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Abstract— In this paper we propose a new unsupervised
transfer learning approach which aims at finding a partition of
unlabeled data in target domain using the knowledge obtained
from clustering a source domain unlabeled data. The key
idea behind our method is that finding partitions in different
feature’s subspaces of a source task can help to obtain a
more accurate partition in a target one. From the set of
source partitions we select only 𝑘 nearest neighbors using some
measure of similarity. Finally, multi-layer non-negative matrix
factorization is performed to obtain a partition of objects in
target domain. Experimental results show high potential and
effectiveness of the proposed technique.

I. INTRODUCTION

Machine Learning and data mining have already shown
significant success in many areas of knowledge engineering,
including classification, regression and clustering. However,
many learning methods work well only under a common
assumption: the training and test data are from the same
feature space and the same distribution. When the distribution
changes, most statistical models must be rebuilt from new
collected data. In many real-world applications, it is expen-
sive or impossible to collect new data needed to reconstruct
the learning models. Therefore it is necessary to develop
approaches to reduce the need and the effort to collect
new data. In such cases, the transfer of knowledge and
transfer learning between domains could be desirable. Many
examples of knowledge engineering where transfer learning
can really prove beneficial can be found. The key idea behind
transfer learning is that learning one distribution can help to
learn the other using the shared common latent structure as
the bridge for knowledge transfer. Transfer learning involves
two interrelated problems, aiming at using the knowledge
acquired in a set of tasks and improve performance for
another related task. Specifically, learning by transferring
to a certain target task - the task on which performance is
measured - is very dependent on the learning of auxiliary
tasks.

A. Transfer Learning

Transfer learning is a widely known technique that was
generally inspired by the ability of a human being to detect
and to use previously gained knowledge in one area for
efficient learning in another. The definition of transfer
learning was given in [1] as:

Given a source domain 𝐷𝑆 and a learning task 𝑇𝑆 , a
target domain 𝐷𝑇 and a target task 𝑇𝑇 , transfer learning
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Sorbonne Paris Cité, F-93430, Villetaneuse, France(email: {ievgen.redko,
younes.bennani}@lipn.univ-paris13.fr).

aims to help improve the learning performance in 𝐷𝑇 using
knowledge gained from 𝐷𝑆 and 𝑇𝑆 , where 𝐷𝑆 ∕= 𝐷𝑇 and
𝑇𝑆 ∕= 𝑇𝑇 .

It is worth mentioning that the notion of a domain in
this definition is usually given by a pair of objects 𝐷 =
(𝑋,𝑃 (𝑋)). It means that the condition 𝐷𝑆 ∕= 𝐷𝑇 implies
either 𝑋𝑆 ∕= 𝑋𝑇 or 𝑃𝑆(𝑋) ∕= 𝑃𝑇 (𝑋). The same thing
for a task: 𝑇 = (𝑌, 𝑃 (𝑌 ∣𝑋)) and 𝑇𝑆 ∕= 𝑇𝑇 implies either
𝑌𝑆 ∕= 𝑌𝑇 or 𝑃𝑆(𝑌 ∣𝑋) ∕= 𝑃𝑇 (𝑌 ∣𝑋).

There are three types of transfer learning:
∙ supervised transfer learning (when data is labeled in

both target and source learning tasks
∙ semi-supervised transfer learning (data is labeled only

in the source learning task
∙ unsupervised transfer learning (no labeled data in source

and in target learning tasks
According to the above mentioned survey, the number of
methods dealing with the first two settings of transfer learn-
ing drastically exceeds the number of articles dedicated to
the last one. Indeed, to the best of our knowledge there
are only two algorithms of unsupervised transfer learning:
self-taught clustering (STC) presented in [2] and transferred
dimensionality reduction (TDA) presented in [3] that were
proposed to solve this problem. Little research that has been
done in this field of machine learning can be explained by the
fact that unsupervised transfer learning is an extreme case of
the transfer learning paradigm which, nevertheless, occurs
in numerous real-world applications. Thus, unsupervised
transfer learning becomes a topic of an ongoing interest for
further researches.

B. Subspaces approaches

In this paper we propose a new approach called Random
Subspace NMF (RS-NMF) for unsupervised transfer learn-
ing. This approach combines the sampling technique in the
feature space and the ensemble idea.

Bagging [4], a name derived from bootstrap aggregation,
was the first effective method of ensemble learning and is
one of the simplest methods of arching. The meta-algorithm,
which is a special case of model averaging, was originally
designed for classification and it is usually applied on de-
cision tree models, but it can be used with any type of
model, whether for classification or regression. The random
subspace principle is an interesting method of combining
models. Learning machines are trained on randomly chosen
subspaces of the original input space (i.e. the training set is
sampled in the feature space). The outputs of the models
are then combined, usually by a simple majority vote.
Several researchers have tried to use this principle for many
classifiers. In the supervised case, fast algorithms, such as
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Decision trees are commonly used with ensembles, although
slower algorithms can benefit from ensemble techniques as
well. Examples of such approach can be found in [5] [6],
where the classifier consists of multiple trees constructed
systematically by pseudo-randomly selecting subsets of com-
ponents of the feature vector, that is, trees constructed in
randomly chosen subspaces. The essence of the method is
to build multiple trees in randomly selected subspaces of the
feature space (Random Forest). Trees in, different subspaces
generalize their classification in complementary ways, and
their combined classification can be monotonically improved.

In the unsupervised case, subspace clustering is an exten-
sion of traditional clustering that seeks to clusters in different
subspaces within a dataset. Traditional clustering algorithms
consider all of the dimensions of an input dataset in an
attempt to learn as much as possible about each instance
described. In high dimensional data, however, many of the
dimensions are often irrelevant. These irrelevant dimensions
confuse clustering algorithms by hiding clusters in noisy
data. In very high dimensions the concept of distance be-
comes less precise as the number of dimensions grows,
since the distance between any two points in a given dataset
converges. The discrimination of the nearest and farthest
point in particular becomes meaningless. Subspace clustering
is the task of detecting all clusters in all subspaces. This
means that a point might be a member of multiple clusters,
each existing in a different subspace. Subspace clustering
algorithms localize the search for relevant dimensions also
wing them to clusters that exist in multiple, possibly overlap-
ping subspaces. Therefore, there is a need to simultaneously
cluster the data into multiple subspaces and find a low-
dimensional subspace fitting each group of points. This
problem, known as subspace clustering, has found numerous
applications. A number of approaches to subspace clustering
have been proposed in the past two decades. A review of
methods from the data mining community can be found
in [7]. In our approach RS-NMF, the subspace paradigm
will be very beneficial for transfer learning. Indeed, this
paradigm will break down the knowledge of the source space
into subspaces of knowledge and make a selection of the
most relevant knowledge for transfer to the target space. The
principle of our approach is close to the multi-view approach
proposed in [8] [9].

The rest of this paper is organized as follows: in section
2 we will briefly introduce basic notations of standard non-
negative matrix factorizations, in section 3 we are introducing
Random Subspace NMF (RS-NMF) for unsupervised transfer
learning. We will summarize the results in section 4. Finally,
we will point out some ideas about the future extension of
our method in section 5.

II. PRELIMINARY KNOWLEDGE

A. Standard NMF and Convex NMF

A standard NMF [10] seeks the following decomposition:

𝑋 ≃ 𝐹𝐺𝑇 , 𝑋 ∈ ℝ
𝑛×𝑚, 𝐹 ∈ ℝ

𝑛×𝑘, 𝐺 ∈ ℝ
𝑚×𝑘

𝑋,𝐹,𝐺 ≥ 0.

where

∙ 𝑋 is an input data matrix
∙ columns of 𝐹 can be considered as basis vectors
∙ columns of 𝐺 are considered as cluster assignments for

each data object
∙ k is the desired number of clusters

To develop Convex NMF (C-NMF) [11], we consider the
factorization of the following form:

𝑋 ≃ 𝐹𝐺𝑇 = 𝑋𝑊𝐺𝑇 , 𝑋 ∈ ℝ
𝑛×𝑚,𝑊 ∈ ℝ

𝑚×𝑘, 𝐺 ∈ ℝ
𝑚×𝑘

𝑋,𝑊,𝐺 ≥ 0.

where the column vectors of 𝐹 lie within the column space
of 𝑋:

𝐹 = 𝑋𝑊.

B. Symmetric NMF

The nonnegative symmetric factorization (Sym-NMF) [12]
of the similarity matrix A is formulated as following opti-
mization problem:

𝐴 ≃ 𝐺𝐺𝑇 , 𝐴 ∈ ℝ
𝑛×𝑛, 𝐺 ∈ ℝ

𝑛×𝑘

where 𝐴 is a similarity matrix calculated based on an
arbitrary similarity measure, 𝑛 is a number of objects, 𝑘 is the
number of clusters requested. Compared to NMF, SymNMF
is more flexible in terms of choosing similarities for the data
points. Any similarity measure that well describes the inher-
ent cluster structure can be chosen. In fact, the formulation
of NMF can be related to SymNMF when 𝐴 = 𝑋𝑇𝑋 in
the formulation. This means that NMF implicitly chooses
inner products as the similarity measure, which might not be
suitable to distinguish different clusters.

C. Multilayer NMF

In order to improve performance of the NMF, especially
for illconditioned and badly scaled data and also to reduce
risk of getting stuck in local minima of a cost function,
a simple hierarchical and multistage procedure to perform
a sequential decomposition of nonnegative matrices was
developed in [13]. In the first step, a basic decomposition

𝑋 ≃ 𝐹1𝐺1

is performed using any available NMF algorithm. In the
second stage, the results obtained from the first stage are
used to perform the similar decomposition:

𝐺1 ≃ 𝐹2𝐺2

using the same or different update rules, and so on. The
decomposition takes into account only the last achieved
components. The process can be repeated arbitrary many
times until some stopping criteria are satisfied. In each
step, gradual improvements of the performance are usually
obtained. Thus, the Multilayer NMF is of the following form:

𝑋 ≃ 𝐹1𝐹2...𝐹𝐿𝐺𝐿,
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with the basis matrix defined as 𝐹 = 𝐹1𝐹2...𝐹𝐿. Physically,
this means that we build up a system that has many layers
or cascade connection of 𝐿 mixing subsystems.

III. PROPOSED APPROACH

We would like to propose a very simple and yet effective
way to generate a sequence of partition matrices for a given
data set further used to learn a sequence of prototype matrices
that can be applied as a bridge for transfer learning between
two tasks.

A. Random Subspaces NMF

The idea of Random Subspace NMF (RS-NMF) is to
perform the knowledge “decomposition” of a given data set
𝑋 ∈ ℝ

𝑛×𝑚 that basically consists in finding a sequence
of partition matrices {𝐺𝑖}𝑀𝑖=1 that were calculated on the
subspaces of 𝑋 .

We randomly choose
√
𝑚 features and perform any ar-

bitrary type of NMF for the reduced matrices {𝑋𝑠𝑠𝑖}𝑀𝑖=1.
We obtain a sequence of partition matrices {𝐺𝑖}𝑀𝑖=1 that can
be used further for majority voting or some other consensus
technique.

In order to show that these decompositions can produce
a better clustering result, we used 30-fold cross-validation
for 8 data sets from UCI machine learning repository and
evaluated the results using two different measures: entropy
and purity [14]. These are the standard measures of clustering
quality. Entropy measures how the various semantic classes
are distributed within each cluster. Given a particular cluster
𝑆𝑟 of size 𝑛𝑟 , the entropy of this cluster is defined to be:

𝐸(𝑆𝑟) = −1

𝑞

𝑞∑

𝑖=1

𝑛𝑖𝑟
𝑛𝑟

𝑙𝑜𝑔
𝑛𝑖𝑟
𝑛𝑟

where 𝑞 is the number of classes in the dataset, and 𝑛𝑖𝑟 is
the number of elements of the ith class that were assigned to
the rth cluster. The entropy of the entire clustering is then the
sum of the individual cluster entropies weighted according
to the cluster size:

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =

𝑘∑

𝑟=1

𝑛𝑟
𝑛
𝐸(𝑆𝑟)

The clustering solution is perfect if clusters only contain
observations from one single class; in that case the entropy
of the clustering solution is zero. Smaller entropy values
indicate better clustering solutions.

Using the same mathematical definitions, the purity of a
cluster is defined as:

𝑃𝑢(𝑆𝑟) =
1

𝑛𝑟
max
𝑖

𝑛𝑖𝑟

The purity gives the fraction of the overall cluster size
that the largest class of elements assigned to that cluster
represents. The purity of the clustering solution is then again
the weighted sum of the individual cluster purities:

𝑝𝑢𝑟𝑖𝑡𝑦 =

𝑘∑

𝑟=1

𝑛𝑟
𝑛
𝑃𝑢(𝑆𝑟)

Larger purity values indicate better clustering solutions.
Relatively high number of iterations for cross-validation can
be explained by the numerical instability of NMF. In Table
1 and 2, the values representing average purity and entropy
for NMF, Symmetric NMF and the maximum achieved purity
using RS-NMF are reported.

TABLE I

NMF, SYM-NMF AND RS-NMF PURITY VALUES ON VARIOUS DATA

SETS

Data set NMF Sym-NMF RS-NMF

Iris(3) 0.6600 0.6667 0.8000
Ecoli(8) 0.5685 0.6488 0.7470
Wine(3) 0.5843 0.3989 0.6404
Glass(7) 0.5187 0.5467 0.6308

Australian(2) 0.5783 0.5551 0.6319
Hepatitis(2) 0.7935 0.7935 0.7935

Breast Wisconsin(2) 0.6552 0.6552 0.7997
Yeast(10) 0.4178 0.4212 0.4549

TABLE II

NMF, SYM-NMF AND RS-NMF ENTROPY VALUES ON VARIOUS DATA

SETS

Data set NMF Sym-NMF RS-NMF

Iris(3) 0.3730 0.3385 0.2963
Ecoli(8) 0.2973 0.3358 0.2336
Wine(3) 0.6426 0.9167 0.6158
Glass(7) 0.4831 0.4648 0.4195

Australian(2) 0.9212 0.9379 0.9209
Hepatitis(2) 0.6438 0.6405 0.6275

Breast Wisconsin(2) 0.7460 0.6917 0.6867
Yeast(10) 0.5844 0.5924 0.5749

In order to facilitate the analysis we also plotted all the
purity and entropy values in Figure 1 and 2.

Fig. 1. Radar plot of purity values
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Fig. 2. Radar plot of entropy values

It is easy to see that performance on each data set can be
increased by choosing the features that are most pertinent to
a given classification task.

B. RS-NMF for Transfer Learning

As it was said before, we will consider a situation where
only unlabeled data for both tasks is available. Let us
consider two tasks 𝑇𝑆 and 𝑇𝑇 defined by two matrices 𝑋𝑆

= (𝑥𝑠1 , 𝑥𝑠2 , ..., 𝑥𝑠𝑛 ) and 𝑋𝑇 = (𝑥𝑡1 , 𝑥𝑡2 , ..., 𝑥𝑡𝑛 ) where each
line represents one object from the data of the corresponding
task. For the sake of convenience, we will consider two
matrices with the same number of lines. This inconvenience
can be overcome in two ways: by sub-sampling the bigger
dataset or by using any kind of a bootstrap to increase the
size of the smaller dataset.

We will now apply the method described above as an
initialization step for a new transfer learning approach. After
calculating a sequence of partition matrices {𝐺𝑖}𝑀𝑖=1 for
source data set 𝑋𝑆 , we search a partition of data of a
target data set 𝑋𝑇 by using any arbitrary form of NMF (for
example, C-NMF).

𝑋𝑇 ≃ 𝑋𝑇𝑊𝑇𝐺
𝑇
𝑇 .

In this expression, the prototype matrix can be calculated
as 𝑃𝑇 = 𝑋𝑇𝑊𝑇 .

C. Learning “link” matrices

In order to construct a sequence of learned weighting
matrices that represent the associations between clusters in
different subspaces we calculate the correlation between all
the matrices {𝐺𝑖}𝑀𝑖=1 and 𝐺𝑇 . We use a simple correlation
function defined as

𝑐𝑜𝑟𝑟(𝑋,𝑌 ) =
𝑐𝑜𝑣(𝑋,𝑌 )

𝜎𝑋𝜎𝑌

and select 𝑘 nearest neighbors of 𝐺𝑇 .
At this step we obtain a reduced sequence {𝐺𝑖}𝑘𝑖=1. We

take each of the chosen matrices and perform the NMF of
the following form:

𝐺𝑖 = 𝑊𝑖𝐺
∗
𝑖 , 𝐺𝑖 ∈ ℝ

𝑘×𝑛,𝑊 ∈ ℝ
𝑘×𝑘, 𝐺∗𝑖 ∈ ℝ

𝑘×𝑛

∀ 𝑖 = 1...𝑘.

After doing that, we have a sequence of “link” matrices
{𝑊𝑖}𝑘𝑖=1 calculated using NMF with the partition matrices
from source task that are nearest to the partition of data in
the target task. The idea behind constructing this sequence of
“link” matrices is that they capture the relationships between
clusters and thus reflect the structure of a data set. Simply
using a sequence of partition matrices is not enough because
they are closely related to the data itself but what we try to
do is to discover the common parts in structures of both data
sets to adapt them using NMF and to use further as a link.

D. Multilayer NMF with learned “link” matrices

Finally, we have a sequence of matrices
{
𝑃𝑇 , {𝑊𝑖}𝑘𝑖=1

}

that we will use in a final stage. In our opinion it is very
important to use the initial matrix 𝑃𝑇 that can be seen
as a guide of the transfer learning process. We recall that
Multilayer NMF is of the following form:

𝑋 ≃ 𝐹1𝐹2...𝐹𝐿𝐺𝐿,

We perform Multilayer NMF with “link” matrices fixed to
our learned “link” matrices. At the end, our Multilayer NMF
takes the following form:

𝑋𝑇 ≃ 𝑃𝑇𝑊1...𝑊𝑘𝐺
∗
𝑇 ,

where 𝐺∗𝑇 is a final result of our algorithm after the transfer
process.

IV. EXPERIMENTAL RESULTS

Here we will describe all the experiments that were made
in order to show the efficiency of our approach. We recall
that we work in the unsupervised setting and so we are not
able to use purity and entropy used to validate RS-NMF.

A. Clustering evaluation criteria

There are two classes of clustering evaluation metrics:
internal and external clustering evaluation indexes. Speaking
about unsupervised clustering, we can only use internal
metrics because they are based only on the information
intrinsic to the data alone. Among them, the most refer-
enced in literature are the following ones: the Bayesian in-
formation criteria, Calinski-Harabasz index, Davies-Bouldin
index(DBI), Silhouette index, Dunn index and NIVA index.
To estimate the effectiveness of clustering we will use two
of the most effective (according to [15]) clustering indexes,
the Dunn’s index and Calinski-Harabasz index. Dunn’s index
scheme is calculated as follows:

𝐷𝑢𝑛𝑛 = min
1≤𝑖≤𝑐

{

𝑚𝑖𝑛

{
𝑑(𝑐𝑖, 𝑐𝑗)

max1≤𝑘≤𝑐(𝑑(𝑋𝑘))

}}

where 𝑐 denotes the number of clusters, 𝑖 and 𝑗 are cluster
labels, 𝑑(𝑐𝑖, 𝑐𝑗) defines the intercluster distance between
clusters 𝑋𝑖 𝑋𝑗 ; 𝑑(𝑋𝑘) represents the intracluster of 𝑋𝑘.
This index aims to identify sets of clusters that are compact
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and well separated. Large values of Dunn’s index indicates
a “better” clustering solution.

Calinski-Harabasz evaluation scheme is given by the fol-
lowing expression:

𝐶𝐻 =
𝑡𝑟𝑎𝑐𝑒(𝑆𝐵)

𝑡𝑟𝑎𝑐𝑒(𝑆𝑊 )

𝑛𝑝 − 1

𝑛𝑝 − 𝑘

where 𝑆𝐵 is a between-cluster scatter matrix, 𝑆𝑊 is the
internal scatter matrix, 𝑛𝑝 is a number of clustered samples
and 𝑘 is a number of clusters. Large values of Calinski-
Harabasz index stands for more accurate clustering.

B. Datasets

The following data sets from UCI machine learning repos-
itory were chosen:
∙ Iris dataset: this is perhaps the best known database to

be found in the pattern recognition literature. Fisher’s
paper is a classic in the field and is referenced frequently
to this day. The dataset contains 3 classes of 50 instances
each described by 4 features (sepal length, sepal width,
petal length, petal width), where each class refers to a
type of iris plant (Setosa, Versicolour, Virginica). One
class is linearly separable from the other 2; the latter
are not linearly separable from each other [16].

∙ Wine dataset: these data are the results of a chemical
analysis of wines grown in the same region in Italy
but derived from three different cultivars. This dataset
consists of 178 instances described by 13 features and
divided in three classes [17].

∙ Glass dataset: the glass identification database is com-
posed of 214 examples with 9 variables, the data is
divided in seven classes [18].

∙ Yeast dataset: this database contains information about
a set of Yeast cells and consists of 1484 observations
divided into 10 classes and described by 10 features.
The task is to determine the localization site of each
cell [19].

∙ Hepatitis dataset: the clynical observations of people
that were suffering from hepatitis is composed of 155
examples with 19 variables, the data is divided in 2
classes [20].

∙ Ecoli dataset: the prokaryotic gram-negative bacterium
Escherichie Col (E.coli) 336 patterns data are classified
to eight classes and described by 8 features. Classes of
this data set are drastically imbalanced [19].

∙ Australian Credit Approval dataset: this database con-
cerns credit card applications. There are 6 numerical and
8 categorical attributes. All data represents two classes
of applications: accepted and declined [21].

∙ Breast Cancer Wisconsin: this breast cancer databases
was obtained from the University of Wisconsin Hospi-
tals with 10 attributes divided into two classes [22].

∙ Heart disease: these data are the results of 303 obser-
vation of heart diseases. This database is composed of
13 fetures and is divided into 5 classes [23].

In Table 3 we can see the Dunn’s index values of the
experimental tests of our approach for transfer between two

different domains. We indicate also 𝑘 - the number of learned
prototype matrices. We compare the results obtained using
our approach with the partition given by C-NMF.

TABLE III

DUNN’S INDEX VALUES FOR TRANSFER BETWEEN DIFFERENT DOMAINS

Source Task → Target Task No Transfer
C-NMF

Transfer
RS-NMF

𝑘

Iris → Wine 0.0033 0.0271 1
Wine → Iris 0.1650 2.9523 9

Wine → Glass 0.0118 0.0134 2
Glass → Wine 0.0035 0.0385 6
Iris → Glass 0.0126 0.0112 4
Glass → Iris 0.2697 1.5800 4

Hepatitis → Heart 0.1479 1.8449 10
Heart → Hepatitis 1.7610 1.7903 3

Ecoli → Heart 0.0167 0.1671 5
Heart → Ecoli 0.0384 0.3815 1

Australian → Breast Wisconsin 0.6115 0.9095 1
Breast Wisconsin → Australian 0.0943 0.0773 9

In order to validate our approach, we considered also the
values of Calinski-Harabasz index in Table 4.

TABLE IV

CALINSKI-HARABASZ INDEX FOR TRANSFER BETWEEN DIFFERENT

DOMAINS

Source Task → Target Task No Transfer
C-NMF

Transfer
RS-NMF

𝑘

Iris → Wine 0.6996 13.9911 1
Wine → Iris 0.3454 1.7041 9

Wine → Glass 4.7092 5.2175 2
Glass → Wine 2.8487 9.8428 6
Iris → Glass 5.1969 5.9693 4
Glass → Iris 0.1416 2.2370 6

Hepatitis → Heart 10.4467 187.5136 10
Heart → Hepatitis 123.7336 128.9377 3

Ecoli → Heart 15.3534 123.7448 5
Heart → Ecoli 11.9365 178.9586 1

Australian → Breast Wisc. 80.0094 161.8653 1
Breast Wisc. → Australian 279.7122 213.3286 9

We can see that our approach failed twice in terms of
Dunn’s index and only once in terms of Calinski-Harabasz
index. In all the other cases transfer of learning outperforms
“no transfer” C-NMF approach. It is important to add that
C-NMF is equivalent to relaxed k-means clustering ([24])
and thus comparing BC-NMF with C-NMF means that we
compare it to relaxed k-means at the same time.

To complete the analysis we plotted also the results of
transfer obtained with different values of 𝑘 for all datasets
in Figures 3-14.
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Fig. 3. Iris → Wine transfer

Fig. 4. Wine → Iris transfer

Fig. 5. Wine → Glass transfer

V. CONCLUSIONS

In this paper we proposed a new approach for unsupervised
transfer learning. We perform multiple matrix decomposi-
tions of source data set’s subspaces (RS-NMF) in order
to generate a sequence of partition matrices and to further
choose 𝑘 most close of them in terms of correlation with
initial target partition. We construct a sequence of prototype
matrices using the previously selected partition matrices.
Then, we use them in Multilayer NMF. In this way, we inject
the knowledge from source to target task. This procedure is
guided by the initial prototype matrix. Considering the results

Fig. 6. Glass → Wine transfer

Fig. 7. Iris → Glass transfer

Fig. 8. Glass → Iris transfer

Fig. 9. Hepatitis → Hearts transfer
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Fig. 10. Hearts → Hepatitis transfer

Fig. 11. Ecoli → Hearts transfer

Fig. 12. Hearts → Ecoli transfer

Fig. 13. Australian → Breast transfer

Fig. 14. Breast → Australian transfer

obtained during our experiments, we can conclude that our
approach efficiently increases the quality of clustering of
target data using the knowledge obtained from the source
one.

In future, our work can be extended in multiple directions.
First of all, our approach can be easily developed into
a multi-task transfer learning algorithm - using data from
multiple sources can further increase the gain from the
transfer of knowledge. Secondly, it would be useful to study
what is an optimal value of 𝑘 - the number of partitions that
will be used to construct the prototype matrices. We can see
that for some data sets the choice of 𝑘 can be crucial. The last
thing that we want to say is that this approach is extremely
simple and easy to implement.
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