
Model-free Adaptive Dynamic Programming for
Online optimal Solution of the Unknown Nonlinear

Zero-Sum Differential Game
Chunbin Qin

School of Computer and
Information Engineering,

Henan University,
Kaifeng 475004,China

Email: qcb@henu.edu.cn

Huaguang Zhang
School of Information

Science and Engineering,
Northeastern University

Shenyang 110004, China
Email: hgzhang@ieee.org

Yanhong Luo
School of Information

Science and Engineering,
Northeastern University

Shenyang 110004, China
Email: neuluo@gmail.com

Abstract—It is well known that the two-player zero-sum dif-
ferential game problem of the continuous-time nonlinear system
relies on the solution of the Hamilton-Jacobi-Isaacs equation,
which is a nonlinear partial differential equation that is difficult
or impossible to solve. In this paper, a new model-free adap-
tive dynamic programming algorithm is developed for solving
online the Hamilton-Jacobi-Isaacs equation for continuous-time
nonlinear system with the fully unknown knowledge of the system
dynamics. First, a simultaneous policy iteration algorithm will be
given, which can solve the Hamilton-Jacobi-Isaacs equation in an
off-line sense, in which the fully knowledge of the system dynam-
ics is required. Second, based on the simultaneous policy iteration
algorithm, a new model-free adaptive dynamic programming
algorithm is developed for solving online the Hamilton-Jacobi-
Isaacs equation, in which the fully knowledge of the system
dynamics is not required. Finally, a numerical example is given
to demonstrate the convergence and effectiveness of the proposed
scheme.

I. INTRODUCTION

In the practice, there are a large class of real systems which
are controlled by more than one controller or decision maker
with each using an individual strategy [1]. These controllers
often operate in a group with a performance index function as
game theory which has been widely applied in management,
military battles, power networks and different types of contest.
The two-player zero-sum game with a quadratic performance
index plays an important role in the game theory. In the
two-player zero-sum game, one player tries to minimize the
performance index while the other tries to maximize it. Over
the past few decades, a large number of theoretical results
on the two-player zero-sum game have been reported [1]–[7].
Although the two-player zero-sum game theory has been well
developed, the main bottleneck for its practical application is
the need to solve the Hamilton-Jacobi-Isaacs (HJI) equation.
However, the HJI equation is difficult or impossible to solve,
and may not have global analytic solutions even in simple
cases, since the HJI equation is a nonlinear partial differential
equation.

In recent years, adaptive dynamic programming (ADP),
which is a practical method for finding the optimal control

solution online forward in time by using measured system
data along the system trajectories [8]–[15], have appeared to
be promising technique for approximately solving the two-
player zero-sum game [16]–[21]. Abu-Khalaf et al. proposed
the policy iteration for the affine nonlinear zero-sum game
problem in [19] and used neural networks to solve it in [20].
Wei et al. [21] proposed an optimal (or suboptimal) control
technique to a class of nonlinear quadratic two-person zero-
sum problem where the general saddle point or the Nash
equilibrium may not exist. Furthermore, Zhang et al. [22]
proposed a new iterative ADP method which is effective both
for the situations that the saddle point exists or does not exist.
Authors in [23] proposed a computationally efficient simul-
taneous policy update algorithm (SPUA) based on Galerkins
method for solving the two-player zero-sum problem, which
is much simpler and easier to implement than the existing
methods [19], [20], [22]. However, these methods are the
off-line algorithms, that is to say that these methods are
implemented in an off-line sense for finding the general saddle
point or the Nash equilibrium of the two-person zero-sum
game. Thus, authors [24], [25] developed the on-line algorithm
for solving the HJI equation appearing in the two-player zero-
sum game. Vamvoudakis and Lewis [24] proposed a new
optimal adaptive algorithm that solved online the continuous-
time two-player zero-sum game problem for affine in the
inputs nonlinear systems with the known knowledge of system
dynamics, in which the critic, actor, and disturbance neural
networks are tuned simultaneously online to converge to the
solution to the HJI equation and the saddle point policies. Wu
and Luo [25] proposed a neural network (NN)-based online
simultaneous policy update algorithm (SPUA) to solve the HJI
equation, in which knowledge of internal system dynamics is
not required.

However, a common feature of the all the existing ADP-
based results for finding the solution to the HJI equation is
that partial knowledge of the system dynamic is required to
be exactly known in the setting of continuous-time nonlinear
systems [19], [20], [22], [24], [25]. To remove the requirement
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of complete knowledge of the system dynamics, in this paper,
we will propose a new model-free ADP algorithm which can
solve online the HJI equation appearing in the two-player zero-
sum game problems for continuous-time nonlinear systems
with the fully unknown knowledge of the system dynamics.
That is to say that the proposed algorithm only use the data
generated in real time along the unknown system trajectories,
and can learn the optimal Nash equilibrium solution of the
two-player zero-sum game in an online sense without requiring
the full knowledge of system dynamics.

The remainder of this paper is organized as follows. In
Section II, we give the problem description. In Section III,
we develop the online model-free ADP algorithm for the two-
player zero-sum differential game. One numerical examples is
provided in Section IV. Finally, the conclusions are drawn in
Section V.

II. PROBLEM FORMULATION

Consider the following nonlinear continuous-time system:

𝑥̇(𝑡) = 𝑓(𝑥) + 𝑔1(𝑥)𝑢1(𝑡) + 𝑔2(𝑥)𝑢2(𝑡) (1)

where, 𝑥(𝑡) ∈ 𝑅𝑛 is the system state vector, 𝑢1(𝑡) ∈ 𝑅 and
𝑢2(𝑡) ∈ 𝑅 are the control input vectors. 𝑓(𝑥), 𝑔1(𝑥) and
𝑔2(𝑥) are unknown continuous matrix functions of appropriate
dimensions. The cost functional for the nonlinear system (1)
is defined as

𝑉 (𝑥(0), 𝑢1(𝑡), 𝑢2(𝑡)) =
∫ ∞

0

(𝑥𝑇 (𝑡)𝑄𝑥(𝑡) + 𝑢𝑇1 (𝑡)𝑅𝑢1(𝑡)− 𝛾2𝑢𝑇2 (𝑡)𝑢2(𝑡))𝑑𝑡, (2)

with 𝑄 > 0, 𝑅 > 0 and 𝛾 > 0.
The two-player zero-sum differential game for the system

(1) is to find the two optimal feedback control policies 𝑢∗1(𝑥)
and 𝑢∗2(𝑥), such that 𝑢∗1(𝑥) tries to minimize the cost function-
al (2) while 𝑢∗2(𝑥) attempts to maximize the cost functional
(2). That is to say that the goal is to find a saddle point (𝑢∗1(𝑥),
𝑢∗2(𝑥)) such that

𝑉 (𝑢∗1(𝑥), 𝑢
∗
2(𝑥)) = min

𝑢1

max
𝑢2

𝑉 (𝑢1(𝑡), 𝑢2(𝑡)), (3)

and the following inequality

𝑉 (𝑢∗1(𝑥), 𝑢2(𝑥)) ≤ 𝑉 (𝑢∗1(𝑥), 𝑢
∗
2(𝑥)) ≤ 𝑉 (𝑢1(𝑥), 𝑢

∗
2(𝑥)) (4)

holds for any admissible control policies 𝑢1 and 𝑢2.
While the system dynamics are known, by the game theory

[1], the closed-loop Nash equilibrium strategies are given by

𝑢∗1(𝑥) = −
1

2
𝑅−1𝑔𝑇1 (𝑥)∇𝑉 ∗ (5)

𝑢∗2(𝑥) =
1

2
𝛾−2𝑔𝑇2 (𝑥)∇𝑉 ∗ (6)

where ∇𝑉 ∗ = ∂𝑉 ∗/∂𝑡, and 𝑉 ∗(𝑥) is the positive positive
definite solution of the following HJI equation

0 =𝑥𝑇𝑄𝑥+ (∇𝑉 ∗(𝑥))𝑇 𝑓(𝑥)
− 1

4
(∇𝑉 ∗(𝑥))𝑇 𝑔1(𝑥)𝑅−1𝑔𝑇1 (𝑥)∇𝑉 ∗(𝑥)

+
1

4
𝛾−2(∇𝑉 ∗(𝑥))𝑇 𝑔2(𝑥)𝑔𝑇2 (𝑥)∇𝑉 ∗(𝑥). (7)

However, the HJI equation (7) is difficult or impossible
to solve, since the HJI equation (7) is a nonlinear partial
differential equation. Thus, based on the simultaneous policy
update algorithm [23], we will give the following simultaneous
policy iteration algorithm for solving the HJI equation (7).

Algorithm 1: Simultaneous policy iteration algorithm

Step 1.Give the initial stabilizing control policies 𝑢0
1 and 𝑢0

2.
Set 𝑖 = 0.

Step 2.Solve the following Lyapunov function equation for
the cost function 𝑉 𝑖:

0 =(∇𝑉 𝑖)𝑇 (𝑓 + 𝑔1𝑢
𝑖
1 + 𝑔2𝑢

𝑖
2)

+ 𝑥𝑇𝑄𝑥+ (𝑢𝑖1)
𝑇𝑅𝑢𝑖1 − 𝛾2(𝑢𝑖2)

𝑇𝑢𝑖2, (8)

Step 3.Update the control policies with

𝑢𝑖+1
1 = −1

2
𝑅−1𝑔𝑇1 (𝑥)∇𝑉 𝑖 (9)

𝑢𝑖+1
2 =

1

2
𝛾−2𝑔𝑇2 (𝑥)∇𝑉 𝑖, (10)

Step 4.Let 𝑖 = 𝑖 + 1. If ∥ 𝑉 𝑖 − 𝑉 𝑖−1 ∥≤ 𝜖 (the constant
𝜖 > 0 is a predefined small threshold), go to Step 5;
else, go to Step 2 and continue.

Step 5.Stop.

The simultaneous policy iteration algorithm can be seen as a
trivial extension of the simultaneous policy update algorithm.
Thus, the convergence of the simultaneous policy iteration
algorithm is guaranteed by the following theorem, which can
be seen as a trivial extension of Theorem 1 in [23].

Theorem 1: Consider 𝑉 𝑖 defined in (8), 𝑢𝑖+1
1 and 𝑢𝑖+1

2

defined in (9) and (10). If the solution 𝑉 ∗(𝑥) of (7) exists,
then, for each given 𝑥, when 𝑖 goes to infinity, 𝑉 𝑖 converges to
𝑉 ∗(𝑥), 𝑢𝑖+1

1 and 𝑢𝑖+1
2 also converge to 𝑢∗1 and 𝑢∗2, respectively.

Besides, for all 𝑖 = 0, 1, ⋅ ⋅ ⋅ , 𝑢𝑖+1
1 and 𝑢𝑖+1

2 are admissible.
According to Algorithm 1 and Theorem 1, it is shown that,

by iteratively solving the equations (8) and (9, 10), the solution
𝑉 ∗(𝑥) for the HJI equation (7) can be obtained. And then,
we can find the saddle point (𝑢∗1(𝑥), 𝑢∗2(𝑥)). However, the
algorithm 1 is implemented off-line and requires the com-
pletely knowledge of the system dynamics. To avoid making
use of any knowledge on the drift dynamics of the system
(i.e. 𝑓(𝑥)), Wu et al. [25] proposed an online simultaneous
policy update algorithm for solving the HJI equation (7).
In the online simultaneous policy update algorithm, (8) is
implemented online by

𝑉 𝑖(𝑥(𝑡))−𝑉 𝑖(𝑥(𝑡+Δ𝑡)) =
∫ 𝑡+Δ𝑡

𝑡

𝑥𝑇𝑄𝑥+ (𝑢𝑖1)
𝑇𝑅𝑢𝑖1 − 𝛾2(𝑢𝑖2)

𝑇𝑢𝑖2𝑑𝑡, (11)

where 𝑢𝑖1 and 𝑢𝑖2 are the control policies of the system on the
time interval[𝑡, 𝑡+Δ𝑡].

It is seen that the knowledge on the drift dynamics of
the system (𝑓(𝑥)) is not needed for implementing the online
simultaneous policy update algorithm, since the states 𝑥(𝑡)
and 𝑥(𝑡 + Δ𝑡) contain the information of the system matrix
𝑓(𝑥). However, as we can see from (9) and (10), the exact
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knowledge of the system matrix 𝑔1(𝑥) and 𝑔2(𝑥) are required
for the online SPUA. Therefore, in this paper, we will develop
a new online scheme without requiring the full knowledge of
system dynamics for obtaining the optimal Nash equilibrium
solution of the two-player zero-sum differential game.

III. MAIN RESULTS

In this section, we will present a model-free adaptive
dynamic programming scheme for finding online solution of
the two-player zero-sum differential differential game of the
nonlinear continuous-time system without requiring the full
knowledge of system dynamics. First, inspired by [23], [25],
[26], and based on the Theorem 1, we can obtain the following
lemma.

Lemma 1: Assume that the control policies 𝑢1(𝑡) and 𝑢2(𝑡)
make the system (1) stable. Let 𝑉 𝑖 be the solution of the
equation (8), let 𝑢𝑖+1

1 be obtained by (9) and 𝑢𝑖+1
2 be obtained

by (10). Then, for any time interval [𝑡, 𝑡+Δ𝑡], the following
equation holds,

𝑉 𝑖(𝑥(𝑡+Δ𝑡))− 𝑉 𝑖(𝑥(𝑡)) =

−
∫ 𝑡+Δ𝑡

𝑡

[𝑥𝑇𝑄𝑥+ (𝑢𝑖1)
𝑇𝑅𝑢𝑖1 − 𝛾2(𝑢𝑖2)

𝑇𝑢𝑖2]𝑑𝑡

− 2

∫ 𝑡+Δ𝑡

𝑡

(𝑅𝑢𝑖+1
1 (𝑡))𝑇𝑤𝑖1(𝑡)𝑑𝑡

+ 2𝛾2

∫ 𝑡+Δ𝑡

𝑡

(𝑢𝑖+1
2 (𝑡))𝑇𝑤𝑖2(𝑡)𝑑𝑡. (12)

Proof: First, for giving the stabilizing control policies 𝑢1(𝑡)
and 𝑢2(𝑡), the system (1) can be rewritten as

𝑥̇(𝑡) =𝑓(𝑥) + 𝑔1(𝑥)𝑢
𝑖
1(𝑡) + 𝑔2(𝑥)𝑢

𝑖
2(𝑡)

+ 𝑔1(𝑥)𝑤
𝑖
1(𝑡) + 𝑔2(𝑥)𝑤

𝑖
2(𝑡) (13)

where 𝑤𝑖1(𝑡) = 𝑢1(𝑡)− 𝑢𝑖1(𝑡), 𝑤
𝑖
2(𝑡) = 𝑢2(𝑡)− 𝑢𝑖2(𝑡).

For each 𝑖 > 0 and 𝑉 𝑖(𝑥), we have the time derivative of
𝑉 𝑖(𝑥) along the trajectories of (13):

𝑉̇ 𝑖(𝑥) =(∇𝑉 𝑖)𝑇 (𝑓(𝑥) + 𝑔1(𝑥)𝑢
𝑖
1(𝑡) + 𝑔2(𝑥)𝑢

𝑖
2(𝑡))

+ (∇𝑉 𝑖)𝑇 (𝑔1(𝑥)𝑤
𝑖
1(𝑡) + 𝑔2(𝑥)𝑤

𝑖
2(𝑡)). (14)

According to (8), (9) and (10), the equation (14) can be
rewritten as

𝑉̇ 𝑖(𝑥) =− (𝑥𝑇𝑄𝑥+ (𝑢𝑖1)
𝑇𝑅𝑢𝑖1 − 𝛾2(𝑢𝑖2)

𝑇𝑢𝑖2)

− 2(𝑅𝑢𝑖+1
1 (𝑡))𝑇𝑤𝑖1(𝑡)

+ 2𝛾2(𝑢𝑖+1
2 (𝑡))𝑇𝑤𝑖2(𝑡). (15)

For any time interval [𝑡, 𝑡 +Δ𝑡], by integrating both sides
of (15), we can obtain

𝑉 𝑖(𝑥(𝑡+Δ𝑡))− 𝑉 𝑖(𝑥(𝑡)) =
∫ 𝑡+Δ𝑡

𝑡

−(𝑥𝑇𝑄𝑥+ (𝑢𝑖1)
𝑇𝑅𝑢𝑖1 − 𝛾2(𝑢𝑖2)

𝑇𝑢𝑖2)𝑑𝑡

− 2

∫ 𝑡+Δ𝑡

𝑡

(𝑅𝑢𝑖+1
1 (𝑡))𝑇𝑤𝑖1(𝑡)𝑑𝑡

+ 2𝛾2

∫ 𝑡+Δ𝑡

𝑡

(𝑢𝑖+1
2 (𝑡))𝑇𝑤𝑖2(𝑡)𝑑𝑡. (16)

It is shown that the equation (16) is equal to the equation
(12). This completes proof.

Note that the equation (16) contains 𝑉 𝑖, 𝑢𝑖+1
1 and 𝑢𝑖+1

2 ,
which are obtained by the equations (8, 9, 10). This means
that the unknown parameters (𝑉 𝑖, 𝑢𝑖+1

1 , 𝑢𝑖+1
2 ) can be obtained

by only using the equation (16). That is to say that the
equation (12) is equal to the equations (8, 9, 10) in some
degree. In the other side, (8) contains 𝑓(𝑥), 𝑔1(𝑥) and 𝑔2(𝑥),
(9) contains 𝑔1(𝑥), (10) contains 𝑔2(𝑥), it is to say that the
unknown parameters (𝑉 𝑖, 𝑢𝑖+1

1 , 𝑢𝑖+1
2 ) can be obtained by

using the equations (8, 9, 10), while the fully knowledge of the
system dynamics must be known. Besides, in the simultaneous
policy update algorithm, 𝑔1(𝑥) and 𝑔2(𝑥) must be known for
solving the unknown parameters (𝑉 𝑖, 𝑢𝑖+1

1 , 𝑢𝑖+1
2 ). However,

the equation (16) do not contain the any knowledge of the
system dynamics, thus, we can use the equation (16) to obtain
the unknown parameters (𝑉 𝑖, 𝑢𝑖+1

1 , 𝑢𝑖+1
2 ) for the fully un-

known knowledge of the system dynamics. Next, based on the
equation (16), we will present a model-free adaptive dynamic
programming algorithm for online solution of the two-player
zero-sum differential game of the nonlinear continuous-time
system with the fully unknown knowledge of the system
dynamics.

To solve the unknown functions (𝑉 𝑖, 𝑢𝑖+1
1 , 𝑢𝑖+1

2 ) in (12),
we assume that the unknown functions (𝑉 𝑖, 𝑢𝑖+1

1 , 𝑢𝑖+1
2 ) are

the smooth functions. Then, as like [27], we can use neural
networks to solve the unknown functions (𝑉 𝑖, 𝑢𝑖+1

1 , 𝑢𝑖+1
2 )

along with the theory of successive approximation. Therefore,
𝑉 𝑖(𝑥) is approximated by

𝑉 𝑖(𝑥) = (𝑊 𝑖
𝑣)
𝑇Φ𝑖𝑣(𝑥), (17)

which is a neural network with the activation functions 𝜙𝑖𝑗(𝑥),
and 𝜙𝑖𝑗(0) = 0. The neural network weights are 𝑤𝑖𝑗 . Assume
that the number of hidden-layer neurons is 𝐿. Then, Φ𝑖𝑣(𝑥) =
[𝜙𝑖1(𝑥) 𝜙𝑖2(𝑥) ⋅ ⋅ ⋅ 𝜙𝑖𝐿(𝑥)]

𝑇 is the vector activation function,
and 𝑊 𝑖

𝑣 = [𝑤𝑖1 𝑤𝑖2 ⋅ ⋅ ⋅ 𝑤𝑖𝐿]
𝑇 is the vector weight.

𝑢𝑖+1
1 (𝑥) can be approximated by

𝑢𝑖+1
1 (𝑥) = (𝑊 𝑖+1

𝑢1 )𝑇Θ𝑖+1(𝑥), (18)

where, Θ𝑖+1(𝑥) = [𝜃𝑖+1
1 (𝑥) 𝜃𝑖+1

2 (𝑥) ⋅ ⋅ ⋅ 𝜃𝑖+1
𝑀 (𝑥)]𝑇

is the vector activation function, 𝑊 𝑖+1
𝑢1 =

[𝑤𝑖+1
1 (𝑥) 𝑤𝑖+1

2 (𝑥) ⋅ ⋅ ⋅ 𝑤𝑖+1
𝑀 (𝑥)]𝑇 is the vector weight,

𝑀 is the the number of hidden-layer neurons of the neural
networks.

𝑢𝑖+1
2 (𝑥) can be approximated by

𝑢𝑖+1
2 (𝑥) = (𝑊 𝑖+1

𝑢2 )𝑇Ψ𝑖+1(𝑥), (19)

where, Ψ𝑖+1(𝑥) = [𝜓𝑖+1
1 (𝑥) 𝜓𝑖+1

2 (𝑥) ⋅ ⋅ ⋅ 𝜓𝑖+1
𝑁 (𝑥)]𝑇

is the vector activation function, 𝑊 𝑖+1
𝑢2 =

[𝑤𝑖+1
1 (𝑥) 𝑤𝑖+1

2 (𝑥) ⋅ ⋅ ⋅ 𝑤𝑖+1
𝑁 (𝑥)]𝑇 is the vector weight,

𝑁 is the the number of hidden-layer neurons of the neural
networks.
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Substituting (17), (18), (19) into (12), we have

(𝑊 𝑖
𝑣)
𝑇Φ𝑖𝑣(𝑥(𝑡+Δ𝑡))− (𝑊 𝑖

𝑣)
𝑇Φ𝑖𝑣(𝑥(𝑡)) =

−
∫ 𝑡+Δ𝑡

𝑡

𝑥𝑇𝑄𝑥𝑑𝑡−
∫ 𝑡+Δ𝑡

𝑡

(𝑢𝑖1)
𝑇𝑅𝑢𝑖1𝑑𝑡

+

∫ 𝑡+Δ𝑡

𝑡

𝛾2(𝑢𝑖2)
𝑇𝑢𝑖2𝑑𝑡

− 2

∫ 𝑡+Δ𝑡

𝑡

(𝑅(𝑊 𝑖+1
𝑢1 )𝑇Θ𝑖+1(𝑥))𝑇𝑤𝑖1(𝑡)𝑑𝑡

+ 2𝛾2

∫ 𝑡+Δ𝑡

𝑡

((𝑊 𝑖+1
𝑢2 )𝑇Ψ𝑖+1(𝑥))𝑇𝑤𝑖2(𝑡)𝑑𝑡. (20)

From (20), it is shown that 𝑊 𝑖
𝑣 , 𝑊 𝑖+1

𝑢1 and 𝑊 𝑖+1
𝑢2 are the

unknown parameters. Note that 𝑊 𝑖
𝑣 contains 𝐿 unknown pa-

rameters, 𝑊 𝑖+1
𝑢1 contains 𝑀 unknown parameters, and 𝑊 𝑖+1

𝑢2

contains 𝑁 unknown parameters, but there is just one di-
mensional equation (20) provided for such calculations. Thus,
we can use the the least squares method and the Kronecker
product theory [28] for solving the equation (20) to obtain
the unknown parameters (𝑊 𝑖

𝑣 , 𝑊 𝑖+1
𝑢1 , 𝑊 𝑖+1

𝑢2 ). Further, for any
positive integer 𝑙 > 0, according to (20), we have

𝛿𝑣 =

⎡

⎢

⎢

⎢

⎣

Φ𝑖𝑣(𝑥(𝑡1))− Φ𝑖𝑣(𝑥(𝑡0))
Φ𝑖𝑣(𝑥(𝑡2))− Φ𝑖𝑣(𝑥(𝑡1))

...
Φ𝑖𝑣(𝑥(𝑡𝑙))− Φ𝑖𝑣(𝑥(𝑡𝑙−1))

⎤

⎥

⎥

⎥

⎦

, (21)

𝐼𝑥𝑥 =

⎡

⎢

⎢

⎢

⎢

⎣

∫ 𝑡1
𝑡0

𝑥𝑇𝑄𝑥𝑑𝑡
∫ 𝑡2
𝑡1

𝑥𝑇𝑄𝑥𝑑𝑡
...

∫ 𝑡𝑙
𝑡𝑙−1

𝑥𝑇𝑄𝑥𝑑𝑡

⎤

⎥

⎥

⎥

⎥

⎦

, (22)

𝐼𝜃𝜃 =

⎡

⎢

⎢

⎢

⎢

⎣

∫ 𝑡1
𝑡0

Θ(𝑥)⊗Θ(𝑥)𝑑𝑡
∫ 𝑡2
𝑡1

Θ(𝑥)⊗Θ(𝑥)𝑑𝑡
...

∫ 𝑡𝑙
𝑡𝑙−1

Θ(𝑥)⊗Θ(𝑥)𝑑𝑡

⎤

⎥

⎥

⎥

⎥

⎦

, (23)

𝐼𝜑𝜑 =

⎡

⎢

⎢

⎢

⎢

⎣

∫ 𝑡1
𝑡0

Ψ(𝑥)⊗Ψ(𝑥)𝑑𝑡
∫ 𝑡2
𝑡1

Ψ(𝑥)⊗Ψ(𝑥)𝑑𝑡
...

∫ 𝑡𝑙
𝑡𝑙−1

Ψ(𝑥)⊗Ψ(𝑥)𝑑𝑡

⎤

⎥

⎥

⎥

⎥

⎦

, (24)

𝐼𝜃𝑢1
=

⎡

⎢

⎢

⎢

⎢

⎣

∫ 𝑡1
𝑡0

Θ(𝑥)𝑢1(𝑥)𝑑𝑡
∫ 𝑡2
𝑡1

Θ(𝑥)𝑢1(𝑥)𝑑𝑡
...

∫ 𝑡𝑙
𝑡𝑙−1

Θ(𝑥)𝑢1(𝑥)𝑑𝑡

⎤

⎥

⎥

⎥

⎥

⎦

, (25)

𝐼𝜑𝑢2
=

⎡

⎢

⎢

⎢

⎢

⎣

∫ 𝑡1
𝑡0

Ψ(𝑥)𝑢2(𝑥)𝑑𝑡
∫ 𝑡2
𝑡1

Ψ(𝑥)𝑢2(𝑥)𝑑𝑡
...

∫ 𝑡𝑙
𝑡𝑙−1

Ψ(𝑥)𝑢2(𝑥)𝑑𝑡

⎤

⎥

⎥

⎥

⎥

⎦

. (26)

Therefore, combining (21)-(26) with (20), we have

Ξ𝑖

⎡

⎣

𝑊 𝑖
𝑣

𝑊 𝑖+1
𝑢1

𝑊 𝑖+1
𝑢2

⎤

⎦ = Υ𝑖, (27)

where, Ξ𝑖 = [Ξ𝑖1, Ξ𝑖2, Ξ𝑖3], Ξ𝑖1 = 𝛿𝑣 , Ξ𝑖2 = 2𝑅𝐼𝜃𝑢1
−

2𝑅𝐼𝜃𝜃(𝑊
𝑖
𝑢1
⊗ 𝐼𝑀 ), Ξ𝑖3 = −2𝛾2𝐼𝜑𝑢2

+ 2𝛾2𝐼𝜑𝜑(𝑊
𝑖
𝑢2
⊗ 𝐼𝑁 ,

Υ𝑖 = −𝐼𝑥𝑥 −𝑅𝐼𝜃𝜃(𝑊
𝑖
𝑢1
⊗𝑊 𝑖

𝑢1
) + 𝛾2𝐼𝜑𝜑(𝑊

𝑖
𝑢2
⊗𝑊 𝑖

𝑢2
).

Thus, the unknown parameters (𝑊 𝑖
𝑣 , 𝑊 𝑖+1

𝑢1 , 𝑊 𝑖+1
𝑢2 ) can be

solved in the least-squares sense as follows:
⎡

⎣

𝑊 𝑖
𝑣

𝑊 𝑖+1
𝑢1

𝑊 𝑖+1
𝑢2

⎤

⎦ = ((Ξ𝑖)𝑇Ξ𝑖)−1(Ξ𝑖)𝑇Υ𝑖. (28)

Note that 𝑙 > 𝐿 + 𝑀 + 𝑁 is the necessary condition for
the excitation condition to ensure that the matrix (Ξ𝑖)𝑇Ξ𝑖

is invertible. Until now, based on the equation (28), we will
present a model-free adaptive dynamic programming algorith-
m for online solution of the two-player zero-sum differential
game of the nonlinear continuous-time system with the fully
unknown knowledge of the system dynamics.

Algorithm 2: Model-free adaptive dynamic programming
algorithm for the two-player zero-sum differential game

Step 1.Give the initial stabilizing control policies 𝑢1 = 𝑢0
1+

𝑒1 and 𝑢2 = 𝑢0
2 + 𝑒2, 𝑒1 and 𝑒2 are the exploration

noises. Set 𝑖 = 0.
Step 2.Solve the unknown parameters (𝑊 𝑖

𝑣 , 𝑊 𝑖+1
𝑢1 , 𝑊 𝑖+1

𝑢2 )
from (28).

Step 3.Set 𝑖 = 𝑖+1, and repeat Step 2 until ∥𝑊 𝑖
𝑣−𝑊 𝑖

𝑣∥ ≤ 𝜀
for 𝑖 ≥ 1, where the constant 𝜀 is a predefined small
threshold.

Step 4.Use 𝑢𝑖+1
1 (𝑥) = (𝑊 𝑖+1

𝑢1 )𝑇Θ𝑖+1(𝑥) and 𝑢𝑖+1
2 (𝑥) =

(𝑊 𝑖+1
𝑢2 )𝑇Ψ𝑖+1(𝑥) as the closed-loop Nash equilibri-

um optimal strategies.

IV. SIMULATION RESULTS

In this section, a simulation example is carried out to
demonstrate the feasibility of the model-free adaptive dynamic
programming algorithm for the two-player zero-sum differen-
tial game. Consider the continuous-time nonlinear system as
like (1), where,

𝑓(𝑥) =

[ −0.25𝑥1

0.5𝑥2
1𝑥2 − 0.125𝑥3

2 − 0.5𝑥2

]

,

𝑔1(𝑥) =

[

0
𝑥1

]

𝑔1(𝑥) =

[

0
𝑥2

]

.

One selects 𝑄 = [1 0; 0 1], 𝑅 = 1, and 𝛾 = 2. By
using the converse HJB approach [29], we can obtain that the
optimal value function 𝑉 ∗(𝑥) is

𝑉 ∗(𝑥) = 2𝑥2
1 + 𝑥2

2, (29)
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Fig. 1. The convergence curve of 𝑊 𝑖+1
𝑢1 to its true value 𝑊 ∗

𝑢1.

the control policies are

𝑢∗1(𝑥) = −𝑥1𝑥2, (30)

and

𝑢∗2(𝑥) = 0.25𝑥2
2. (31)

When the knowledge on the drift dynamics of the system is
completely unknown, we can use the Algorithm 2 for finding
the online solution of the zero-sum differential game of the
continuous-time nonlinear system. The selection of parameters
in Algorithm 2 are given as follows. The predefined small
threshold is set as 𝜖 = 10−7. The learning time is selected as
Δ𝑡 = 2𝑠. Set 𝑙 = 200. The vector activation function Φ𝑣(𝑥)
is selected as Φ𝑖𝑣(𝑥) = [𝑥2

1 𝑥1𝑥2 𝑥2
2 𝑥4

1 𝑥4
2]
𝑇 . The vector

activation function Θ𝑖+1(𝑥) and Ψ𝑖+1(𝑥) are selected as the
gradient of the vector activation function Φ𝑣(𝑥). The vector
weight 𝑊 𝑖

𝑣 is set as 𝑊 𝑖
𝑣 = [𝑤1 𝑤2 𝑤3 𝑤4 𝑤5]

𝑇 , the vector
weight 𝑊 𝑖+1

𝑢1 is set as 𝑊 𝑖+1
𝑢1 = [𝑤11 𝑤12 𝑤13]

𝑇 , the vector
weight 𝑊 𝑖+1

𝑢2 is set as 𝑊 𝑖+1
𝑢2 = [𝑤21 𝑤22 𝑤23]

𝑇 .
Along the state trajectories from 𝑡 = 0𝑠 to 𝑡 = 2𝑠, the state

and input information is collected. Then, the Algorithm 2 is
run at 𝑡 = 2𝑠. Fig. 1 shows that the weight 𝑊 𝑖

𝑣 converges to
the true value 𝑊 ∗𝑣 after 10 iteration, i.e. 𝑊 𝑖

𝑣 = [2 0 1 0 0]𝑇 .
Fig. 2 shows that the weight 𝑊 𝑖+1

𝑢1 converges to the true value
𝑊 ∗𝑢1 after 10 iteration, i.e. 𝑊 𝑖+1

𝑢1 = [0 − 1 0]𝑇 . Fig. 3
shows that the weight 𝑊 𝑖+1

𝑢2 converges to the true value 𝑊 ∗𝑢2
after 10 iteration, i.e. 𝑊 𝑖+1

𝑢2 = [0 0.25 0]𝑇 . As a result, the
simulation results demonstrate that the approximate optimal
Nash equilibrium solution of the two-player zero-sum game
of the nonlinear continuous-time system with the unknown
system dynamics can be obtained by using the proposed
algorithm in this paper.

V. CONCLUSION

In this paper, a new model-free adaptive dynamic program-
ming algorithm has been presented to solve the two-player
zero-sum differential game problem of the continuous-time
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Fig. 2. The convergence curve of 𝑊 𝑖+1
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nonlinear system with completely unknown system dynamics.
The importance features of the proposed algorithm is that the
proposed algorithm can solve online the optimal solution of
the Hamilton-Jacobi-Isaacs equation by using data generated
in real time along the state trajectories of the continuous-
time nonlinear system, in which the knowledge of system
dynamics is not required. Finally, simulation studies have
demonstrated the effectiveness of the proposed algorithm. Our
future work will extend the results to the multi-player nonzero-
sum differential game problem of the general continuous-time
nonlinear systems.
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