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Abstract— In this paper we study a variation of a Non-
negative Matrix Factorization (NMF) called the Orthogonal
NMF(ONMF). This special type of NMF was proposed in
order to increase the quality of clustering results of standard
NMF by imposing orthogonality on clustering indicator matrix
and/or the matrix of basis vectors. We develop an extension of
ONMF which we call Weighted ONMF and propose a novel
approach for imposing orthogonality on the matrix of basis
vectors obtained via NMF using Gram-Schmidt process.

I. INTRODUCTION

Clustering is a well-known machine learning technique
used for unsupervised classification of patterns (observations,
data items, or feature vectors) into groups of similar objects.
The groups given by a clustering algorithm are called ”clus-
ters”, each cluster consists of objects that are similar between
themselves but different from objects in other clusters. There
are three main types of machine learning algorithms:

∙ supervised learning (when data is labeled in both train-
ing and test sets)

∙ semi-supervised learning (data is labeled only in small
training test)

∙ unsupervised learning (no labeled data available)

Clustering is usually associated with unsupervised learn-
ing. Unsupervised learning itself is extremely important
setting of machine learning algorithms as it occurs in nu-
merous real-world applications. Main reasons that show why
unsupervised learning can prove beneficial are:

∙ labeling a set of objects manually can be hard or even
impossible on large amounts of data

∙ it can be used to classify a huge amount of unlabeled
data to further label it manually

∙ it can be used to find a set of variables that can be useful
for further categorization

There exists numerous unsupervised learning methods
that were applied in many contexts and by researchers
in many disciplines. Typical applications of clustering are:
statistics [1], pattern recognition [2], image segmentation and
computer vision [3], multivariate statistical estimation [4].
Clustering is also widely used for data compression in image
processing, which is also known as vector quantization [5].
Most general survey about clustering methods can be found
in [6].

There exist lots of well-known clustering algorithms, no-
tably: k-means, mixture models, hierarchical clustering, non-
negative matrix factorization etc. Among all the methods
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used for clustering we will discuss the one called Non
negative matrix factorization (NMF).

NMF is a group of algorithms in machine learning where a
data matrix is factorized into (usually) two matrices with the
property that all three matrices have no negative elements.
This non-negativity makes the resulting matrices easier to
interpret. We consider one of the matrices as a matrix
containing the prototypes of a data set and the other one as a
data partition matrix. Since this optimization problem is not
convex in general, it is commonly approximated numerically.

A. Background

D IFFERENT kinds of constraints can be imposed on
cluster’s properties in order to achieve better clustering

results. One of the most common constraints that is used for
clustering is orthogonality of subspaces of clusters. Indeed,
imposing orthogonality on the subspaces of clusters means
that we try to find two clusters that are very different.
In our case, orthogonality constraints imposed on matrices
obtained with NMF is considered to be useful as it results in
unique factorization and has a good clustering interpretation.
The main goal of this work is to explore whether hard
orthogonality constraints in NMF are really beneficial or
there is some level of orthogonality that leads to a better
clustering result.

B. Related works

The idea of Uni- and Bi-Orthogonal NMF was first de-
scribed in [7] where it was introduced as a special form of a
standard NMF [8] which increases the quality of clustering
and provides an unique non negative matrix factorization
(which is rare for this type of matrix factorizations). In [7],
authors proposed a novel approach for solving this kind of
optimization problems and showed that their update rules
have a non-increasing property even though there was no
robust proof of convergence. In [9], authors imposed orthog-
onality on matrices of Tri-NMF by adding supplementary
terms directly into the cost-function instead of solving it
as a constrained optimization problem (that is the case for
[7]). Their approach has a robust convergence proof and it
is mainly inspired by [10] but with its further generalization
for matrices that have auxiliary constraints with mutually
dependency between columns and/or rows.

C. Our contributions

In our work we can highlight two main contributions:
∙ We studied the effectiveness of orthogonality constraints

in Uni-Orthogonal NMF
∙ We proposed a novel approach called Gram-Schmidt Or-

thogonal NMF and a modification of classical Uni- Or-
thogonal NMF called Weighted Uni-Orthogonal NMF
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The rest of this paper is organized as follows: in section
2 we will briefly introduce basic notations of standard,
Semi, Uni-Orthogonal and Bi-Orthogonal non-negative ma-
trix factorizations, in section 3 we are introducing Weighted
Orthogonal NMF and Gram-Schmidt NMF and derive both
multiplicative and additive update rules for them. We will
summarize the results in section 4. Finally, we will point
out some ideas about the future extension of our method in
section 5.

II. PRELIMINARY KNOWLEDGE

A. Standard and Semi-NMF

A standard NMF seeks the following decomposition:

𝑋 ≃ 𝐹𝐺𝑇 , 𝑋 ∈ ℝ
𝑛×𝑚, 𝐹 ∈ ℝ

𝑛×𝑘, 𝐺 ∈ ℝ
𝑚×𝑘

𝑋,𝐹,𝐺 ≥ 0.

where

∙ 𝑋 is an input data matrix
∙ columns of 𝐹 can be considered as basis vectors
∙ columns of 𝐺 are considered as cluster assignments for

each data object
∙ k is the desired number of clusters

When the data matrix is unconstrained (i.e., it may have
mixed signs), Semi-NMF is a factorization in which we
restrict 𝐺 to be non-negative while placing no restriction
on the signs of 𝐹 .

B. Uni- and Bi-Orthogonal NMF

The Bi-Orthogonal NMF (BONMF) seeks the following
decomposition:

𝑋 ≃ 𝐹𝑆𝐺𝑇 ,

𝑋 ∈ ℝ
𝑛×𝑚, 𝐹 ∈ ℝ

𝑛×𝑘, 𝑆 ∈ ℝ
𝑘×𝑙, 𝐺 ∈ ℝ

𝑚×𝑙,

𝐹𝑇𝐹 = 𝐼,𝐺𝑇𝐺 = 𝐼,𝑋, 𝐹, 𝑆,𝐺 ≥ 0.

The multiplicative update rules for matrices 𝐹 , 𝐺 and 𝑆
have the following form:

𝐹 = 𝐹 ⊛
𝑋𝐺𝑆𝑇

𝐹𝐹𝑇𝑋𝐺𝑆𝑇

𝑆 = 𝐺⊛
𝐹𝑇𝑋𝐺

𝐹𝑇𝐹𝑆𝐺𝑇𝐺

𝐺 = 𝐺⊛
𝑋𝑇𝐹𝑆

𝐺𝐺𝑇𝑋𝑇𝐹𝑆

The Uni-Orthogonal NMF (UONMF) imposes orthogonal-
ity constraint on either columns of 𝐹 or rows of 𝐺. It is
clear that this variation is just a special case of BONMF
with 𝑆 = 𝐼 .

The authors of Orthogonal NMF mentioned that the full
orthogonality of matrices 𝐹 and 𝐺 cannot be achieved using
their algorithm because it uses an approximate solution for
non diagonal elements of the Lagrange multipliers matrix.
So, their solution of this optimization problem does not result
in a set of fully orthonormalized vectors.

C. Gram-Schmidt process

There exists three well known approaches that can be used
for orthonormalizing a set of vectors: Householder reflections
[11], Givens rotations[12] and Gram-Schmidt process. In our
work we will use the Gram-Schmidt process [13]. The Gram
- Schmidt process takes a finite, linearly independent set 𝑆 =
{𝑣1, ..., 𝑣𝑘} for 𝑘 ≤ 𝑛 and generates an orthogonal set 𝑆

′
=

{𝑢1, ..., 𝑢𝑘} that spans the same 𝑘-dimensional subspace of
ℝ
𝑛 as 𝑆.
The projection operator is defined by the following ex-

pression

𝑝𝑟𝑜𝑗𝑢(𝑣) =
⟨𝑢, 𝑣⟩
⟨𝑢, 𝑢⟩𝑢

where ⟨𝑢, 𝑣⟩ denotes the inner product of the vectors 𝑢
and 𝑣. This operator projects the vector 𝑣 orthogonally onto
the line spanned by vector 𝑢.

The Gram-Schmidt process works as follows:

𝑢1 = 𝑣1

𝑢2 = 𝑣2 − 𝑝𝑟𝑜𝑗𝑢1
(𝑣2)

𝑢3 = 𝑣3 − 𝑝𝑟𝑜𝑗𝑢1
(𝑣3)− 𝑝𝑟𝑜𝑗𝑢2

(𝑣3)

............

𝑢𝑖 = 𝑣𝑖 −
𝑘−1∑

𝑗=1

𝑝𝑟𝑜𝑗𝑢𝑗 (𝑣𝑖)

The sequence 𝑢1, ..., 𝑢𝑘 is the required system of orthog-
onal vectors, and the normalized vectors 𝑒1, ..., 𝑒𝑘 form an
orthonormal set. The calculation of the sequence 𝑢1, ..., 𝑢𝑘
is known as Gram-Schmidt orthogonalization, while the
calculation of the sequence 𝑒1, ..., 𝑒𝑘 is known as Gram-
Schmidt orthonormalization as the vectors are normalized
(𝑒𝑖 =

𝑢𝑖
∥𝑢𝑖∥ , ∀ 𝑖 = 1..𝑘)

III. PROPOSED APPROACH

We would like to test an another way of imposing orthog-
onality on the basis vectors found by Standard NMF that
is to perform the Gram-Schmidt process to obtain a set of
vectors which is close to an orthonormal basis of the initial
space.

A. Gram-Schmidt Orthogonal NMF (GS-ONMF)

First step consist in calculating a set of basis vectors 𝐴
which arises from the Standard NMF:

𝑋 ≃ 𝐹𝐺𝑇 , 𝑋 ∈ ℝ
𝑛×𝑚, 𝐹 ∈ ℝ

𝑛×𝑘, 𝐺 ∈ ℝ
𝑚×𝑘

𝑋,𝐹,𝐺 ≥ 0.

Performing the Gram-Schmidt process does not result in
a set of positive vectors due to the properties of the inner
product. So, we will need to use a Semi-NMF with its matrix
𝐴 fixed to the orthonormal basis.

On the other hand, using fully orthonormal set of basis
vectors for Semi-NMF gives very poor results because it
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attempts to discover only one dominating class ignoring all
the others. So, we need to find some appropriate level of
orthogonality between vectors of matrix 𝐴.

To do that, we multiply the projection operator by a
constant 𝛼𝐺𝑆 ∈ [0; 1]:

𝑝𝑟𝑜𝑗∗𝑢(𝑣) = 𝛼𝐺𝑆
⟨𝑢, 𝑣⟩
⟨𝑢, 𝑢⟩𝑢

so that the final set of vectors will be changing from the
initial set of vectors (𝛼𝐺𝑆 = 0) till fully orthogonized vectors
(𝛼𝐺𝑆 = 1). We denote by 𝐹𝛼𝐺𝑆 - a result of a Gram-Schmidt
process obtained for some arbitrary 𝛼𝐺𝑆 .

We will change 𝛼𝐺𝑆 - value and use the matrix 𝐹𝛼𝐺𝑆 as
a fixed matrix of basis vectors in Semi-NMF:

𝑋 ≃ 𝐹𝛼𝐺𝑆𝐺
𝑇 , 𝑋 ∈ ℝ

𝑛×𝑚, 𝐹𝛼𝐺𝑆 ∈ ℝ
𝑛×𝑘, 𝐺 ∈ ℝ

𝑚×𝑘

𝐺 ≥ 0.

All along this way the orthogonality measured by the
following expression

𝑂𝑟𝑡ℎ𝑜𝑔𝑜𝑛𝑎𝑙𝑖𝑡𝑦 = ∥𝐹𝑇𝛼𝐺𝑆 ∗ 𝐹𝛼𝐺𝑆∥
increases (approaching 1).

B. Weighted Uni-Orthogonal NMF

Inspired by the previous idea, we would like to introduce
the Weighted Uni-Orthogonal NMF. As in UONMF the cost
function rests the same but with some slight modification of
the orthogonality condition. So, we try to solve the following
optimization problem:

𝑋 ≃ 𝐹𝐺𝑇 ,

𝑋 ∈ ℝ
𝑛×𝑚, 𝐹 ∈ ℝ

𝑛×𝑘, 𝐺 ∈ ℝ
𝑚×𝑘,

𝐹𝑇𝐹 = 𝐼,𝑋, 𝐹,𝐺 ≥ 0.

By doing this, we try to find some appropriate angle be-
tween basis vectors while increasing orthogonality between
them so that we can obtain some improvement in clustering
result. Our main idea is to show that fully orthogonal
constraints for NMF work worse than some kind of soft
orthogonality assured by some parameter 𝛼 .

To solve this optimization problem we rewrite it in the
following form:

min 𝐽 = ∥𝑋 − 𝐹𝐺𝑇 ∥2𝐹 + ∥𝐹𝑇𝐹 − 𝛼𝐼∥2𝐹
Using the gradient descent approach and switching alter-
natively between three sets of parameters, we obtain the
following update rules:

𝐹 = 𝐹 ⊛
𝑋𝐺𝑇 + 𝛼𝐹

𝐹𝐺𝐺𝑇 + 𝐹𝐹𝑇𝐹

𝐺 = 𝐺⊛
𝐹𝑇𝑋

𝐹𝑇𝐹𝐺

These update rules were derived by calculating partial
differentials of 𝐽 and using the following scheme:

𝑋 = 𝑋 ⊛

[
∂𝐽
∂𝑋

]
−[

∂𝐽
∂𝑋

]
+

.

where 𝑋 represents all the variables involved in the cost
function,

[
∂𝐽
∂𝑋

]
+

stands for positive part of gradient and
[
∂𝐽
∂𝑋

]
− for negative.

Expression for 𝛼 that minimizes the objective function is
given by the following expression:

𝛼 =
𝑡𝑟(𝐹𝑇𝐹 )

𝑘

Using the gradients calculated before we can also deter-
mine now the additive update rules.

They are of the form:

𝐹 = 𝐹 + 𝜂𝐹 (𝐹𝐺𝐺
𝑇 + 𝐹𝐹𝑇𝐹 −𝑋𝐺𝑇 − 𝛼𝐹 )

𝐺 = 𝐹 + 𝜂𝐺(𝐹
𝑇𝐹𝐺− 𝐹𝑇𝑋)

where

𝜂𝐹 =
𝐹

𝐹𝐺𝐺𝑇 + 𝐹𝐹𝑇𝐹

𝜂𝐺 =
𝐺

𝐹𝑇𝐹𝐺

As it was shown in [9] both multiplicative and additive
update rules assure convergence of the algorithm. It is also
worth mentioning that our update rules differ from the update
rules presented before.

IV. EXPERIMENTAL RESULTS

We used 30-fold cross-validation and evaluated the results
using two different measures: entropy and purity [14]. These
are the standard measures of clustering quality in supervised
setting. Entropy measures how the various semantic classes
are distributed within each cluster. Given a particular cluster
𝑆𝑟 of size 𝑛𝑟 , the entropy of this cluster is defined to be:

𝐸(𝑆𝑟) = −1

𝑞

𝑞∑

𝑖=1

𝑛𝑖𝑟
𝑛𝑟
𝑙𝑜𝑔

𝑛𝑖𝑟
𝑛𝑟

where 𝑞 is the number of classes in the data set, and 𝑛𝑖𝑟 is
the number of elements of the ith class that were assigned to
the rth cluster. The entropy of the entire clustering is then the
sum of the individual cluster entropies weighted according
to the cluster size:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =

𝑘∑

𝑟=1

𝑛𝑟
𝑛
𝐸(𝑆𝑟)

The clustering solution is perfect if clusters only contain
words from one single class; in that case the entropy of the
clustering solution is zero. Smaller entropy values indicate
better clustering solutions.
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Using the same mathematical definitions, the purity of a
cluster is defined as:

𝑃𝑢(𝑆𝑟) =
1

𝑛𝑟
max
𝑖
𝑛𝑖𝑟

The purity gives the fraction of the overall cluster size
that the largest class of elements assigned to that cluster
represents. The purity of the clustering solution is then again
the weighted sum of the individual cluster purities:

𝑝𝑢𝑟𝑖𝑡𝑦 =

𝑘∑

𝑟=1

𝑛𝑟
𝑛
𝑃𝑢(𝑆𝑟)

Larger purity values indicate better clustering solutions.
We will also study how orthogonality constraints influence

the sparsity of F. We use the sparseness function [15] given
by the following expression:

𝑠𝑝𝑎𝑟𝑠𝑒𝑛𝑒𝑠𝑠(𝑥) =

√
𝑛− ∥𝑥∥1∥𝑥∥2√
𝑛− 1

where 𝑛 is a size of vector 𝑥. For a given prototype matrix,
we calculate the average sparseness of all the columns.

In Table 1, 2 and 3 we can see the results of the
experimental tests of our approach for data sets from UCI
repository.

The following data sets were chosen:

∙ Iris dataset: this is perhaps the best known database to
be found in the pattern recognition literature. Fisher’s
paper is a classic in the field and is referenced frequently
to this day. The dataset contains 3 classes of 50 instances
each described by 4 features (sepal length, sepal width,
petal length, petal width), where each class refers to a
type of iris plant (Setosa, Versicolour, Virginica). One
class is linearly separable from the other 2; the latter
are not linearly separable from each other [16].

∙ Wine dataset: these data are the results of a chemical
analysis of wines grown in the same region in Italy
but derived from three different cultivars. This dataset
consists of 178 instances described by 13 features and
divided in three classes [17].

∙ Glass dataset: the glass identification database is com-
posed of 214 examples with 9 variables, the data is
divided in seven classes [18].

∙ Yeast dataset: this database contains information about
a set of Yeast cells and consists of 1484 observations
divided into 10 classes and described by 10 features.
The task is to determine the localization site of each
cell [19].

∙ Hepatitis dataset: the clynical observations of people
that were suffering from hepatitis is composed of 155
examples with 19 variables, the data is divided in 2
classes [20].

∙ Ecoli dataset: the prokaryotic gram-negative bacterium
Escherichie Col (E.coli) 336 patterns data are classified
to eight classes and described by 8 features. Classes of
this data set are drastically imbalanced [19].

∙ Australian Credit Approval dataset: this database con-
cerns credit card applications. There are 6 numerical and
8 categorical attributes. All data represents two classes
of applications: accepted and declined [21].

∙ Breast Cancer Wisconsin: this breast cancer databases
was obtained from the University of Wisconsin Hospi-
tals with 10 attributes divided into two classes [22].

∙ Heart disease: these data are the results of 303 obser-
vation of heart diseases. This database is composed of
13 fetures and is divided into 5 classes [23].

TABLE I

NMF, ONMF(F), W-ONMF(F) AND GS-NMF(F) PURITY VALUES ON

VARIOUS DATA SETS

Data set NMF ONMF(F) GS-NMF(F) W-ONMF

Iris(3) 0.7876 0.6567 0.7944 0.8453
Ecoli(8) 0.6831 0.6255 0.7043 0.7559
Wine(3) 0.6333 0.4391 0.6348 0.6463
Glass(7) 0.5847 0.5760 0.7055 0.6732

Australian(2) 0.6784 0.6783 0.6784 0.6792
Hepatitis(2) 0.7935 0.7935 0.8013 0.7935

Breast Wisconsin(2) 0.7694 0.7670 0.8215 0.8406
Heart(5) 0.5413 0.5414 0.5501 0.5425
Yeast(10) 0.4378 0.3610 0.4679 0.4860

TABLE II

NMF, ONMF(F), W-ONMF(F) AND GS-NMF(F) CLUSTER ENTROPY

VALUES ON VARIOUS DATA SETS

Data set NMF ONMF(F)) GS-NMF(F) W-ONMF

Iris(3) 0.4179 0.6050 0.5186 0.2024
Ecoli(8) 0.3880 0.4653 0.1948 0.1847
Wine(3) 0.7300 0.9424 0.3358 0.1746
Glass(7) 0.5166 0.5862 0.1148 0.1954

Australian(2) 0.9035 0.9049 0.0555 0.0557
Hepatitis(2) 0.6433 0.7145 0.0191 0.7935

Breast Wisconsin(2) 0.7302 0.7247 0.0865 0.0914
Heart(5) 0.7760 0.7889 0.0845 0.0247
Yeast(10) 0.6110 0.6755 0.3216 0.1240

TABLE III

NMF, ONMF(F), W-ONMF(F) AND GS-NMF(F) PROTOTYPES

SPARSENESS VALUES ON VARIOUS DATA SETS

Data set NMF ONMF(F)) GS-NMF(F) W-ONMF

Iris(3) 0.3702 0.7694 0.4222 0.5051
Ecoli(8) 0.4472 0.8854 0.4550 0.4759
Wine(3) 0.7300 0.9424 0.3358 0.1746
Glass(7) 0.8206 0.9563 0.8281 0.8203

Australian(2) 0.9953 0.9758 0.9540 0.9653
Hepatitis(2) 0.2655 0.5009 0.2659 0.2705

Breast Wisconsin(2) 0.2185 0.3605 0.2362 0.1600
Heart(5) 0.7286 0.8852 0.7580 0.7582
Yeast(10) 0.4989 0.9277 0.5212 0.4876
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It is easy to see that two proposed approaches outperform
NMF and ONMF for all data sets in terms of entropy and
purity. At the same time, the values of sparseness obtained
for each method are rather surprising. ONMF gives the most
sparse representations of objects but fails to give the best
result in terms of quality. It means that high sparseness of
prototypes is not always beneficial for clustering using NMF.
This result shows that forcing the prototype-matrix to be very
sparse changes the initial nature of data and as a result spoils
clustering quality. Nevertheless, very sparse prototype matri-
ces can be very useful in such tasks as blind source separation
or part-based representations of objects. The difference in
results can be also explained by the fact that in [7] and
[9] the approaches used to solve the optimization problem
were different. In Figures 1-9 we show that orthogonality
of 𝐹 approaches 1 while we change 𝛼 - multiplier of a
projection operator and reaches it for almost every data set.
The blue bars indicate on what level of orthogonality the best
clustering results were achieved. It is worth to be mentioned
that for data sets with a quite high number of classes the
process of orthonormalization sometimes results in a set
which is only approximately orthonormalized (as for ecoli
and yeast). Nevertheless, it does not affect the results because
we are still able to increase the orthogonality monotonically
for some sub interval.

Fig. 1. Iris data set

Fig. 2. Ecoli data set

Fig. 3. Wine data set

Fig. 4. Glass data set

Fig. 5. Australian Credit data set

Fig. 6. Hepatitis data set
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Fig. 7. Breast Cancer Wisconsin data set

Fig. 8. Heart data set

Fig. 9. Yeast data set

These figures clearly show that in almost all cases the best
solution was found when vectors were not fully orthonormal.

V. CONCLUSIONS

In this paper we explore the orthogonality constraints of
Uni-Orthogonal NMF. We use the Gram-Schmidt process to
orthonormalize basis vectors obtained via Standard NMF to
further use them as the basis vectors in Semi-NMF. We
introduce also the Weighted Orthogonal NMF where the
orthogonality of basis vectors depends on the parameter.
Considering the results obtained during our experiments,
we can assume that imposing hard orthogonality constraints

is not as effective as searching an appropriate level of
orthogonality between vectors of the prototype matrix.

In future, our work can be extended in the multiple
directions. The main question that remains open is how
to choose the level of orthogonality that assure the best
clustering result. To answer this question further theoretical
studies should be conducted in order to found an analytic
expression for the optimal value of 𝛼 parameter. Another way
of solving this problem is to choose a suitable technique for ”
optimization. This can be done, for example, by constructing
a generative model of ONMF and by imposing some arbitrary
prior to control the orthogonality of the prototypes matrix.
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