
 

  
Abstract — Takagi-Sugeno neural fuzzy models (TS-models) have 
commonly been applied in the development of traffic flow 
predictors based on traffic flow data captured by the on-road 
sensors installed along a freeway. However, using all captured 
traffic flow data is ineffective for the TS-models for traffic flow 
predictions. Therefore, an appropriate on-road sensor 
configuration consisting of significant sensors is essential to 
develop an accurate TS-model for traffic flow forecasting. 
Although the trial and error method is usually used to determine 
the appropriate on-road sensor configuration, it is 
time-consuming and ineffective in trialing all individual 
configurations. In this paper, a systematic and effective 
experimental design method involving orthogonal arrays is used 
to determine appropriate on-road sensor configurations for 
TS-models. A case study was conducted based on the development 
of TS-models using traffic flow data captured by on-road sensors 
installed on a Western Australia freeway. Results show that an 
appropriate on-road sensor configuration for the TS-model can be 
developed in a reasonable amount of time when an orthogonal 
array is used. Also, the developed TS-model can generate accurate 
traffic flow forecasting. 

 
Index Terms— Sensor configuration, traffic flow forecasting, 
Takagi-Sugeno neural fuzzy models, orthogonal array, 
experimental design methods  

I. INTRODUCTION 
In modern cities, traffic flow predictors are essential for traffic 
control centers in order to reduce traffic congestion and 
improve mobility of traffic flow [11, 13]. These have a 
functional relationship which maps the past traffic flow 
conditions captured by on-road sensors to the future traffic flow 
at a particular location of interest. They are usually developed 
to forecast the traffic flow conditions on a horizon only a few 
minutes ahead of the current time, in order to provide proactive 
dynamic traffic control actions [13]. 
 Typically, conventional statistical methods such as filtering 
techniques [7, 10], autoregressive methods [14], and 
k-nearest-neighbor approaches [1] have been used to develop 
those traffic flow predictors. More recently, the universal 
estimator, namely the Takagi-Sugeno neural fuzzy model, 
(TS-model) [2, 9, 15], has been applied for traffic flow 
forecasting, whereby better forecasting results can be obtained 
than by those approaches using statistical methods. As the 
TS-models are more capable of addressing the strongly 
non-linear characteristics of traffic flow [6, 12] than the 
conventional statistical methods, they can generally achieve 

 
 

better traffic flow forecasting. 
 Prior to developing the TS-models for traffic flow 
predictions, it is necessary to determine an appropriate on-road 
sensor configuration [4, 16] which illustrates the appropriate 
locations for the installation of on-road sensors and the 
appropriate number of on-road sensors needed to capture traffic 
flow data. However, the trial and error method is generally used 
for on-road sensor configuration design. A systematic way of 
determining appropriate on-road sensor configuration has not 
yet been resolved. In fact, the on-road sensor configuration 
significantly affects the forecasting accuracy of the TS-model. 
When the useful traffic flow data captured by the significant 
on-road sensors are not taken into account when developing the 
TS-model, the resulting TS-model is under-learnt by the 
insignificant traffic flow patterns. It can address only partial 
traffic flow patterns for forecasting purposes. When too much 
useless traffic flow data captured by insignificant on-road 
sensors are used, the TS-model can only address spurious 
patterns for traffic flow forecasting. Therefore, misleading 
traffic flow forecasting could be generated by the TS-model. 
 To obtain an appropriate on-road senor configuration, full 
factorial design can be used by switching the on-road sensors 
on and off using all the combinations. However, it is 
impractical and time-consuming to trial all on-road sensor 
configurations, as it may involve a large amount of 
experimental time. As an example, if there were only 20 
sensors installed on the freeway, more than one million (or 220) 
on-road sensor configurations would need to be trialed.  

Therefore, a systematic and effective methodology based on 
the experimental design approach [5, 8] is proposed in this 
paper, in order to determine the appropriate on-road sensor 
configuration. The orthogonal array commonly used in 
experimental design is used to conduct systematic trials on 
on-road sensor configurations. It is used to study the effects on 
all on-road sensors with a small number  of trials. It then 
estimates the main effects of the on-road sensors in order to 
optimize a given performance measure, which is typically the 
difference between the actual data and the responses of the 
traffic flow predictor. It is intended to develop a highly accurate 
and timely traffic flow predictor. A case study is conducted 
using traffic flow data captured by the on-road sensors installed 
on a Western Australia freeway. The advantages of using the 
orthogonal array is indicated in the developed TS-model: (a) 
high accuracy for traffic flow forecasting can be generated by 
the developed TS-model; and (b) the development of the 
TS-model requires only a reasonable amount of time. 
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The rest of the paper is organized as follows: Section 3 
discusses the general on-road sensor configuration of the 
TS-models for traffic flow forecasting. Section 4 elaborates on 
the use of orthogonal array in determining appropriate on-road 
sensor configuration for developing TS-models. Simulation 
results for traffic flow forecasting are presented. Finally, a 
conclusion and suggestion for future research are presented. 

II. EXPERIMENTAL DESIGN USING ORTHOGONAL ARRAYS 
This section presents the mechanism of using orthogonal arrays 
for experimental design. When engineers design a system, their 
first step is usually to consider which components are necessary 
for the system. To do this, they could conduct experiments with 
respect to the components using the ‘full factorial’ approach, 
whereby each combination is considered at a time until all 
combinations of components have been tested. However, this 
process may take a long time especially when there is a large 
number of components.   

Hence, to determine the necessary components more 
efficiently, the experimental design method based on 
orthogonal arrays, can be used. This is a systematic and 
efficient approach to study the significance of each component 
of a system [5]. It studies the effect of each component 
simultaneously by using an orthogonal array requiring a 
minimum number of experiments. For example, a system with 
3 components, a full factorial design requires 8 ( )3i.e.:  2  
experiments. When the orthogonal design with the orthogonal 
array, ( )4 2L  (shown in Table 1) is used, only four experiments 
are required in order to study the main effect of each 
component. Hence, four experiments ( )i.e.:  8 4−  or half the 
experimental time can be saved, compared with the full 
factorial design approach. The number of rows represents the 
experiments required to be performed. The number of columns 
represents the number of system components that need to be 
studied, where the experiments defined by the columns are 
mutually orthogonal. 

In the orthogonal array, the ‘+’ sign represents the 
corresponding component installed on the system, while the ‘-’ 
sign represents the corresponding component that is not 
installed on the system. In the first row, there are three ‘+’ 
signs. Hence, three components are installed on the system 
when conducting the experiment. In the second row, only the 
first component is installed on the system when conducting the 
experiment. In the third row, only the second component is 
installed on the system when conducting the experiment. 
Combinations in L4(2) have a pairwise balancing property, 
whereby every combination of components occurring in the 
experiments is the same. This minimizes the number of 
experiments required and enables a balanced study of the 
significance of each component.  

A significant amount of experimental time can be saved 
when there is a large number of system components that need to 
be studied. . Table 2 shows an orthogonal array, L14(2) which it 
can be used for studying a system with fourteen components. 
When we use full factorial design, 16384 ( 142= ) experiments 
need to be conducted. When the orthogonal array, L14(2), is 
used, only 20 experiments need to conducted in order to study 
the significance of each component. Hence, 16364 (=16384-20) 

experiments can be saved when we use L14(2) to conduct the 
experiments.  

 
Table 1 Orthogonal array ( ( )4 2L ) 

Experiments Component 
A 

Component 
B 

Component 
C 

1st + + + 

2nd + - - 

3rd - + - 

4th - - + 

 

III. TRAFFIC FLOW PREDICTION USING ON-ROAD SENSORS 
The on-road sensor configuration developed for a freeway is 
illustrated in Figure 1 where n on-road sensors (S1, S2, …and  
Sn) are installed. Based on the traffic flow data captured by the 
on-road sensors, a traffic flow predictor can be used to predict 
the future traffic flow condition at location B, when drivers are 
in location A. It uses the traffic flow conditions collected by Si, 
with i=1,2…,n for performing traffic flow predictions, where Si 
captures the traffic flow condition, ( )iy t , in time t with a 
sampling time of sT . Here the traffic flow condition is 
represented by the captured average speed of cars. If the speed 
approximates the freeway speed limit, the condition of the 
traffic flow on the freeway is smooth. If the average speed of 
the cars is far below the freeway speed limit, the traffic flow 
condition is not smooth and traffic congestion may occur. 
Therefore, when drivers are at location A and are managing to 
drive to location C as the destination, prediction of future 
traffic flow condition at B is useful. Drivers may directly go 
by the freeway, when the traffic flow condition at B is 
predicted to be smooth. Otherwise, they may use the small 
link to go to C and they can avoid the traffic congestion on the 
freeway, thereby saving on driving time.  

 
Fig. 1 TS-model using on-road sensors on a freeway for traffic flow predictions 

 

A. TS-model for traffic flow predictions 
In this research, the TS-model is used to predict the future 
traffic flow condition, ( )+ny t m , at location B with m sample 
time ahead of the current time. It can perform the prediction by 
simply using all the current traffic flow conditions ( )1y t , 
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( )2y t , …., and ( )ny t  captured by all n sensors (i.e. S1, S2, 
…and  Sn). However, not all the traffic flow data captured by 
the on-road sensors is significant for the TS-model to perform 
traffic flow prediction. We could imagine that the traffic flow 
data captured by Sn-1 is more significant than those captured by 
S1, since Sn-1 is located much near to Sn than S1 does. Traffic 
flow conditions at Sn-1 are much more similar to those at Sn, 
while those at S1 may not be similar to those at Sn, as they are 
separated by a larger distance. Therefore, using the traffic flow 
data captured at S1 may not be helpful in predicting flow at Sn. 
We may need to select the appropriate on-road sensors which 
will give traffic flow prediction at Sn. However, in fact, it may 
not be always true that using the nearest on-road sensors is the 
best way. Determination of appropriate on-road sensor 
configuration is still necessary which will be illustrated on the 
case study in Section IV. 
 To develop the TS-model, it is essential to select the 
on-road sensors which are significant to traffic flow 
forecasting as the inputs of the TS-model for forecasting 
traffic flow at Sn.  We assume that there are only sn  on-road 

sensors that are significant to traffic flow predictions, and the 

( )1 thp , ( )2 thp ,..., and ( )th

sp n  on-road sensors are the 

significant ones. With the sn  significant on-road sensor, the 

TS-model consists of rulen  fuzzy rules, where the g-th fuzzy 

rule is given by: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1, 2,1 1 2 2

,

:  IF  is A  AND  is A  

AND ..... AND  is A

g g gp p p p

n gp n p nss s

R y t y t y t y t

y t y t
 

 ( ) ( ) ( )0, ,
1

THEN 
n

g g i gp i
i

s

z t w y t w
=

= + ⋅∑         (1) 

1,2,...., ruleg n= ; ( ) ( )p iy t , with 1, 2,..., si n= , is the traffic flow 

condition captured by the ( )thp i  on-road sensor; as well as 

( ) 1,2,...,p i n∈⎡ ⎤⎣ ⎦  with all ( ) ( )p i p j≠ , , 1, 2,..., si j n= , but 

sn n≤ .  
 For the g-th fuzzy rule in the TS-model, ,i gw  is the i-th 

polynomial coefficient, and ( ) ( )( ),i g p iA y t , with 1, 2,..., si n= , is 

the i-th membership function given as: 

 ( ) ( )( ) ( )( ) ( )( ) ( )2

,

2 2
, ,y t y

i g p i

p i p i g p i gA y t e
σ− −

= .         (2) 

where ( ),p i gy  and ( ),p i gσ in equation (2) are the mean value and 

the standard deviation of the membership function respectively.  
The membership grade for each rule is formulated as: 

 ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1, 2, ,1 2 ...g g g n gp p p ns s
t A y t A y t A y tμ = × × ×  

where 1,2,...., ruleg n= . The predicted future traffic flow 

condition at Sn, ( )ˆ
n sy t T+ , is given by: 

 ( )
( ) ( )

( )
1

1

ˆ

n

g g
g

n s n

g
g

rule

rule

t z t
y t m T

t

μ

μ

=

=

+ ⋅ =
∑

∑
,          (3) 

 Based on equations (2) and (3), the functional relationship 
between ( )ˆn sy t m T+ ⋅ and all ( ) ( )p iy t  can be rewritten using 

equation (5), namely FNNf  as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 2
ˆ , ,...,n s FNN p p p ns
y t m T f y t y t y t+ ⋅ =    (5) 

Here, a widely-used approach with fast convergence, namely 
the ANFIS algorithm [3], is used to determine the parameters of 
the TS-models, ,i gw , ( ),p i gy , and ( ),p i gσ . It aims to optimize the 

following mean absolute relative error (namely, MAREe ), which 
is used to evaluate the generalization capability of the 
TS-model: 

 ( )( ) ( )( )
( )( )1

ˆ'  '1 100%
'

DataN n s n s

MARE
kData n s

y t k m T y t k m T
e

N y t k m T=

+ ⋅ − + ⋅
= ×

+ ⋅∑ , 

                        (6) 
where DataN

 
is the number of pieces of traffic flow data; and 

( )( )ˆ 'n sy t k m T+ ⋅  is an estimate of the traffic flow condition with 

m sampling time ahead, and ( )( )ˆ 'n sy t k m T+ ⋅  is given by: 

( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )( )1 2
ˆ ' ' , ' ,..., '

sn s FNN p p p ny t k m T f y t k y t k y t k+ ⋅ = . 

The k-th piece of traffic flow data is given as: 

 
( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 2' , ' , ' ,..., , '

sn s p p p ny t k m T y t k y t k y t k⎡ ⎤+ ⋅⎣ ⎦
, 

where ( ) ( )( )'p iy t k

 
is the traffic flow captured by the ( )thp i  

on-road sensor at the time, ( )t k , and ( )( )'n sy t k m T+ ⋅

 
is the 

average speed of cars collected from the thn  on-road sensor at 
the time, ( )( )st k m T+ ⋅ . 

B. Design problem of TS-models  
The selection of on-road sensors affects the accuracy of the 
TS-model in predicting future traffic flow. The developed 
TS-model may be under-learnt when the traffic flow data of 
significant on-road sensors are not used on training. Hence, the 
resulting TS-model cannot address significant patterns of 
traffic flow. It cannot fully be trained with completed traffic 
flow patterns, and can only learn partial patterns for traffic flow 
forecasting. When too many patterns of insignificant on-road 
sensors are included for training, unnecessary effort is 
expended. Also, effective learning cannot be applied in the 
TS-model, since unnecessary patterns are likely to be fed into 
the TS-model. Hence, the learning of spurious patterns for 
traffic flow forecasting occurs in the TS-model. 
 To design an appropriate on-road sensor configuration, the 
trial and error method is generally used for selecting significant 
on-road sensors for traffic flow forecasting. We can obtain the 
global optimal configuration consisting of all significant 
on-road sensors by using full factorial design. However, this is 
impractical to test all on-road sensor configurations, as it may 
involve a large amount of evaluation time. For example, when 
there are only 10 sensors installed on the freeway, 1024 
(=210-1) on-road sensor configurations need to be evaluated. 
Therefore, in the following section, we discuss a systematic and 
effective approach, based on orthogonal array, to determine the 
appropriate on-road sensor configuration. 
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IV. ON-ROAD SENSOR CONFIGURATION DESIGN 
USING ORTHOGONAL ARRAYS 

This section illustrates how the orthogonal arrays can be used to 
determine appropriate on-road sensor configuration for the 
TS-model. A case study is presented which involves a set of 
on-road sensors installed along the Mitchell Freeway, Western 
Australia. 

A. On-road sensors installed on the freeway 
We studied the traffic flow conditions on a section of the 
Mitchell Freeway in Western Australia, which is the linkage 
between Reid Highway and Hutton Street. The on-road sensors 
(namely S1 to S 14) shown in Figure 2 are used to captured traffic 
flow conditions, where the sampling time used for capturing the 
traffic flow conditions for these on-road sensors was 30 
seconds. S1, S2 and S3, were installed at the off-ramp, at the 
on-ramp, as well as between the off-ramp and on-ramp, for the 
Reid Highway respectively; S4 and S5, were installed at the 
off-ramp and near the on-ramp for Erindale Road respectively; 
S6 to S11, were installed at the off-ramp, near the on-ramp and 
between the off-ramp and on-ramp for Karrinyup Road, Cedric 
Street and Hutton Street respectively. The distance between the 
starting point (i.e. Reid Highway) and the ending point (i.e. 
Hutton Street) is 7 kilometers, and the freeway speed limit is 

100 km/hr. Using the captured traffic flow conditions, the 
TS-model was developed to predict future traffic flow 
conditions with five sampling times ahead of the current time 
(or 2.5 minutes ahead). 
 In this case study, the traffic flow data used for developing 
the TS-model was collected in the 9th week of 2009. This data 
was collected during the morning peak traffic period 
(7.30-10.30 am) from Monday to Friday. This collected data 
was divided into two data sets, namely training set and test set. 
The training set was the data collected from the Monday to the 
Thursday. and was used to develop the TS-model. The test set 
was collected on the Friday. It was used to evaluate the 
generalization capability of the developed TS-model. 
 For the training set, the total time used for capturing traffic 
flow conditions from the Monday to the Thursday is 480 
minutes (i.e. 4 days x 2 hours), as the sampling time used by the 
on-road sensors to capture traffic flow conditions was 30 
seconds. Hence, the training set consists of 960 pieces of traffic 
flow data. For the test set, the total time used for capturing 
traffic flow conditions from the Friday is 120 minutes (i.e. 1 
day x 2 hours). Hence, the test set consists of 240 pieces of 
traffic flow data. 
 

 
Fig. 2 On-road sensor configuration on the Mitchell Freeway in Western Australia 

 

B. Determination of orthogonal array 
This research aims to determine the appropriate on-road sensor 
configuration which can be used effectively on the TS-model 
for traffic flow forecasting. Hence, we need to determine which 
on-road sensors are needed to connect to the TS-model, and 
which on-road sensors are not needed. These connection or 
disconnection states of the on-road sensors can be designated as 
‘+’ or ‘-‘ conditions respectively. As fourteen on-road sensors 
were installed on the freeway, fourteen conditions with either 
‘+’ or ‘-’ had to be considered. 

In experimental design, these ‘+’ or ’-’ conditions are the 
design parameters representing binary with either ‘+’ or ‘-’. 
When the design parameter is '+', the corresponding on-road 
sensor is connected to the TS-model and the traffic flow 
conditions captured by this on-road senor are passed to the 
TS-model. When the design parameter is '-', the corresponding 
on-road sensor is disconnected with the TS-model and no 
traffic flow condition captured by this on-road sensor is passed. 
 An orthogonal array, L20(214) given in Table 2, suits this 
design problem, since it involves 14 design parameters and 2 
conditions (either ‘-’ or ‘+’). With L20(214), only 20 experiments 
need to be conducted to determine the appropriate on-road 
sensor configuration engaging 14 on-road sensors. As an 

example, the first experiment in L20(214) is conducted by 
connecting all the on-road sensors with the TS-model. The 
second experiment is conducted by connecting the on-road 
sensors, S2, S5, S6, S7, S8, S10 and S12 with the TS-model, while 
the other on-road sensors are all disconnected. Similarly, the 
rest of the experiments are conducted by connecting the 
on-road sensors when the entries are ‘+’ and disconnecting  
those entries that are ‘-’ 
 In this design problem, 16384 ( 142= ) experiments need to be 
conducted to determine the appropriate on-road sensor 
configuration for the TS-model when full factorial design is 
used, as 14 design parameters with each design parameter 
having two states are studied. When the orthogonal 
array, ( )14

20 2L , is used, only 20 experiments need to be 
conducted. Therefore, 16364 experiments ( = 16384 
experiments - 20 experiments) can be saved by using ( )14

20 2L .  
If each experiment takes 40 seconds, the experiments using 

full factorial design will take a total of 654560 seconds (or 7.58 
days) to complete.  Using 7.58 days to develop a TS-model for 
traffic flow prediction is too expensive compared with using the 
orthogonal array which needs only 800 seconds for the 
completion of all the required experiments. Therefore, the 
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orthogonal array approach requires much fewer experimental 
efforts than those required when using the full factorial design 
approach.  

C. Experimental and analytical results 
The 20 experiments are conducted using 20 combinations of the 
orthogonal array, ( )14

20 2L . Each combination represents an 
input configuration of the TS-model, while the states of the 14 
on-road sensors need to be determined. These experiments aim 
to study the performance of the TS-models when different input 
configurations are used. With a particular input configuration, 
the TS-model can be developed by the training data. The 

generalization capability of the developed TS-model is 
evaluated by the test data using the mean absolute relative error, 

MAREe , illustrated in equation (6), which represents the 
difference between forecasting of the traffic flow predictor and 
the actual traffic flow conditions. If MAREe  is smaller, then the 
error between the actual traffic flow conditions and the 
forecasting is smaller. The results for all experiments are shown 
in Table 2, which illustrates the i

MAREe with 
1, 2,..., 20i = obtained by the TS-model generated based on the 

i-th experiment. 

 
 

Experiment S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 Number of on-road 
sensors installed 

( )%i
MAREe   

1-st + + + + + + + + + + + + + + 14 1
MAREe =  6.9223 

2-nd - + - - + + + + - + - + - - 7 2
MAREe = 6.7981 

3-rd - - + - - + + + + - + - + - 7 3
MAREe = 6.6742 

4-th + - - + - - + + + + - + - + 8 4
MAREe = 6.8019 

5-th + + - - + - - + + + + - + - 8 5
MAREe = 7.6281 

6-th - + + - - + - - + + + + - + 8 6
MAREe = 7.9011 

7-th - - + + - - + - - + + + + - 7 7
MAREe = 6.9194 

8-th - - - + + - - + - - + + + + 7 8
MAREe = 6.9123 

9-th - - - - + + - - + - - + + + 6 9
MAREe = 6.8804 

10-th + - - - - + + - - + - - + + 6 10
MAREe = 7.8002 

11-th - + - - - - + + - - + - - + 5 11
MAREe = 6.7681 

12-th + - + - - - - + + - - + - - 5 12
MAREe = 7.3910 

13-th - + - + - - - - + + - - + - 5 13
MAREe = 7.5855 

14-th + - + - + - - - - + + - - + 6 14
MAREe = 7.1344 

15-th + + - + - + - - - - + + - - 6 15
MAREe = 7.5739 

16-th + + + - + - + - - - - + + - 7 16
MAREe = 6.6774 

(smallest eMARE) 
17-th + + + + - + - + - - - - + + 8 17

MAREe = 7.6212 
18-th - + + + + - + - + - - - - + 7 18

MAREe = 8.1130 
(largest eMARE) 

19-th - - + + + + - + - + - - - - 6 19
MAREe = 6.8775 

20-th + - - + + + + - + - + - - - 7 20
MAREe = 6.8634 

Table 2 Orthogonal array, L20(214), and experimental results 
 
 

Table 2 also shows the number of on-road sensors connected 
with the TS-model. These results show that 16

MAREe  at the 16-th 
experiment is the smallest of all mean absolute relative errors, 
when the 16th experiment was involved with only seven 
on-road sensors. 16

MAREe  is smaller than 1
MAREe  obtained by the 

1st experiment which involved all the fourteen on-road sensors. 
It indicates clearly that it is not appropriate to simply use all the 
on-road sensors to develop the TS-model for traffic flow 
forecasting. Using all sensor data might not achieve the best 
prediction result. Hence, it is essential to design an appropriate 
on-road sensor configuration for the TS-model in order to 

obtain accurate prediction for traffic flow conditions. 
Since the combinations of the conditions of the on-road 

sensors are orthogonal, the main effects of each on-road sensor 
can be evaluated with respect to the two conditions, either ‘-’ 
and ‘+’ [5,8]. The main effects of each on-road sensor for each 
condition were calculated by adding all i

MAREe  for the given 
condition. These calculations are shown in Table 3. As an 
example, the main effect of the on-road sensor S10 at ‘+’ 
condition is considered. It is connected with the TS-model on 
the 1st, 2nd, 4th, 5th, 6th, 7th, 10th, 13th, 14th and 19th 
experiments. The sum for all the ‘+’ conditions is 72.3685, 
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which is the main effect of S10 at the ‘+’ condition.  
When all main effects of all on-road sensors are calculated, 

the significant of the on-road sensors can be computed by 
taking the difference between the largest and smallest main 
effects on a given on-road sensor. Table 3 also shows the 
significance of each on-road sensor. It indicates that the 
on-road sensor, S2, has the highest significance. Hence, S2 has 
the highest impact on the TS-model when it is connected with 
the TS-model. The on-road sensor, S6, has the least significance 

to the TS-model. Hence, the impact on the TS-model is small 
whether this is connected with or disconnected from the 
TS-model. Also, Figure 3 shows graphically the main effects of 
each on-road sensor. It clearly shows the characteristics of the 
main effects and the significances of all on-road sensors. From 
the figure, we can observe that S4 is more significant than all of 
the other on-road sensors, while the significance of S13 is the 
smallest. 

 
 
 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 

Condition 
‘+’  

(connected) 

72.4138 73.5887 72.2315 72.1904 70.8069 71.9123 70.3380 70.3947 72.7609 72.3685 71.2972 70.7778 71.6210 72.8549 

Condition 
‘-’ 

71.4296 70.2547 71.6119 71.6530 73.0365 71.9311 73.5054 73.4487 71.0825 71.4749 72.5462 73.0656 72.2224 70.9885 

Significance 0.9842 3.3340 0.6196 0.5374 2.2296 0.0188 3.1674 3.0540 1.6784 0.8936 1.2490 2.2878 0.6014 1.8664 
 

Table 3 Main effects of each condition of each on-road sensor 
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Figure 3 Main effects of the on-road sensors 

 
As the TS-model aims to provide an accurate forecasting of 

traffic flow, MAREe obtained by the TS-model is the 
smaller-the-better. Hence, we select the connection states of the 
on-road sensors with the smallest main effects. The underlined 
figures in Table 3 represent the small main effects of the 
on-road sensors. Therefore, seven on-road sensors are 
connected with the TS-model, i.e. S5, S6, S7, S8, S11, S12 and S13 
are connected. The rest of the on-road sensors are not connected 
wih the TS-model; hence,  S1, S2, S3, S4, S9, S10 and S14 are not 

connected. The simulation result obtained by the TS-model is 
shown in Figure 4. We can observe that the predicted traffic 
flow conditions are close to the real traffic flow conditions. The 
prediction error ( MAREe ) is only 5.6419%, which is smaller than 
those obtained by the TS-models which were configured with 
the combinations of the orthogonal array, L20(214). 

Therefore, only seven on-road sensors need to be used by the 
TS-model for performing traffic flow forecasting. This is less 
than the total number of on-road sensors installed on the 

40



 

freeway and illustrates that it is not necessary to use all on-road 
sensors to develop the TS-model. In fact, it is more important to 
develop an appropriate on-road sensor configuration. With a 
simpler on-road sensor configuration, cost in terms of 
maintenance and effort can be reduced for the on-road sensor 
operation as, of the fourteen on-road sensors, only five need to 
be maintained. Also, the chance of generating faulty 
predictions can be reduced due to the wear or tolerance of the 
on-road sensors, as fewer on-road sensors are used in the 
TS-model. 
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Figure 4 Simulation results for the traffic flow forecasting 

V. CONCLUSION AND FUTURE WORK 
This paper presents an experimental design method, namely 
orthogonal array, to develop on-road sensor configuration for 
TS-models for traffic flow forecasting purposes. This design 
method is intended to select significant on-road sensors for 
TS-models, in order to forecast with more accuracy the traffic 
flow conditions. As the number of on-road sensors installed on 
the freeway is large, it is ineffective and impractical to test all 
individual configurations in order to determine the appropriate 
one. Hence, a systematic and effective experimental design 
methodology based on orthogonal arrays is proposed in order to 
determine appropriate on-road sensor configurations for 
TS-models. The effectiveness of using the orthogonal array was 
demonstrated by a case study on developing the TS-model for 
traffic flow forecasting, where the traffic flow data was 
captured by fourteen on-road sensors installed on Western 
Australia freeway. The case study illustrates that using the 
orthogonal array can provide a systematic and efficient 
methodology to determine the appropriate on-road sensor 
configurations. Also, far less development time is required than 
when using full factorial design.  It also shows that a better 
TS-model with better traffic flow forecasting can be generated 
by analyzing the main effects of the on-road sensors. Apart 
from developing the TS-models, the methodology discussed in 
this paper can be applied to determine on-road sensor 
configurations for other intelligent forecasting systems such as 
neural network, fuzzy inference systems etc., since the 
forecasting performance of those intelligent systems can be 
poor when insignificant data is used for training.  

In future, the two research directions will be focused. a) In 
this paper, the Taguchi method is only used for the design of 

TS-model. We will apply the Taguchi method to design the 
neural networks [17-19] which are effective for traffic flow 
forecasting. b)  we will analyze the interaction effects between 
on-road sensors in developing the on-road sensor 
configuration. To do this analysis, an interaction effect plot [8] 
can be used by illustrating the main effects of the on-road 
sensors, and significant on-road sensors can be indicated. By 
doing this, better on-road sensor configurations are expected to 
be generated for the TS-models.  
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