
 

 

Convolutional Deep Belief Networks for Feature 
Extraction of EEG Signal 

Yuanfang Ren and  Yan Wu 
Department of Computer Science and Technology  

Tongji University  
Shanghai, China  

yanwu@tongji.edu.cn 
 
 

Abstract—In recent years, deep learning approaches have 
been successfully used to learn hierarchical representations of 
image data, audio data etc. However, to our knowledge, these 
deep learning approaches have not been extensively studied for 
electroencephalographic (EEG) data. Considering the properties 
of EEG data, high-dimensional and multichannel, we applied 
convolutional deep belief networks to the feature learning of 
EEG data and evaluated it on the datasets from previous BCI 
competitions. Compared with other state-of-the-art feature 
extraction methods, the learned features using convolutional 
deep belief network have better performance. 
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I. INTRODUCTION  
Brain-computer interfaces (BCI) allow people to control the 

external environment through direct measures of brain signal 
[1]. Now BCI applications have played an important role in the 
field of rehabilitation engineering, military, entertainment etc. 
Usually the EEG signal processing can be divided into three 
phases: preprocessing, feature extraction and classification, 
among which feature extraction has a great influence on the 
final recognition accuracy of the EEG signal. The state-of-the-
art feature extraction methods which have been successfully 
applied into the EEG feature extraction include band power 
[2], multivariate adaptive autoregressive (MVAAR)[3], 
common spatial pattern (CSP)[4], independent component 
analysis (ICA)[5] etc. However, these feature representations 
are often hand-designed, requiring lots of domain knowledge 
and human labor. Thus it is better to obtain feature 
representations automatically through a small amount of 
labeled data. And Schalk et al.[6] also explicitly proposed that 
building a practical BCI system based on a small training set 
has been a challenging problem. 

Given the fact that a large amount of unlabeled data is 
usually available, we consider the problem of learning feature 
representations from unlabeled data, which is called 
unsupervised feature learning.  And fortunately the rapid 
developing deep learning technologies, which usually build 
features from unlabeled data, give us some inspiration. Deep 
learning methods usually use a variety of approaches such as 
RBMs [7], autoencoders [8], sparse coding [9] etc. The deep 
belief network (DBN) [7] is a classical generative probabilistic 
model composed of some RBMs, in which the higher layer of 

DBN tends to learn more complex feature representation. DBN 
can be trained in an unsupervised way using greedy layerwise 
training. Based on DBN, Lee et al. [10] proposed the 
convolutional deep belief network (CDBN), scaling up the 
algorithm to deal with high-dimensional data. And Lee et al. 
also demonstrated that CDBN had good performance in several 
vision recognition tasks [10] and audio classification tasks 
[11]. In BCI area, some researchers have attempted to 
introduce some deep learning approaches into the EEG signal 
processing in recent years. Wulsin et al. [12] applied DBN to 
model EEG waveforms for classification in a semi-supervised 
paradigm. And literature [13] used convolutional neural 
network with embedded fourier transform for EEG 
classification in a supervised paradigm, which is trained by 
backpropagation. 

Considering the properties of EEG data, high-dimensional 
and multichannel, in this paper we apply CDBN to the feature 
extraction of EEG signal, hoping that it can finish the 
unsupervised feature learning from unlabeled data efficiently. 
We mainly conduct the experiments on the previous BCI 
competition datasets to evaluate its performance. We also make 
comparison with other excellent feature extraction methods. 

The rest of this paper is organized as follows: Section 2 
introduces the method CDBN briefly and Section 3 presents 
the experiments and results. Finally, conclusions and future 
work are discussed in Section 4. 

II. METHODS 

A. Convolutional Deep Belief Networks  
Since CDBN is composed of convolutional restricted 

Boltzmann machines (CRBMs), we first briefly introduce 
CRBM. And as EEG data is real-valued, we mainly introduce 
the Gaussian convolutional RBM. The basic CRBM consists of 
two layers: a visible layer V and a hidden layer H. Suppose the 
visible layer consists of L channels, and each channel consists 
of V VN N× real-valued units. The hidden layer consists of K 
groups, and each group consists of H HN N× hidden units. Denote 
the convolutional filter of size ws ws×  ( 1V Hws N N− + ) for 
the l-th channel corresponding to the k-th hidden group as ,k lW , 
and it is shared among the hidden units in the k-th group. To 
make CRBM more scalable, Lee et al. [10] further developed 
“probabilistic max-pooling”, which can shrink the 
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representations of higher layers in a probabilistically sound 
way. Probabilistic max-pooling enables the CRBM to 
incorporate max-pooling-like behavior, while supporting 
probabilistic inference. The energy function of the probabilistic 
max-pooling CRBM (with real-valued visible units) is defined 
as follows [10][14]: 
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where V VN N L× ×∈v  denotes the visible units, 
H HN N K× ×∈h denotes the hidden units. The parameter σ  

denotes the standard deviation associated with the Gaussian 
visible units. The visible units in the l-th channel share the 
bias lc , and the hidden units in the k-th group share the bias kb . 
Moreover, W denotes flipping the array horizontally and 
vertically. Bα refers to a C C× block of locally neighboring 

hidden units ,
k
i jh and is pooled to a pooling node kpα . There is 

a constraint between the hidden units in the block Bα and the 
corresponding pooling node kpα : at most one hidden unit in the 
block can be activated at a time and the pooling node is 
activated if and only if a hidden unit in the block is activated. A 
schematic description of a probabilistic max-pooling CRBM is 
shown in Fig. 1. 

Then we can perform block Gibbs sampling using the 
following conditional distributions [14]: 
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where  ,( )k
i jI h is the signal hidden units in group k received from 

layer V, and ( )⋅N is a normal distribution. 

Thus the CDBN is stacked by some probabilistic max-
pooling CRBMs. Like the standard RBM, the CRBM can be 
trained using contrastive divergence [7]. At the same time, 
since the CRBM is highly overcomplete, sparsity 
regularization [10] is also added to constrain the hidden units to 
having sparse average activations. And the CDBN’s training is 
same with DBN, accomplished by the greedy layer-wise 
procedure [7]: once a layer is trained, its parameters are frozen 
and its activations are severed as the input of next layer.  
CDBN is a generative model, and supports efficient bottom-up 
and top-down probabilistic inference. However, considering 

the real-time requirement of BCI systems, for inference, we use 
feed-forward approximation. 

 

Fig. 1. A schematic description of a probabilistic max-pooling CRBM. VN  
and HN refer to the size of visible and hidden layer, and ws refers to the size 
of convolutional filter size. C refers to the max-pooling ratio. 

B. Application to EEG Data  
Before explaining our motivations to apply CDBN to the 

feature extraction of EEG signal, we first make a comparison 
between CDBN and DBN.CDBN is an extension of DBN and 
they have a lot in common, including the way of stacking 
building blocks, the training way of the building blocks and the 
network. The biggest difference between them is the structure 
of building blocks. CRBM is proposed mainly to address the 
issue of scaling models to realistic-sized images.  It’s main 
idea, weight sharing, allowing the weights between the hidden 
and visible layers are shared among all locations in an image, 
which can greatly reduce a large amount of parameters and 
make the representations be invariant to small translations of 
the input. At the same time, probabilistic max-pooling 
operation can further reduce the computational burden while 
allowing full probabilistic inference. These structures make it 
possible to scale CDBN to full images or high-dimensional 
data. Thus, it is reasonable for us to apply CDBN to EEG 
signal, since EEG data is high-dimensional. Moreover, CDBN 
can deal with data whose structure is multichannel, such as 
EEG data. Finally, the feature learning with CDBN is in an 
unsupervised way which allows us to make use of a large 
amount of unlabeled data. 

For the application of CDBN to EEG data, as features in 
frequency-domain are more obvious than those in time-domain 
for EEG data, for each channel, we first convert time-domain 
signals into frequency-domain signals by fourier transform and 
choose the signal in 8-30Hz frequency band. As the number of 
channels of EEG data is large (e.g., 118 channels of dataset 2), 
to reduce channels, we apply PCA whitening to the signal and 
create lower dimensional representations, which is an 
important step in our experiments. As a result, the data fed into 
the CDBN is comprised of L channels of one-dimensional 
vector, where L is the number of PCA components. 
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Corresponding to the frequency band we choose, we build a 
two-layer CDBN with a filter length of 6 and a max-pooling 
ratio of 3 on layer 1 and a filter length of 4 and a max-pooling 
ratio of 3 on layer 2 for the following experiments. 

III. EXPERIMENTS AND RESULTS 
In this section, we conducted the experiments on three 

datasets from previous BCI competition. We compared the 
performance between CDBN and other classic feature 
extraction methods like CSP, band power, MVAAR. And we 
evaluated the features using the same classifier SVM with RBF 
kernel. 

We have analyzed three open EEG datasets to conduct the 
experiments. Dataset 1 comes from dataset III in 2003 BCIC II; 
it contains a total of 280 groups of left and right hand Motor 
Imagery (MI) EEG data. Dataset 2 comes from dataset Iva in 
2005 BCIC III; it includes the ‘aa’, ’al’ and ‘aw’ three subsets, 
and each subset contains a total of 280 groups of right hand 
and foot MI EEG data. Dataset 3 is from dataset III in 2005 
BCIC III; it contains 360 groups of 4 classes (left hand, right 
hand, foot, tongue) MI EEG data and we omit 63 trials after 
checking artifacts. 

Dataset 1 and dataset 2 each have 280 trails. We set 
different numbers of training samples, which are 80, 120, 160, 
200, 240, and the remaining samples are test samples. Dataset 
3 has 297 trails. And we set different numbers of training 
samples for dataset 3, which are 140, 160, 180, and also the 
remaining samples are test samples. For each number of 
training samples, 20 independent runs were conducted and 
each run corresponding training samples were selected 
randomly. The mean and standard deviation of the 
classification accuracy was recorded. 

Table I shows the classification result for different feature 
representations on dataset 1, and the best results are shown in 
bold. For method CSP, we choose the most active frequency 
band, 9-11Hz, as our filter bank. And for method band power, 
we choose two active frequency bands 8-12Hz and 18-24Hz to 
calculate band power. As for method MVAAR, the order is set 
to 3. From Table I, we can clearly see that CDBN has better 
performance over others on the whole. Though the 
performance of CDBN is slightly inferior to CSP when the 
number of training samples is 80, it has the excellent 
performance on the whole especially when the number of 
training samples is 240. 

Fig. 2 compares the classification result for different feature 
representations on dataset 2. Sub graph (a) for subject ‘aa’, (b) 
for subject ‘al’ and (c) for subject ‘aw’. For method CSP, we 
choose the most active frequency band (a) ‘aa’ 13-15Hz; (b) 
‘al’ 12-13Hz; (c) ‘aw’ 11-13Hz as our filter bank. And for 
method band power, we choose two active frequency band: (a) 
‘aa’ 13-15Hz and 25-27Hz; (b) ‘al’ 12-13Hz and 24-25Hz; (c) 
‘aw’ 11-13Hz and 25-26Hz to calculate band power. As for 
method MVAAR, the order is set to3. Inspecting each sub 
graph, we see that the performance of CSP and CDBN is 
excellent on the whole. When there are few training samples 
(e.g., 80), CSP surpasses CDBN. However, when there are 
more training samples (e.g., 240), CDBN outperforms CSP 

clearly. This is because the unsupervised feature learning of  
CDBN relies heavily on the number of unlabeled data. 

TABLE I.  MEAN CLASSIFICATION ACCURACY FOR DIFFERENT 
FEATURES ON DATASET 1 

Training  
Samples 

Correct Rate (%) 
CSP MVAAR Band Power CDBN 

80 85.38±2.24 80.35±4.07 81.90±2.75 83.63±1.82 

120 85.25±1.94 84.88±3.87 83.59±2.90 85.94±1.77 

160 85.74±2.33 85.46±2.54 85.00±2.55 86.04±2.09 

200 85.56±3.10 84.81±4.06 84.63±4.24 86.06±3.38 

240 85.75±6.18 85.88±5.80 86.13±6.36 88.25±5.70 

         

      Considering the actual situation that EEG data does not 
restrict in 2 classes, we use dataset 3, a four-class problem to 
testify the algorithm. Table II shows the classification result for 
different feature representations on dataset 3; the best results 
are shown in bold. We choose the most active frequency band 
11-12Hz for method CSP and band power. As for the order of 
method MVAAR is set to 3. From Table II, it is obvious that 
CDBN has the best performance over others. The most likely 
reason is that the more samples, the better features CDBN 
learns from unlabeled data. 

 
(a) ‘aa’ 

 
(b) ‘al’ 
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c) ‘aw’ 

Fig. 2. Mean classification accuracy for different features on dataset 2 

TABLE II.  MEAN CLASSIFICATION ACCURACY FOR DIFFERENT 
FEATURES ON DATASET 3 

Training  
Samples 

Correct Rate (%) 
CSP MVAAR Band Power CDBN 

140 80.45±1.62 81.08±1.50 80.54±2.21 82.02±1.88 

160 81.02±1.50 80.70±2.00 81.53±1.61 82.41±1.44 

180 85.47±1.44 85.64±2.36 86.09±2.36 87.33±1.74 

 

IV. CONCLUSION 
In this paper, combining with the properties of EEG data, 

we apply CDBN to the feature learning of EEG data. We have 
conducted some experiments to compare the performance of 
different feature extraction methods on the datasets from 
previous BCIC. The results demonstrate that CDBN performs 
well in the feature learning of EEG signal especially when 
there is a large amount of unlabeled data. 

Since now we only test the performance of CDBN on 
offline EEG data, in future we are interested in making CDBN 
self-adaptive so as to be adaptive to the online BCI systems. 
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