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Abstract— Recently there has been a lot of interest in ge-
ometrically motivated approaches dealing with data in high
dimensional spaces. We consider the case where data is sampled
from a low dimensional manifold which is embedded in high
dimensional Euclidean space. In this paper, we propose a
novel unsupervised linear subspace learning algorithm called
Local and Global Manifold Preserving Embedding (LGMPE).
Different from existing manifold learning based linear subspace
learning algorithms which aims at preserving either single
kind of local manifold structure or single kind of global
manifold structure on the data manifold, LGMPE can preserve
different local and global manifold structures simultaneously
in the graph embedding framework. Several experiments on
real face datasets demonstrate the effectiveness of the proposed
algorithm.

I. INTRODUCTION

In many real world applications, such as face recognition,
information retrieval, bioinformatics, etc, one is often con-
fronted with high dimensional data [30], [6], [1]. However,
high dimensionality is a major cause of the practical limi-
tations of many pattern recognition technologies. Moreover,
it has been observed that a large number of features may
actually degrade the performance of classifiers if the number
of the training samples is small relative to the number of
features. This is called the ”curse of dimensionality” [8]. For-
tunately, there might be reason to suspect that the naturally
generated high dimensional data probably reside on a lower
dimensional manifold. This leads one to consider methods
of dimensionality reduction that allow one to represent the
data in a lower dimensional space.

The goal of dimensionality reduction is to reduce the
complexity of the input data while some desired intrinsic
information of the data is preserved [21], [14], [25], [27], [7],
[16], [13], [26], [22]. Two of the most popular methods for
dimensionality reduction are Principal Component Analysis
(PCA) [21] and Linear Discriminant Analysis (LDA) [14],
which are unsupervised and supervised respectively. PCA
tries to preserve the global covariance structure of the data
in low dimensional projection subspace without knowing the
class labels of the data; while LDA aims to minimize the
within-class similarity and maximize the between-class simi-
larity simultaneously in low dimensional projection subspace
when the class labels of the data are available.
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Unsupervised dimensionality reduction method PCA is
optimal only when the data space is linear, however, there is
no evidence that the data is sampled from a linear subspace.
For example, it is always believed that the face images are
sampled from a nonlinear low-dimensional manifold which
is embedded in the high-dimensional ambient space [12].
This motivates us to consider manifold based techniques for
dimensionality reduction. So, various manifold learning tech-
niques, such as ISOMAP [20], Locally Linear Embedding
(LLE) [17], Laplacian Eigenmap (LE) [2], Local Tangent S-
pace Alignment (LTSA) [29], Maximum Variance Unfolding
(MVU) [24] and its relaxed variance Distinguishing Variance
Embedding (DVE) [23], have been proposed which reduce
the dimensionality of a fixed training set in a way that
maximally preserves certain inter-point relationships. LLE,
LE and LTSA are local methods which attempt to preserve
local geometry of the data; essentially, they seek to map
nearby points on the manifold to nearby points in the low
dimensional representation. ISOMAP, MVU and DVE are
global methods which consider preserving both local and
global geometry of the data, mapping nearby points on
the manifold to nearby points in low dimensional space to
preserve local geometry, and faraway points to faraway points
in low dimensional space to preserve global geometry. One
of the major limitations of these methods is that they do not
generally provide a functional mapping between the high and
low dimensional spaces that are valid both on and off the
training data.

To address the out-of-sample problem by explicitly defin-
ing an embedding function, linear versions of the manifold
learning methods were proposed, such as Isometric Projec-
tion (IsoProjection) [3], Neighborhood Preserving Embed-
ding (NPE) [10], Locality Preserving Projections (LPP) [11],
Linear Local Tangent Space Alignment (LLTSA) [28], and
so on. IsoProjection can be viewed as the linear approxima-
tion of ISOMAP, which can be obtained by preserving the
pairwise distances on the manifold. NPE can be viewed as
the linear approximation of LLE, which aims at preserving
the local neighborhood structure on the data manifold. LPP
is the linear version of LE, which is obtained by finding
the optimal linear approximations to the eigenfunctions of
the Laplace Beltrami operator on the manifold. LLTSA is
the linear version of LTSA, which uses the tangent space
in the neighborhood of a data point to represent the local
geometry, and then aligns those local tangent spaces in
the low-dimensional space which is linearly mapped from
the raw high-dimensional space. These methods are defined
everywhere, rather than only on the training data points.
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However, the linear manifold learning methods mentioned
above can only preserve single kind of manifold structure
either local or global. In this paper, we propose a novel unsu-
pervised dimensionality reduction algorithm called Local and
Global Manifold Preserving Embedding (LGMPE), which
can preserve different local and global manifold structures
simultaneously in the graph embedding framework. Given a
set of data points in the ambient space, we first construct a
nearest neighbor graph of the observed data. We then build
two manifold preserving matrixes. One describes the local
manifold structure using linear reconstruction coefficients of
the neighboring data points which are connected in the near-
est neighbor graph. The other describes the global manifold
structure using shortest paths of pairs of data points which
are not connected in the nearest neighbor graph. We then
find an optimal embedding such that the different local and
global manifold structures can be preserved simultaneously
in the dimensionality reduced space.

The organization of this paper is as follows. In Section
2, we show how to derive the LGMPE algorithm from the
nearest neighbor graph and its complementary graph by
preserving different local and global manifold structures.
In Section 3, the relationship and comparison with other
methods are discussed. In Section 4, the proposed method
is tested and the results are compared with those of popular
manifold learning based linear subspace learning algorithms.
Last, we conclude our work in Section 5.

II. LOCAL AND GLOBAL MANIFOLD PRESERVING
EMBEDDING

A. Unsupervised Linear Dimensionality Reduction Problem

The generic problem of unsupervised linear dimension-
ality reduction is the following: Given a set of points
x1, x2, ..., xm in Rn, find a transformation matrix A that
maps these m points to a set of points y1, y2, ..., ym in
Rd, where d << n, such that yi ”represents” xi, namely
yi = ATxi, where A is a n× d matrix.

B. Local Manifold Structure Preserving

To preserve local manifold structure, we first construct a K
nearest neighbor graph G with m nodes on the original data
set. The i-th node corresponds to the data point xi. We put
an edge between node i and j if xj is among the K nearest
neighbors of xi or xi is among the K nearest neighbors of
xj . In many cases, the data points might reside on a nonlinear
submanifold, but it might be reasonable to assume that each
local neighborhood is linear as Roweis et al. did in LLE [17].
Thus, we can characterize the local geometry of these patches
by linear coefficients that reconstruct each data point from
its neighbors. Reconstruction errors which are measured by
the cost function should be minimized:

φ(W ) =
∑

i ‖xi −
∑

j:xj∈NK(xi)
Wijxj‖ (1)

where NK(xi) represents the K nearest neighbors of xi.
We constrain

∑
j:xj∈NK(xi)

Wij = 1, with Wij = 0 if xj
does not belong to the set of K nearest neighbors of xi.

Please see [17] for the details about how to solve the above
minimization problem to compute the linear coefficients
matrix W . In the low dimensional space, to preserve local
manifold structure, we want to minimize the cost function
by fixing W as following:

Φ(Y ) =
∑

i ‖yi −
∑

j:xj∈NK(xi)
Wijyj‖

= trace(YMY T )
= trace(ATXMXTA)

(2)

where
Y = (y1, y2, ..., ym)

X = (x1, x2, ..., xm)

M = (I −W )T (I −W )

I = diag(1, ..., 1︸ ︷︷ ︸
m

)

It is easy to check that M is symmetric and semi-positive
definite. In one dimensional case, the optimal projection is
given by solving the following minimization problem:

a∗ = argmin
a

(aTXMXTa) (3)

where a is a n× 1 vector.

C. Global Manifold Structure Preserving

To preserve global manifold structure, we first construct
the complementary graph Gc of the K nearest neighbor
graph G. In graph Gc, an edge is added between nodes
i and j if they are not connected in graph G, otherwise
not. Noting that G + Gc is a complete graph. Thus, we
can characterize the global geometry of the original space
by finding an embedding function f which can preserve the
geodesic distances in the reduced embedding Euclidean space
if two samples are connected in graph Gc. That is:

f∗ = argmin
f

∑
(xi,xj)∈Gc(dM (xi, xj)− d(f(xi), f(xj)))

2

(4)
where dM (xi, xj) means the geodesic distance between xi
and xj on the manifold M , d(f(xi), f(xj)) represents the
Euclidean distance between f(xi) and f(xj) in the reduced
embedding space. In real world data set, the underlying
manifold M is often unknown and hence the geodesic
distance measure is also unknown. So, we can only com-
pute the shortest path distances dG(xi, xj) on the graph
G to estimate the geodesic distances dM (xi, xj). The pro-
cedure of computing shortest path is as follows: Initialize
dG(xi, xj) = d(xi, xj), if xi and xj are linked by an
edge; dG(xi, xj) = ∞, otherwise. Then for each value of
p = 1, 2, ...,m in turn, replace all entries dG(xi, xj) by:
min{dG(xi, xj), dG(xi, xp)+dG(xp, xj)}. The matrix of fi-
nal values DG = {dG(xi, xj)} will contain the shortest path
distances between all pairs of points in G. This procedure is
named Floyd-Warshall algorithm [5]. For the convenience of
following use, we define:

Dc
Gij

=

{
DGij

if (xi, xj) ∈ Gc

0 otherwise
(5)
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In the following, we apply techniques from Multi-
Dimensional Scaling (MDS) to convert distances to inner
products, which uniquely characterize the geometry of the
data in a form that supports efficient optimization [20].
Specifically, let D be the distance matrix such that Dij is
the distance between xi and xi. Define matrix S where
Sij = D2

ij and H = I − 1
mee

T which is often called
”centering matrix”, where I = diag(1, ..., 1︸ ︷︷ ︸

m

), e = (1, ..., 1︸ ︷︷ ︸
m

)T .

It can be shown that τ(D) = −HSH/2 is the inner product
matrix. That is D2

ij = τ(D)ii + τ(D)jj − 2τ(D)ij .
Let DY denote the Euclidean distance matrix in the

reduced embedding space. Thus, the objective function in
equation (4) becomes minimizing the following equation:

‖τ(Dc
G)− τ(DY )‖L2 (6)

where ‖Q‖L2 means the L2 matrix norm
√∑

ij Q
2
ij .

Consider a linear embedding function f(x) = aTx, where
a is a n× 1 vector. Let yi = f(xi), Y = aTX . We have:

τ(DY ) = Y TY = XTaaTX (7)

The optimal projection is given by solving the following
minimization problem:

a∗ = argmin
a
‖τ(Dc

G)−XTaaTX‖2L2 (8)

We can get that:

‖τ(Dc
G)−XTaaTX‖2L2

= trace((τ(Dc
G)−XTaaTX)(τ(Dc

G)−XTaaTX)T )
= trace(τ(Dc

G)τ(Dc
G)T −XTaaTXτ(Dc

G)T

−τ(Dc
G)XTaaTX +XTaaTXXTaaTX)

= trace(τ(Dc
G)τ(Dc

G)T )− 2trace(aTXτ(Dc
G)XTa)

+trace(aTXXTaaTXXTa)
(9)

Because τ(Dc
G) is already known, the minimization prob-

lem of equation (8) can be rewritten as follows:

a∗ = argmax
a

(aTXτ(Dc
G)XTa− aTXXTaaTXXTa)

(10)

D. The Algorithm

Having the above preparation we can get the optimal
projection of LGMPE from equation (3) and (10):

a∗ = argmax
a

(α(aTXτ(Dc
G)XTa− aTXXTaaTXXTa)

−βaTXMXTa)
(11)

where α and β are scaling parameters to balance the
contributions of the global and local manifold structures.
On one hand, since aTXτ(Dc

G)XTa− aTXXTaaTXXTa
can measures to what extent can Euclidean distances in
the reduced embedding space provide an approximation to
the geodesic distances on manifold M if two samples are
connected in graph Gc, it should be the larger the better. On
the other hand, a small aTXMXTa implies that every data
point in the reduced embedding space can be represented as
a good linear combination of its neighbors with respect to

the linear coefficients matrix W that reconstruct each data
point from its neighbors in graph G. Thus, equation (11)
should be as large as possible, which indicates that both the
global and local manifold structures are well preserved in the
dimensionality reduced space. In order to remove an arbitrary
scaling factor in the projection, we impose a constraint as
follows:

aTXXTa = 1 (12)

Thus, equation (11) can be written as follows:

a∗ = argmax
aTXXT a=1

(aTX(ατ(Dc
G)− βM)XTa− α) (13)

The vectors ai(i = 1, 2, ..., d) that maximize the above ob-
jective function are given by the eigenvectors corresponding
to the maximum eigenvalues of the generalized eigenprob-
lem:

X(ατ(Dc
G)− βM)XTa = λXXTa (14)

Let A = (a1, a2, ..., ad), the linear embedding is as
follows:

x→ y = ATx (15)

where y is a d-dimensional representation of the high dimen-
sional data point x. A is the n× d transformation matrix.

To get a stable solution of the above eigenproblem, the
matrix XXT is required to be non-singular which is not
true when the number of features is larger than the number of
samples. In this case, we first project the original data into the
PCA subspace to overcome the small sample size problem
and to throw away the smallest principal components, and
then LGMPE can be applied in the reduced subspace.

III. COMPARISON WITH RELATED METHODS

A. Comparison With Nonlinear Manifold Learning Methods

Compared with nonlinear manifold learning methods such
as Isomap, LLE, LE, LTSA, MVU, DVE and so on, LGMPE
provides an explicit linear transformation matrix to project
the original data to the reduced low dimensional space, which
aims to preserving both the global and local structure of the
underlying data manifold. LGMPE is defined everywhere,
while nonlinear manifold learning methods can’t provide.
Therefore, query points can also be mapped into the low-
dimensional representation space in which retrieval, cluster-
ing and classification may be performed.

B. Comparison With NPE

NPE is the linear approximation of LLE which emphasize
on preserving the local structure of the data set, but ignore
the global structure of the data set. However, researchers have
recently found that both global structure and local structures
are important for learning from high dimensional data [27],
[4], [19]. LGMPE aims to preserving both global and local
structures of the underlying data manifold. And it is easy to
see that NPE is the special case of LGMPE with α = 0, so
its capability is limited. In the same way, LGMPE is also
different from other manifold learning based linear subspace
learning methods such as LPP and LLTSA which preserve
local structure only.
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C. Comparison With IsoProjection

IsoProjection is the linear approximation of ISOMAP. It
can only preserve local and global distances structures in
the embedded space. LGMPE aims to preserve the local
linear reconstruction coefficients between samples which are
nearest neighbors and preserve global distances between
samples which are not nearest neighbors. Different from
IsoProjection, LGMPE considers that local linear reconstruc-
tion coefficients are more valuable than local distances when
preserving local structure. Besides, LGMPE is more flexible
to balance the contribution of global and local manifold
structures through α and β.

IV. EXPERIMENTS

In this section, the performance of LGMPE is evaluated on
the AR [15], PIE [18], and Extended Yale-B [9] face image
databases and compared with the classification performances
of Baseline, PCA, LPP, NPE and IsoProjection. We use the
preprocessed versions of the PIE database and the Extended
Yale-B database which are publicly available from the web
page of D. Cai 1. The AR database is available from the web
page of A. M. Martinez 2.

A. Database Description

The AR database contains 126 subjects (70 men and 56
women) and each subject has 26 face images taken in two
sessions separated by 2 weeks time. For each session, 13
face images with varying facial expression, illumination and
occlusion were captured. For the experiments reported in
this section, 100 different individuals were randomly selected
from this database. The images are morphed to the 42×30
pixel arrays, segmented using an oval-shaped mask, and
converted to 256 gray-level images by adding all three color
channels.

The PIE face database contains 41,368 images of 68
people, each person under 13 different poses, 43 different
illumination conditions, and with 4 different expressions. In
this experiment, our dataset only contains five near frontal
poses (C05, C07, C09, C27, C29) and all the images under
different illuminations and expressions. That is there are 170
images for each individual. All the face images are aligned
and cropped. The cropped images are 32×32 pixels, with
256 gray levels per pixel.

The Extended Yale-B face database contains 16128 images
of 28 human subjects under 9 poses and 64 illumination
conditions. In this experiment, we choose the frontal pose and
use all the images under different illumination, thus we get
64 images for each person. All the face images are aligned
and cropped. The cropped images are 32×32 pixels, with
256 gray levels per pixel.

B. Experimental Settings

In our experiments, we first project the face images
into a PCA subspace by retaining 99% of the principal

1http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
2http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html

component to deal with small sample size problem. Second,
we carry out these algorithms on the training face images
and learn the transformation matrix. Third, each test face
image is mapped into a low-dimensional subspace via the
transformation matrix. Finally, we classify the test images by
the nearest neighbor classifier. For the baseline method, the
recognition is simply performed in the input space without
dimensionality reduction.

In all of the experiments, LGMPE, IsoProjection, NPE
and LPP use K nearest neighbor to construct the adjacency
graphs. For LPP, we use the simple-minded way to choose
the weights of the adjacency graph: Wij = 1 if and only if
vertices i and j are connected by an edge, otherwise Wij =
0. For LGMPE, we set α = 1 and β is searched from the
grid: {1, 10, 102, ..., 1012} with Hold-Out method over 20
random splits of training and testing samples.

In our experiments, all the results are the average over
20 random splits of training and testing samples. For con-
venience, we make some notations used in illustrations: Tr -
Number of training samples of each class, Dims - Number
of reduced dimensions, K - Nearest neighborhood size.

C. Experimental Results

The recognition results of AR are illustrated in Figure 1.
We can see that LGMPE has higher recognition rates than
those of other methods for most cases with the variations of
Tr, Dims and K. This says that integrating both the global
geodesic distances and local linear reconstruction coefficients
does have positive effect for the dimensionality reduction
problem.

The recognition results of PIE are illustrated in Figure 2.
From Figure 2(c), we can see that LGMPE is better than
IsoProjection and NPE with the variation of K. Although
LPP is better than LGMPE when K = 2, LGMPE is more
stable than LPP with the increase of K. The property of
LGMPE which is not sensitive to K is very useful for
practical use.

The recognition results of Extended Yale-B are illustrated
in Figure 3. Again, we can see that LGMPE has higher
recognition rates than those of other methods for most cases,
and we can get from Figure 3(c) that LGMPE is stable while
LPP is very sensitive to the increase of K.

D. Paramater Analysis of β

This experiment is done to evaluate the influence of β
which can determine the contribution of the local manifold
structure in LGMPE. As can be seen from Figure 4 (The
X-axis denotes the index of β with the radix equals 10),
the performance of LGMPE is close to that of IsoProjection
when β is small, and the performance of LGMPE is close to
that of NPE when β is large enough. The most important
is that the performance of LGMPE is better than both
IsoProjection and NPE when β is assigned to an appropriate
value. This explains that why LGMPE can get good results
in face recognition tasks.
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(a)

(b)

(c)

Fig. 1. Experimental results on AR.

(a)

(b)

(c)

Fig. 2. Experimental results on PIE.
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(a)

(b)

(c)

Fig. 3. Experimental results on Extended Yale-B.

(a) AR

(b) PIE

(c) Extended Yale-B

Fig. 4. Paramater Analysis of β.
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V. CONCLUSIONS

In this paper, we propose a novel linear dimensionality
reduction algorithm called Local and Global Manifold Pre-
serving Embedding (LGMPE). LGMPE can preserve local
linear reconstruction structure and global geodesic distance
structure simultaneously, and can balance the contributions
of the two parts. It yields a map which is simple, linear,
and defined everywhere. Experiments on real face datasets
have been conducted to demonstrate the effectiveness of our
algorithm. In our future work, we will combine other local
and global structures in this way, and find out whether this
way can still work.
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