradient descent

based algorithms like the standard backpropagation algorithm

[16] to second order algorithms using the Hessian [15]. In

this paper we use the resilient backpropagation algorithm

(RPROP) [17], [19]. RPROP [17], [19] is a fast convergent

first order method that has lesser memory requirements than

the second order methods.

Fig. 1: The schematic diagram of a single hidden layer

network.

D. Weight Initialization

The connection weights between the nodes and the thresh-

olds of the nodes are collectively known as the weights of

the network. Usually weights are initialized to small random

values in the range [−λ, λ], where λ > 0 is a small value

in the range (0, 1]. In the experiments, for random weight

initialization, λ ∈ {0.25, 0.50, 0.75, 1.00}. Random weight

initialization is done so as to break the weight symmetry

during training. If weights are initialized to equal values,

they move/evolve during training in tandem/groups [16]. The

RPROP algorithm works in the batch-mode, that is, the

weights are updated based on the error values corresponding

to the complete error over the training set. If the pth output

desired is t(p) and the output obtained from the network is

y(p) for the pth input set, and if there are P number of

training exemplars, then the error is measured by the mean

squared error2 (MSE) defined as:

MSE =
1

P

P
∑

p=1

(t(p) − y(p))2 (3)

The schematic diagram representing a one hidden layer

network is shown in Fig. 1. The number of input nodes are

N , the number of hidden nodes is M , the weights between

the hidden nodes and the inputs are labeled as w (the weight

between the ith hidden node and the jth input node is wij),

the threshold of the ith hidden node is θi, and for any one

input tuple, the net input to the ith hidden node is:

ni =

N
∑

j=1

wijxj + θi (4)

The output from the node is hi(x1, . . . , xN ) = tanh(ni). The
weight between the ith hidden node and the output node is

represented by αi, where i ∈ 1, 2, . . . ,M and the threshold

of the output node is γ. Then the output from the network

2During training, the MSE is usually defined as an equivalent quantity
up-to a factor of 2 as MSE’ = MSE / 2.

292



is:

y =

M
∑

m=1

αmhm + γ (5)

That is, the network output function uses a linear node. The

experiments were done using Matlab version 2013a [20] on

a 64-bit Intel i7 based Microsoft Windows 7 system with

6GB RAM.

E. Function Approximation Tasks

The following 5 function approximation tasks are used for

the experiments:

1) One dimensional input function taken from MATLAB

sample file humps.m.

f1(x) =
1

(x− 0.3)2 + 0.01
+

1

(x− 0.9)2 + 0.4
− 6

(6)

where x ∈ [0, 1]. See Fig. 2a.
2) Two dimensional input function taken from MATLAB

sample file peaks.m.

f2(x1, x2)=3(1− x1)
2e(−x2

1
−(x2+1)2)

−10(x1/5− x3
1 − x5

2)e
(−x2

1
−x2

2
)

−(1/3)e(−(x1+1)2−x2

2
) (7)

where x1 ∈ [−3, 3] and x2 ∈ [−3, 3]. See Fig. 2b.
3) Two dimensional input function from [21], [22], [23].

f3(x1, x2) = sin(x1 x2) (8)

where x1 ∈ [−2, 2] and x2 ∈ [−2, 2]. See Fig. 2c.
4) Two dimensional input function from [21], [22], [23].

f4(x1, x2) = e(x1 sin(π x2)) (9)

where x1 ∈ [−1, 1] and x2 ∈ [−1, 1]. See Fig. 2d.
5) Two dimensional input function from [24], [22], [23].

f5(x1, x2)=1.3356(1.5(1− x1) +

e2x1−1 sin(3π(x1 − 0.6)2) +

e3(x2−0.5) sin(4π(x2 − 0.9)2)) (10)

where x1 ∈ [0, 1] and x2 ∈ [0, 1]. See Fig. 2e.

1) Data sets: For each of the function approximation

tasks, a set of of 1200 input points are generated by uniform

random sampling of the input domain of the function and

the corresponding outputs calculated. This set is partitioned

into a set of 200 points represented as T Ri for the ith

function approximation task (i ∈ {1, 2, . . . , 5}) and is used

for training the networks (the training set). The next partition

of size 1000 is called the test set (represented by Ti); where

i ∈ {1, 2, . . . , 5}.
All data (both input and output) are scaled to [-1,1] for

training and further reporting.

2) Architecture of FFANN Used: The architecture of the

FFANNs used for each task was obtained by exploratory

experiments where the number of hidden nodes was varied

from 2 to 30 in steps of one. The architecture thus fixed is

summarized in Table I.

TABLE I: NETWORK SIZE SUMMARY.

Sr.No. Function Inputs Hidden Layer Size Outputs

1. f1 1 8 1

2. f2 2 15 1

3. f3 2 12 1

4. f4 2 10 1

5. f5 2 10 1

F. Weight Initialization Mechanisms

1) Random Weight Initialization Routine(s): Four classes

of random weight initialization routines labeled as

WTRi, i ∈ {1, 2, 3, 4} are used. For each i thirty sets of

weights are generated by uniform random numbers between

[−λ, λ], where λ ∈ {0.25, 0.50, 0.75, 1.00}. That is all

weights and thresholds are initialized by uniform random

numbers in the N -dimensional cube [−λ, λ]N .
2) Proposed Weight Initialization Routine: The weight

initialization routines of class WTR distribute the weights

(including the thresholds) leading into the hidden layer

uniformly in a cube [−λ, λ]N , centered at the origin, with

each edge of size 2λ. The proposed weight initialization

routine uses a portion of this cube for the weights leading

into the hidden nodes from the the inputs. For the ith

hidden node, these weights are initialized to a cube of size

given by [−S/2, S/2]N , where S = 2λ/(M − 1) and λ ∈

{0.25, 0.50, 0.75, 1.00}, with the center of the cube being at
the point (−λ+S(i−1),−λ+S(i−1), . . . ,−λ+S(i−1))
in an N -dimensional space. Effectively, this implies that

any of the inputs to the ith hidden node is multiplied

by a connection strength weight belonging to the interval

[−λ+ S(i− 1)− S/2,−λ+ S(i− 1) + S/2]. The threshold
of the ith hidden node is initialized to the value S(i − 1).
This mechanism guarantees that like theWTR’s, the weights

in these routines are also initialized to values within [−λ, λ]
across hidden nodes. But, unlike random weight initialization

routines (WTRs), where the the maximum and the minimum

value of the weights leading in to one node defines a

region/interval of the interval [−λ, λ] which may overlap the
similar region defined by the maximum and the minimum

weights leading into some other hidden node. The term

weight region represents the interval defined by the minimum

and the maximum weight value leading into the node; for the

proposed weight initialization method, the interval defined by

the maximum and the minimum value of the weights leading

into two distinct hidden nodes will be non-overlapping.

The hidden nodes to the output node weights are initialized

to uniform random values in the interval [−0.5, 0.5] and the

output node threshold is initialized to zero. The four classes

of weight initialization routines are labeled as NEWi, where

i ∈ {1, 2, 3, 4}. The weight initialization method is given in

an algorithmic form in Algorithm 1.

G. Experiment Procedure

For each of the problem and for each weight initialization

procedure(s) of the class WTR and NEW , 30 different

networks are trained for 1000 epochs of training using the

293



0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

100

x

f 1
(x

)

(a)

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−8

−6

−4

−2

0

2

4

6

8

x
1

x
2

f 2
(x

1
,x

2
)

(b)

−2
−1

0
1

2

−2

−1

0

1

2
−1

−0.5

0

0.5

1

x
1

x
2

f 3
(x

1
,x

2
)

(c)

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

1

2

3

x
1

x
2

f 4
(x

1
, 
x

2
)

(d)

0
0.2

0.4
0.6

0.8
1

0

0.5

1
0

2

4

6

x
1

x
2

f 5
(x

1
, 
x

2
)

(e)

Fig. 2: Functions f1 (6) to f5 (10).

TABLE II: TRAINING GOAL (MSE) FOR MEASURING THE

SPEED OF CONVERGENCE.

Sr.No. Function MSE desired

1. f1 0.0145

2. f2 0.0278

3. f3 0.0262

4. f4 0.0049

5. f5 0.0083

RPROP algorithm. The performance over the training and the

test data sets is measured (for each network trained) using

the mean squared error (where the desired output for the pth

input pattern is t(p) and the correspondingly obtained output

is y(p) and the number of input patterns is P ).

We report the mean MSE (MMSE) values (over all the

networks for a specific problem) for the training and the test

data set as the indicator of the mean / average behavior of

the weight initialization routines. We also report the standard

deviation (St.Dev.) of the MSE’s across the networks, the

Median of the MSE, the minimum (Min.) MSE, and the

maximum (Max.) MSE for an ensemble of network for each

task, over the training data and the test data set.

We also report on the number of epochs required by a

network initialized by a routine, to reach a pre-specified

MSE. The goal (MSE) to be achieved during training was

taken as the worst MMSE among the WTR initialization

routines of the previous experiment to which was added three

times the standard deviation of the MSEs of the networks

ensemble associated with the worst MMSE (that is obtained

using the data of Table II), during training, for each function

approximation task. The goals of training is specified in Table

II.

A particular network may not converge in 1000 epochs

to the specified goal, in this case the value of the epochs

required to achieve the goal is arbitrarily, replaced with the

maximum epoch, that is 1001. This may lead to a small bias

in the reported result. The number of networks that do not

converge is also reported.

III. RESULTS

The summary data for the first experiment conducted for

a fixed number of epochs (1000) for each task and every

weight initialization method, for the training data and the

test data, are shown in Table III and IV, respectively. From

the summary data of Table III – Table IV, we may infer the

following:

1) The four WTR’s are not equivalent for training /

generalization. That is the value of the MSE achieved

on an average for these weight initialization routines

are entirely different for the different approximation

tasks. Moreover, no one weight initialization method

is better in terms of the MMSE for all the five tasks,

among the WTRs.

2) The four NEW ’s are also not equivalent for training /

generalization. That is the value of the MSE achieved

on an average for these weight initialization routines

are entirely different for the different approximation

tasks. But the method NEW4 is better than the other

three methods of this class on all five tasks.

3) The NEW4 weight initialization routine reaches lower

error functional minima, on an average, as compared to

the 4 random weight initialization routines used in the

experiments for both the training and the generalization

experiments.

4) The network with the minimum MSE on the training

set may not belong to the network ensemble corre-

sponding to the lowest MMSE value. This can be seen

294



Algorithm 1: PROPOSED WEIGHT INITIALIZATION ALGORITHM (NEW ).

Input: N : Number of inputs, M : Number of hidden nodes, λ: Weight initialization parameter.

Output: ω: Input to hidden weights, θ: Hidden nodes threshold. α: Hidden to output node weights, γ: Output node

threshold.

// Calculate S

S = 2λ
M−1 ;

// Generate a uniform random number array with values in the range (−S/2, S/2) of

size HWT = (N + 1)M and assign it to the array W.

MAX = N ×M ;

// uniform random numbers between (0,1), RAND generates uniform random numbers

between (0,1) of the array size specified.

W = RAND(1 : MAX)× S ;

// Shift by S/2, to get the weights in the interval [−S/2, S/2]
W = W −

S
2 ;

// Shift by λ, so that the weight matrix is shifted such that the interval of

weights is [−λ− S/2,−λ+ S/2]
W = W − λ;

// Initialize the input weights and threshold of the hidden nodes.

for i=1 to M do

// The index in W from where the assignment of the ith hidden nodes input

weights are to start.

K = (i− 1)×N + 1;
// The index in W till where the assignment of the ith hidden nodes input

weights are to end.

M = i×N ;

// Input weight initialization for the ith hidden node. For the ith node the

effective weight interval shifts to [−λ− S/2 + S × (i− 1),−λ+ S/2 + S × (i− 1)]
ωi = W (K : M) + S × (i− 1) // Initialization of the ith hidden node threshold.

θi = S × (i− 1)

// Generate a uniform random number array with values in the range (−0.5, 0.5) of

size M and assign it to α.

α = RAND(1 : M)− 0.5;
// Output node threshold set to zero.

γ = 0;

from the training data (Table III), for example for the

function f1, among the WTR methods WTR4 has

the least MMSE while the lowest MSE is achieved

by a network in the class WTR2. While for the

same function, among the methods NEW , the lowest

MMSE is obtained for the method NEW4 while the

network with the minimum MSE is in the ensemble

corresponding to the method NEW2.

5) A similar inference can also be made for the general-

ization results (Table IV), wherein it can be seen that

the network weight initialization method that leads to

the lowest MMSE may not contain the network for

which the generalization error is minimum across the

experiments.

6) The method NEW4 has the best MMSE value across

the tasks for both training and generalization experi-

ments.

7) We performed a two sample (2-tailed) t-test to check

the null hypothesis: “The weight initialization routines

are equivalent in the sense that all weight initialization

routines lead to the same distribution of MSEs achieved

during training and for generalization, for a specific

function task and a specific training algorithm’”. The

proposed weight initialization algorithm (NEW4) was

equivalent to the WTR3 for the approximation of

the function f1 (for both the training as well as

the test/generalization data). NEW4 is equivalent to

WTR1 and WTR2 for the approximation of the

function f2 for training but is equivalent to WTR2

only for the generalization experiment. For the task of

approximating the function f3, from the training data, it

was obtained that the method NEW4 was better than

any of the four WTR’s, but from the generalization

data, the method was equivalent toWTR1 andWTR4.

For the function f4 and f5, the method NEW4 was

not equivalent to any of the WTR’s in any case. This

is in consonance with the values of the Table III. These

results are at the 5% significance level.

295



8) On performing a one-tail t-test, it was observed that

the either the results for NEW4 is equivalent to the

result for the best WTR’s or is better in the sense of

achieving deeper minima on an average. The details

are on the same lines as above for the two-sided t-test.

TABLE III: SUMMARY OF TRAINING DATA FOR THE

WEIGHT INITIALIZATION CLASSES OVER 30 NETWORKS

FOR EACH TASK. ALL VALUES OF THE STATISTICS ARE

REPORTED ×10−3 .

Functions

Method Statistic f1 f2 f3 f4 f5

WTR1

MMSE 2·435 13·431 12·730 2·698 3·955
St.Dev. 4·015 3·910 3·029 0·818 1·450
Median 0·562 12·886 12·365 2·465 4·233
Min. 0·102 7·759 6·784 1·377 1·203
Max. 17·903 23·135 20·452 4·583 6·057

WTR2

MMSE 0·886 13·079 14·570 2·881 3·842
St.Dev. 1·551 3·772 3·863 0·661 1·261
Median 0·387 12·157 13·741 2·812 4·051
Min. 0·051 7·461 8·571 1·511 1·440
Max. 7·552 21·502 23·653 5·044 5·906

WTR3

MMSE 0·903 14·458 13·423 2·726 3·636
St.Dev. 3·037 3·005 3·386 0·780 1·688
Median 0·244 14·973 12·548 2·657 4·163
Min. 0·068 8·317 7·394 1·497 1·172
Max. 16·910 19·625 22·686 4·582 6·083

WTR4

MMSE 0·399 14·735 12·931 2·684 3·759
St.Dev. 0·368 4·347 2·007 0·796 1·521
Median 0·262 14·863 12·674 2·671 3·955
Min. 0·090 6·538 8·922 1·179 0·886
Max. 1·851 24·834 17·262 4·351 6·067

NEW1

MMSE 0·781 16·855 16·083 2·561 4·134
St.Dev. 1·451 4·445 5·461 0·627 1·593
Median 0·286 16·705 14·948 2·486 4·367
Min. 0·083 8·300 8·227 1·330 1·371
Max. 6·312 29·111 35·751 3·842 7·533

NEW2

MMSE 0·603 14·144 13·310 2·265 3·506
St.Dev. 1·096 2·970 3·439 0·474 1·258
Median 0·218 14·021 12·843 2·251 3·459
Min. 0·026 9·681 7·285 1·566 0·966
Max. 5·783 19·935 21·634 3·538 5·918

NEW3

MMSE 0·193 13·712 11·893 1·948 2·517
St.Dev. 0·098 2·581 2·533 0·630 1·412
Median 0·191 13·894 11·562 1·873 1·966
Min. 0·028 6·411 6·495 0·940 0·836
Max. 0·522 19·041 17·592 3·943 5·003

NEW4

MMSE 0·166 12·264 10·211 1·675 2·156
St.Dev. 0·078 2·968 2·194 0·533 1·932
Median 0·170 12·437 10·565 1·657 1·146
Min. 0·033 6·409 5·294 0·877 0·599
Max. 0·342 18·809 13·990 3·118 7·622

The second set of experiments was performed to assess

the speed of training for achieving the goals of training as

specified in Table II. The summary of the obtained results

is shown in Table V. From the table it can be seen that the

proposed mechanisms are generally faster in convergence as

compared to the methods of WTRs, except for the method

NEW1 for the function approximation of f1, which is slower

in convergence as compared to WTR4. The method NEW4

is faster than all other methods of weight initialization. As

can be seen from the table, some of the networks for some

of the function approximation tasks (specifically see data

for f1 and f4) for the WTR class of weight initialization

TABLE IV: SUMMARY OF TEST DATA FOR THE WEIGHT

INITIALIZATION CLASSES OVER 30 NETWORKS FOR EACH

TASK. ALL VALUES OF THE STATISTICS ARE REPORTED

×10−3 .

Functions

Method Statistic f1 f2 f3 f4 f5

WTR1

MMSE 2·649 31·167 24·541 3·911 5·679
St.Dev. 4·277 7·436 4·727 1·184 1·962
Median 0·633 31·741 23·870 3·642 5·969
Min. 0·106 13·621 13·105 2·058 1·772
Max. 18·802 46·662 32·915 6·183 8·008

WTR2

MMSE 0·983 27·837 27·614 4·177 5·837
St.Dev. 1·668 6·891 6·060 0·938 1·973
Median 0·444 29·748 26·929 3·951 6·285
Min. 0·067 15·099 17·915 2·363 2·014
Max. 8·074 38·422 40·580 6·782 9·266

WTR3

MMSE 0·983 28·772 25·118 3·940 5·308
St.Dev. 3·189 4·708 5·606 1·037 2·362
Median 0·284 29·477 23·160 3·924 5·929
Min. 0·070 18·007 16·408 2·126 1·775
Max. 17·780 36·781 38·195 6·021 8·984

WTR4

MMSE 0·459 26·254 24·587 3·854 5·610
St.Dev. 0·415 5·809 3·966 1·124 2·352
Median 0·307 27·345 24·605 3·922 5·985
Min. 0·100 11·237 17·527 1·778 1·613
Max. 2·125 38·322 33·684 6·014 10·057

NEW1

MMSE 0·867 32·445 31·323 3·708 6·124
St.Dev. 1·569 5·795 7·527 1·036 2·332
Median 0·325 31·995 30·691 3·496 7·016
Min. 0·110 21·350 18·718 1·783 2·052
Max. 6·810 44·848 57·113 5·807 10·164

NEW2

MMSE 0·679 31·117 25·925 3·136 5·616
St.Dev. 1·206 5·217 5·475 0·810 1·950
Median 0·250 31·161 25·101 3·041 5·286
Min. 0·039 16·107 17·743 2·074 1·984
Max. 6·384 39·588 35·772 5·794 8·913

NEW3

MMSE 0·226 29·775 24·096 2·727 3·983
St.Dev. 0·110 4·789 3·921 0·884 2·109
Median 0·224 29·962 23·794 2·478 3·077
Min. 0·039 13·882 13·310 1·399 1·621
Max. 0·583 37·832 33·369 5·787 8·301

NEW4

MMSE 0·193 26·177 22·425 2·451 3·540
St.Dev. 0·088 5·878 4·628 0·808 2·635
Median 0·196 27·243 23·989 2·320 2·281
Min. 0·044 13·224 14·571 1·404 1·076
Max. 0·381 36·012 30·547 4·485 10·610

routines do not converge in the maximum number of epochs

(1000). Whereas, for the NEW set of methods, all networks

converge to the desired value.

Moreover, from the data for the WTR1 which is the best

method in terms of the mean number of epochs for f2,

out of the 4 WTR methods, the network with the fastest

convergence actually belongs toWTR4 (see the Min. value).

Such a pattern is not seen for the NEW set of methods.

The details of the speed comparision for the convergence

is shown in Table VI. In the table “Average Speedup” refers

to the average speed up (the ratio of the mean epochs for

convergence of the best WTR class of weight initialization

to the NEW4 class of weight initialization method), while

“best Speedup” refers to the ratio of the minimal epoch

required by any network initialized by any of the WTR

methods to the minimal epoch required by any network

initialized by any of the NEW methods (which in all cases

296



is NEW4).

The ratio “Average Speedup” ranges in the interval

[1.69, 3.62], and the average of these values is 2.92 (as an

average over Average Speedup across tasks). And, on the

basis of the best speed of convergence (the network that

converges the fastest in any ensemble), the “Best Speedup”

value lies in the interval [1.88, 3.04], with the average of

the ratio of convergence for the best initialization routine

belonging to WTR and NEW is 2.54. Thus, we conclude

that the the method of weight initialization NEW4 is about

two and half times faster than the WTR method of weight

initialization.

TABLE V: TRAINING DATA EPOCHS SUMMARY REQUIRED

TO ACHIEVE THE GOALS SPECIFIED IN TABLE II. NCN

STANDS FOR NUMBER OF NON-CONVERGENT NETWORKS.

Functions

Method Statistic f1 f2 f3 f4 f5

WTR1

MEAN 208·07 111·57 298·10 382·07 247·20
St.Dev. 189·56 19·55 99·52 151·79 112·59
Median 134·50 112·00 294·00 361·50 214·50
Min. 84·00 81·00 158·00 163·00 112·00
Max. 1001·00 173·00 506·00 838·00 606·00
NCN 1·00 0·00 0·00 0·00 0·00

WTR2

MEAN 119·50 127·93 272·30 385·30 227·60
St.Dev. 47·97 53·54 150·68 163·98 70·62
Median 105·00 111·50 247·00 339·50 216·50
Min. 63·00 67·00 118·00 204·00 109·00
Max. 248·00 308·00 813·00 1001·00 388·00
NCN 0·00 0·00 0·00 1·00 0·00

WTR3

MEAN 125·87 161·50 243·67 381·73 243·73
St.Dev. 166·59 115·59 121·63 166·80 94·05
Median 89·50 123·00 205·50 346·50 229·00
Min. 69·00 60·00 98·00 143·00 120·00
Max. 1001·00 573·00 664·00 862·00 485·00
NCN 1·00 0·00 0·00 0·00 0·00

WTR4

MEAN 85·13 265·80 205·60 337·60 218·27
St.Dev. 20·49 201·58 90·05 137·14 80·61
Median 82·50 194·50 196·50 328·50 202·00
Min. 57·00 53·00 92·00 171·00 99·00
Max. 129·00 723·00 452·00 817·00 421·00
NCN 0·00 0·00 0·00 0·00 0·00

NEW1

MEAN 101·07 57·07 163·73 205·20 143·27
St.Dev. 31·18 11·89 151·80 74·10 58·24
Median 93·50 57·00 105·00 184·00 129·50
Min. 60·00 33·00 48·00 92·00 65·00
Max. 176·00 94·00 707·00 388·00 331·00
NCN 0·00 0·00 0·00 0·00 0·00

NEW2

MEAN 85·53 41·97 99·53 130·77 115·13
St.Dev. 34·23 9·04 54·68 36·67 21·73
Median 77·00 41·00 85·50 127·50 113·00
Min. 41·00 25·00 48·00 75·00 86·00
Max. 190·00 68·00 302·00 218·00 167·00
NCN 0·00 0·00 0·00 0·00 0·00

NEW3

MEAN 55·57 39·33 73·73 98·77 109·70
St.Dev. 13·37 9·14 27·14 36·30 26·78
Median 52·50 38·00 63·50 94·00 109·00
Min. 35·00 21·00 40·00 65·00 71·00
Max. 99·00 60·00 145·00 199·00 167·00
NCN 0·00 0·00 0·00 0·00 0·00

NEW4

MEAN 50·27 30·97 57·47 93·37 104·57
St.Dev. 11·79 8·51 13·83 33·37 62·92
Median 48·00 30·00 58·00 86·00 83·00
Min. 29·00 18·00 32·00 47·00 53·00
Max. 79·00 54·00 93·00 202·00 373·00
NCN 0·00 0·00 0·00 0·00 0·00

IV. CONCLUSIONS

In this work, we have proposed a new weight initializa-

tion methodology for sigmoidal feedforward artificial neural

TABLE VI: SUMMARY OF TRAINING SPEED RATIO FOR

THE TWO CLASS OF WEIGHT INITIALIZATION METHOD.

Sr.No Fn. Average Speedup Best Speedup

1. f1 1.69 1.97

2. f2 3.60 2.94

3. f3 3.58 2.88

4. f4 3.62 3.04

5. f5 2.09 1.88

networks. The proposed method have been compared with

four uniform random weight initialization methods on five

function approximation methods. The proposed method of

weight initialization distributes the initial input to hidden

weights in such a manner as to target the output of each

individual hidden node in a different region. The comparison

shows that the proposed method / routine of weight initializa-

tion is better at achieving a deeper minima during training,

generalizes better and converges faster at least as compared

to the four random weight initialization methods. Moreover,

out of the four instances of the proposed method, the method

NEW4 has the best result. Another observation that can be

made is that the order of the four instances of the proposed

algorithm for weight initialization NEW 3 is as follows:

NEW1 > NEW2 > NEW3 > NEW4; that is NEW4

demonstrates the best result. Thus, further experimentation

is required that varies the value of λ in a range above 1 also

for finding whether there is any dependence on the value

of the parameter λ for better weight initialization or not.

Further experimentation and comparison with other methods

of weight initialization as proposed in literature [25], [3],

[26], [27], [28], [4], [29], [30], [5], [6], [31], [32], [7],

[33], [34], [35], [36] is required before a definite statement

about the efficiency and efficacy of the proposed weight

initialization method can be made. Moreover, the weight

initialization routines should also be compared when training

algorithms other than the RPROP training algorithm is used.

REFERENCES

[1] S. E. Fahlman, “An empirical study of learning speed in back-
propagation networks,” School of Computer Science, Carnegie Mel-
lon University, Pittsburgh, PA 15213, Tech. Rep. CMU-CS-88-162,
September 1988.

[2] J. F. Kolen and J. B. Pollack, “Back propagation is sensitive to initial
conditions,” in Proc. of the 1990 conference on Advances in neural
information processing systems 3. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1990, pp. 860–867.

[3] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights,” in
Proc. of International Joint Conference on Neural Networks, vol. 3,
1990, pp. 21–26.

[4] G. Drago and S. Ridella, “Statistically controlled activation weight ini-
tialization (SCAWI),” IEEE Transactions on Neural Networks, vol. 3,
no. 4, pp. 627–631, 1992.

[5] G. Thimm and E. Fiesler, “High-order and multilayer perceptron
initialization,” IEEE Transactions on Neural Networks, vol. 8, no. 2,
pp. 349–359, 1997.

[6] Y. Yam, T. W. Chow, and C. Leung, “A new method in determining
initial weights of feedforward neural networks for training enhance-
ment,” Neurocomputing, vol. 16, no. 1, pp. 23 – 32, 1997.

3The ordering is on the basis of the mean epochs required to converge to
the desired goal.

297



[7] J. Y. F. Yam and T. W. S. Chow, “Feedforward networks training speed
enhancement by optimal initialization of the synaptic coefficients.”
IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 430–434,
2001.

[8] W. Duch and N. Jankowski, “Survey of neural transfer functions,”
Neural Computing Surveys, vol. 2, pp. 163–212, 1999. [Online].
Available: http://www.icsi.berkeley.edu/ jagota/NCS

[9] L. Feldkamp, D. Prokhorov, and C. Eagen, “Multiple-start directed
search for improved nn solution,” in Neural Networks, 2004. Proceed-
ings. 2004 IEEE International Joint Conference on, vol. 2, July 2004,
pp. 991–996 vol.2.

[10] G. Cybenko, “Approximation by superpositions of a sigmoidal func-
tion,” Math. Control, Signals, and Systems, vol. 2, pp. 303–314, 1989.

[11] K. Funahashi, “On the approximate realization of continuous mapping
by neural networks,” Neural Networks, vol. 2, pp. 183–192, 1989.

[12] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, pp.
359–366, 1989.

[13] P. Chandra, “Sigmoidal function classes for feedforward artificial
neural networks,” Neural Processing Letters, vol. 18, no. 3, pp. 205–
215, 2003.

[14] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,”
in Neural Networks: Tricks of the trade, ser. LNCS:1524, G. B. Orr
and K.-R. Müller, Eds. Berlin: Springer, 1998, pp. 9–50.

[15] S. Haykin, Neural Networks: A Comprehensive Foundations. Engle-
wood Cliffs, NJ: Prentice–Hall, 1999.

[16] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,” in Parallel Distributed Process-
ing: Volume 1: Foundations, D. E. Rumelhart, J. L. McClelland, and
The PDP Research Group, Eds. Cambridge: MIT Press, 1987, pp.
318–362.

[17] M. Riedmiller and H. Braun, “A direct adaptive method for faster
backpropagation learning: The RPROP algorithm,” in Proc. of IEEE
conference on Neural Networks, vol. 1, San Francisco, 2010, pp. 586–
591.

[18] F. Han and J.-S. Zhu, “Improved particle swarm optimization com-
bined with backpropagation for feedforward neural networks,” Inter-
national Journal of Intelligent Systems, vol. 28, no. 3, pp. 271–288,
2013.

[19] M. Riedmiller, “Advanced supervised learning in multi-layer per-
ceptrons from backpropagation to adaptive learning algorithms,”
Computer Standards & Interfaces, vol. 16, no. 3, pp. 265 – 278, 1994.

[20] The MathWorks Inc., “Matlab version R2013a,” 2013.
[21] L. Breiman, “The PI method for estimating multivariate functions from

noisy data,” Technometrics, vol. 3, no. 2, pp. 125–160, 1991.
[22] V. Cherkassky, D. Gehring, and F. Mülier, “Comparison of adaptive

methods for function estimation from samples,” IEEE Transactions on
Neural Networks, vol. 7, no. 4, pp. 969–984, 1996.

[23] V. Cherkassky and F. Mülier, Learning from Data – Concepts, Theory
and Methods. New York: John Wiley, 1998.

[24] M. Maechler, D. Martin, J. Schimert, M. Csoppenszky, and J. Hwang,
“Projection pursuit learning networks for regression,” in Proc. of the
2nd International IEEE Conference on Tools for Artificial Intelligence,
1990, pp. 350–358.

[25] J. F. Shepanski, “Fast learning in artificial neural systems: multilayer
perceptron training using optimal estimation,” in Proc. of IEEE Inter-
national Conference on Neural Networks, 1988, pp. 465–472 vol.1.

[26] C.-L. Chen and R. S. Nutter, “Improving the training speed of three-
layer feedforward neural nets by optimal estimation of the initial
weights,” in Proc. of IEEE International Joint Conference on Neural
Networks, vol. 3, 1991, pp. 2063–2068.

[27] Y. Kim and J. B. Ra, “Weight value initialization for improving training
speed in the backpropagation network,” in Proc. of IEEE International
Joint Conference on Neural Networks, vol. 3, 1991, pp. 2396–2401.

[28] L. F. A. Wessels and E. Barnard, “Avoiding false local minima by
proper initialization of connections,” IEEE Transactions on Neural
Networks, vol. 3, no. 6, pp. 899–905, 1992.

[29] N. Weymaere and J.-P. Martens, “On the initialization and optimization
of multilayer perceptrons,” IEEE Transactions on Neural Networks,
vol. 5, no. 5, pp. 738 – 751, 9 1994.

[30] M. Lehtokangas, J. Saarinen, K. Kaski, and P. Huuhtanen, “Initializing
weights of a multilayer perceptron network by using the orthogonal
least squares algorithm,” Neural Computation, vol. 7, no. 5, pp. 982–
999, Sep. 1995.

[31] L. N. de Castro, E. M. Iyoda, F. J. V. Zuben, and R. R. Gud-
win, “Feedforward neural network initialization: an evolutionary ap-
proach,” in Proc. of Vth Brazilian Symposium on Neural Networks,
A. de Pdua Braga and T. B. Ludermir, Eds. IEEE Computer Society,
1998, pp. 43–48.

[32] J. Y. F. Yam and T. W. S. Chow, “A weight initialization method for
improving training speed in feedforward neural network,” Neurocom-
puting, vol. 30, pp. 219 – 232, 2000.

[33] M. Fernández-Redondo and C. Hernández-Espinosa, “Weight initial-
ization methods for multilayer feedforward,” in European Symposium
on Artificial Neural Networks, 2001, pp. 119–124.

[34] X. M. Zhang, Y. Q. Chen, N. Ansari, and Y. Q. Shi, “Mini-max
initialization for function approximation,” Neurocomputing, vol. 57,
pp. 389–409, 2004.

[35] M. Jamett and G. Acuña, “An interval approach for weights initial-
ization of feedforward neural networks,” in MICAI 2006: Advances
in Artificial Intelligence, ser. Lecture Notes in Computer Science,
A. Gelbukh and C. Reyes-Garcia, Eds. Springer Berlin Heidelberg,
2006, vol. 4293, pp. 305–315.

[36] S. Timotheou, “A novel weight initialization method for the random
neural network,” Neurocomputing, vol. 73, no. 13, pp. 160 – 168, 2009.

298




