
Dimensionality Reduction Assisted Tensor Clustering

Yanfeng Sun, Junbin Gao, Xia Hong, Yi Guo and Chris J. Harris

Abstract— This paper is concerned with tensor clustering
with the assistance of dimensionality reduction approaches. A
class of formulation for tensor clustering is introduced based
on tensor Tucker decomposition models. In this formulation, an
extra tensor mode is formed by a collection of tensors of the
same dimensions and then used to assist a Tucker decomposition
in order to achieve data dimensionality reduction. We design
two types of clustering models for the tensors: PCA Tensor
Clustering model and Non-negative Tensor Clustering model,
by utilizing different regularizations. The tensor clustering
can thus be solved by the optimization method based on the
alternative coordinate scheme. Interestingly, our experiments
show that the proposed models yield comparable or even better
performance compared to most recent clustering algorithms
based on matrix factorization.

Index terms— Tensor Tucker Decomposition, Tensor
Clustering, Matrix Factorization, Tensor PCA.

I. INTRODUCTION

IN the last two decades, the advance of modern sens-
ing, networking, communication and storage technologies

pave the way for the availability of multidimensional data
with high dimensionality. For example, the remote sensing
is producing massive multidimensional data that needs to be
carefully analyzed. One of characteristics of these gigantic
datasets is they often have a large amount of redundancies.
This gives arise to the development of a low-dimensional
representation that best a low-dimensional representation that
best assists a range of learning tasks to avoid the so-called
“curse of dimensionality” [1]. Many data processing tasks
involve manipulating multi-dimension objects, such as video
data [2], remote sensing data [3] and text documents analysis
[4]. The multi-dimensional data are known as tensors [5], [6],
where data elements are addressed by more than two indices.
An N th-order tensor is an element of the tensor product of
N vector spaces. A 2D matrix is an example of the 2nd-
order tensor. Similarly, hyperspectral imagery [7] is naturally
a three-dimensional (3D) data cube containing both spatial
and spectral dimensions. It is believed that spectral and
spatial structures of hyperspectral data should be considered
simultaneously in clustering or classification, so that the
accuracy could be further improved. In this regard, we prefer

Yanfeng Sun is with Beijing Municipal Key Lab of Multimedia and
Intelligent Software Technology, Beijing University of Technology, Beijing
100124, China, (yfsun@bjut.edu.cn); Junbin Gao is with the School
of Computing and Mathematics, Charles Sturt University, Bathurst, NSW
2795, Australia (jbgao@csu.edu.au); Xia Hong is with the School of
Systems Engineering, University of Reading, Reading, RG6 6AY,UK
(x.hong@reading.ac.uk); Yi Guo is with CSIRO Mathematics, Informat-
ics and Statistics, North Ryde, NSW 1670, Australia (yi.guo@csiro.au);
Chris J. Harris is with Electronics and Computer Science, University of
Southampton, Southampton, UK, (cjh@ecs.soton.ac.uk).

This work was supported by Australian Research Council (ARC) under
Grant DP130100364. Both Yanfeng Sun and Junbin Gao are supported the
National Natural Science Foundation of China, under Grant 61370119.

to treat such 3D cube as a whole. Indeed, the data tensors are
defined in a high-dimensional space, thus applying standard
machine learning methods directly to such data gives arise to
the problems of high demands in computational and memory
costs, as well as poor model generalization. A fundamental
strategy to address these issues is to compress the data while
capturing the dominant trends or to find the most suitable
“sparse” representation of the data, simultanenously.

Principal component analysis (PCA) [8] decomposes data
object in terms of vectors, i.e., the principal components,
while the singular value decomposition (SVD) [9] decom-
poses the 2nd-order tensors, i.e. matrices, in terms of princi-
pal components along two modes, the row and the column.
One of trivial ways to deal with tensor data is to vectorize
them before any analysis is applied. Obviously this strategy
breaks the higher order dependencies presented in the natural
data structure. For example, it is a common practice to
convert image data, a typical 2nd-order tensorial structure,
into vectors for processing. However the 2D spatial structural
information that can potentially lead to more compact and
useful representations vanishes in the process of vector-
ization. In the past ten to fifteen years, new approaches
capable of possessing structural information of tensorial
data have been proposed [6]. These are finding their ways
into applications in computer vision [10], [11] and machine
learning [12], [13].

There exist many different kinds of tensor decomposi-
tion models, amongest which the CANDECOMP (canonical
decomposition)/PARAFAC (parallel factors) or in short CP
decomposition [14], and the Tucker decomposition are two
fundamental models for tensor decomposition (please refer
to the survey paper [6] for details). It can be noted that the
CP decomposition is a special case of Tucker decomposition
[6] where factor matrices have the same number of columns
and the core tensor is superdiagonal, which means that every
mode of the tensor is of the same size and its elements remain
constant under any permutation of the indices. Many other
decomposition algorithms/models can be viewed as special
formats of CP or Tucker decomposition. As an extension of
the classical SVD, the higher order SVD [15] is a special case
of general Tucker decomposition in which the core tensor is
of the same dimension as the tensor to be decomposed and
all the mode matrices have orthonormal columns. The classic
PCA has several extensions for a given set of tensorial data.
The Generalized Tensor PCA (GND-PCA) seeks a shared
Tucker decomposition for all the given tensors in which the
core tensors are different but the matrix factors along each
mode are orthogonal. This decomposition is also called the
Higher-order Orthogonal Iteration (HOOI) in [16].

In applications where data are non-negative such as im-

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 1565

ages, the non-negative matrix factorization (NFM) has proven
to be a successful approach for detecting essential features
in the data [17]. Several efficient algorithms have been
proposed [18], [19]. Naturally NFM has been extended to
non-negative tensor factorization (NTF) and NTF has been
actively investigated [12], [20], [21], [22], [23].

Another trend in tensor decomposition research is to
introduce more structures in decomposition models. Recently
Zhang et al. [24] consider a new tensor decomposition
model which they called Tri-ONTD (Tri-favctor orthogonal
non-negative tensor decomposition). The fundamental aim
is to discover the common characteristics of a series of
matrix data. A straightforward application of Tri-ONTD is
to identify cluster structures of the dataset. The core idea
behind this model is based on the centroid-based clustering
algorithms such as the well-known K-means algorithm. The
idea of introducing new structures can also be seen in [25]
under the different context with useful applications in image
representation.

This paper is dedicated to developing a tensor factorization
based clustering algorithm, referred to as Dimensionality
Reductin Assisted Tensor Clustering (DRATC). In this al-
gorithm, the tensor decompostion is used as a way to
learn low dimensional representation of the given tensors
and simultaneously clustering is conducted by coupling the
approximation and clustering learning. The contributions of
this paper are summarized as follows

1) We propose a Tucker tensor decomposition model with
specific core structures aiming at tensor clustering.
The centroid tensors are of lower dimensionality along
each tensor mode. Depending on different constraints,
two clustering models, i.e. PCA Tensor Clustering
Model and Non-negative Tensor Clustering model, are
proposed in the paper.

2) The standard centroid based clustering algorithms are
unsupervised which are not able to incorporate any
available label information. In this paper, as the second
contribution, we extend the newly proposed tensor
clustering algorithms to semi-supervised learning al-
gorithms.

3) The idea behind our proposed models shares some
similarity as the recent work by Adler et al. [26],
yet with a key difference that the clustering in [26]
is conducted in the separate post stage of learning
a sparse representation under appropriate dictionary.
In our proposed models and algorithms, both learning
stages are integrated in one framework.

The paper is organized as follows. Section II is devoted to
reviewing the concepts of tensors and introducing necessary
notations based on which several tensorial clustering models
are proposed. In Section III, we investigate an algorithm for
each proposed model. To validate the proposed models and
algorithms, a number of numerical experiments over syn-
thetic data and real world data are conducted and presented
in Section IV. Further analysis and conclusion are presented
in the last section.

II. TENSOR CLUSTERING MODEL BASED ON
DIMENSIONALITY REDUCTION

A. Tensor Notation and Operations

In the sequel, we denote 1D vector by lowercase bold
symbols like v, 2D matrix by uppercase bold symbols like U
and general tensors by calligraphy symbols like X . Let X ∈
RI1×···×In×···×IN be an N -order tensor with xi1···in···iN as
the (i1 · · · in · · · iN)th element. The n-mode product of an
N -order tensor X with a vector v ∈ RIn , denoted by X×nv,
is defined elementwise,

(X×nv)i1...in−1in+1...iN =
In∑
in=1

xi1...in...iN vin

Actually the result is a tensor of order N−1 with dimension
I1×· · · In−1× In+1 · · ·× IN . Similarly the n-mode product
of an N -order tensor X with a matrix U(n) ∈ RJn×In is
denoted by X ×n U (n). The result is an N -order tensor of
dimension I1×· · ·×In−1×Jn×In+1×· · ·×IN . Elementwise,
the n-mode product can be expressed as

(X×nU (n))i1···in−1jnin+1···iN =
In∑
in=1

xi1···in−1inin+1···iNujnin .

Note the difference between two n-mode products. Vectorial
n-mode product reduces the order of the tensor while matrix
n-mode product maintains the same order. Although a vector
can be regarded as a one column matrix, the results of two
n-mode products are different for the same vector.

Under the Tucker decomposition [6], for a given N -order
tensor X ∈ RI1×···×In×···×IN , we seek a Tucker model, as
defined below, to approximate the tensor

X ≈G ×1 U(1) ×2 U(2) ×3 · · · ×N U(N)

, JG;U(1),U(2), ...,U(N)K (1)

where G is an N -order tensor of dimension J1 × · · · ×
Jn × · · · × JN with Jn ≤ In, called the core tensor, and
U(n) ∈ RJn×In is the matrix applied along mode-n. In
this decomposition, we can say that the core tensor G is a
lower dimensional representation of the tensor X . The Tucker
decomposition is a form of higher-order PCA [27] where all
the matrices U(n) are shared by a group of given tensors.

B. Tensor Clustering Model Formulation

In this section, we propose the problem of tensor cluster-
ing. Let D = {Xl}Ll=1 ⊂ RI1×···×In×···×IN be L N -order
tensors of dimension I1 × · · · × In × · · · × IN . We wish to
categorize D into K groups under some criterion. One typical
way to deal with this problem is to reduce the dimension of
tensors by using N -order PCA or the N -order SVD [15] as

Xl ≈ JGl;U(1),U(2), ...,U(N)K (2)

Then one can apply a clustering algorithm over {Gl}Ll=1 ⊂
RJ1×···×Jn×···×JN . For example, an easy way is to con-
vert each low-dimension tensor Gl into a vector vec(Gl)
of dimension

∏N
n=1 Jn and then to cluster {vec(Gl)}Ll=1

1566

with an algorithm like K-means [8]. More generally, we
seek K tensorial centroids Ck ∈ RJ1×···×Jn×···×JN and a
membership matrix H = (hlk) ∈ RL×K such that the
following error is minimized

min
H,C1,...,CK

L∑
l=1

‖Gl −
K∑
k=1

hlkCk‖2F . (3)

If we restrict to the condition that each row of H is all
zeros but only one 1, the above problem is a combina-
torial optimization. In practical implementation, we relax
this condition to

∑K
k=1 hlk = 1 for each l = 1, 2, ..., L

with nonnegative entries hlk ≥ 0. In this framework, the
dimensionality reduction (PCA or SVD) and clustering are
separated in two independent stages. Recently some research
such as the adaptive dimensionality reduction techniques
have integrated these two procedures into a single process,
see [28], [29].

Denote the error term by

El = Xl −

(
K∑
k=1

hlkCk

)
×1 U

(1) ×2 · · · ×N U (N).

Now we propose the following clustering problem: For a
given set of N -order tensors D = {Xl}Ll=1 of dimension
I1 × · · · × In × · · · × IN , we seek K N -order tensorial
centroids {Ck}Kk=1 of low dimension J1×· · ·×Jn×· · ·×JN ,
a membership matrix H and a set of projection matrices
U (n) (n = 1, 2, ..., N) by solving the following optimization
problem

min
H,C1,...,CK ,U(1),...,U(N)

L∑
l=1

φ (El) . (4)

where φ(·) is a loss function. The popular loss function in
tensor decomposition is the squared tensorial Frobenius norm
‖ · ‖2F , see [5].

Now we stack K N -order tensorial centroids into an
(N + 1)-order tensor C = [C1; ...; CK] ∈ RJ1×J2×···×JN×K .
According to the definition of (N + 1)-mode product of a
tensor with a vector, the above problem can be re-defined
with

El = Xl − (C×N+1hl)×1 U
(1) ×2 · · · ×N U (N). (5)

where hl is the l-th row vector of H with property 1Thl = 1.

C. Regularization for Tensor Clustering

Problem defined by (4) and (5) is not well-posed. To see
this, suppose that U (1), ..., U (N) are part of a solution, then
for any orthonormal matrices Q(1), ..., Q(N) in appropriate
dimensions, Q(1)U (1), ..., Q(1)U (N) are also part of the so-
lution according to Proposition 3.12 in [5] when the loss
function is the squared Frobenius norm. Hence an appropriate
regularization is needed. Here we propose two regularized
problems of (4) and (5):

PCA Tensor Clustering Model (PCA-TC): Let φ(·) =
‖·‖2F . We use the regularization used in higher-order tensorial
PCA by specifying the conditions U (n)TU (n) = IJn

, i.e.,

U (n) consists of orthonormal columns. Then problem in (4)
and (5) becomes

min
H,C1,...,CK ,U(1)TU(1)=IJ1 ,...,U

(N)TU(N)=IJN

L∑
l=1

‖El‖2F . (6)

In general, the orthonormality can be relaxed to orthogo-
nality by only requiring U (n)TU (n) = DJn to be diagonal.

Non-negative Tensor Clustering Models (NNTC): Non-
negative matrix factorization (NMF) [17] has proven a suc-
cessful approach in many application areas [30]. This has
been extended to the tensorial cases. Kim and Choi [31]
proposed the non-negative Tucker decomposition for a single
tensor while Chi and Kolda [32] focuses on non-negative
CANDECOMP. Here we propose its clustering version with
non-negativity. We assume that the given tensor data are also
non-negative, i.e., Xl ≥ 0. There are two possible choices for
the loss function in non-negative cases. We first present the
model under the tensorial norm as the loss function,

min
H,C1,...,CK ,U(1)≥0,...,U(N)≥0

L∑
l=1

‖El‖2F . (7)

For the counting data Xl, it is more appropriate to mini-
mize the generalized Kullback-Leibler (KL) divergence. For
the sake of notation simplicity, denote

Ml = (C×N+1hl)×1 U
(1) ×2 · · · ×N U (N)

the clustering Tucker model. Then we propose a second non-
negative tensor clustering model as

min
H,C1,...,CK ,U(1)≥0,...,U(N)≥0

L∑
l=1

sum(Ml −Xl � log(Ml)).

(8)

where sum operator means the sum of all the elements of a
tensor and � means the element-wise multiplication.

III. ALGORITHMS

As there are a number of tensor and matrix variables in
models (6) - (8), we solve these problems via an alternating
approach in which updating one variable while holding all
other variables fixed.

A. Algorithm for PCA Tensor Clustering Model

First, we focus on problem (6). We solve (6) by alternating
matrix variables U (n), Ck,H. Denote the objective function
by

F (U (1), ..., U (N), C1, ..., CK ,H) =
L∑
l=1

‖El‖2F .

In order to simplify notation, let us denote

U−n⊗ = U (N) ⊗ · · · ⊗ U (n+1) ⊗ U (n−1) ⊗ · · · ⊗ U (1).

where ⊗ is the Kronecker operation of matrices. To optimize
F with respect to matrix variable U (n) while holding all

1567

others constants, from [6], we can take mode-n matricization
of the tensor terms in F , i.e.,

F (U (n)) =
L∑
l=1

‖Xl(n) − U (n) (C×N+1hl)(n)

(
U−n⊗

)T ‖2F
where the subscript (n) means mode-n matricization of a
tensor. Denote

Bl(n) = (C×N+1hl)(n)

(
U−n⊗

)T
,

then the solution U (n)∗ shall be given by

min
U(n)TU(n)=I

F =
L∑
l=1

‖Xl(n) − U (n)Bl(n)‖2F .

which is a generalized orthogonal Procrustes problem [33].
Hence the columns of the optimal solution U (n)∗ are the Jn
(leading) eigenvectors of the matrix

∑L
l=1B

l(n)XT
l(n).

Now we optimize F with respect to the k-th tensorial
centroid Ck. Denote the new tensor by Y(−k)

l = Xl −(∑
µ6=k hlµCµ

)
×1 U

(1) ×2 · · · ×N U (N), we can have

F (Ck) =
L∑
l=1

‖Y(−k)
l − hlkCk ×1 U

(1) ×2 · · · ×N U (N)‖2F .

To isolate the elements in tensor Ck, according to Proposi-
tions 3.7 and 3.8 in [5], we can re-write the above objective
in vectorial form,

F (Ck) =
L∑
l=1

‖vec(Y(−k)
l(1))−hlk(U (N)⊗· · ·⊗U (1))vec(Ck(1))‖2F .

That is, we unfold the tensor along mode-1, then vectorize
the mode-1 matrices. This becomes a standard least square
problem and its solution is

vec(Ck(1)) =

∑L
l=1 hlk(U

(N) ⊗ · · · ⊗ U (1))T vec(Y(−k)
l(1))∑L

l=1 h
2
lk

,

where we have used the fact that U (n)TU (n) = I.
It is easy to see that optimizing F with respect to H

while holding others fixed is equivalent to L independent
subproblems

min
hl≥0,

∑K
k=1 hlk=1

‖vec(X(1))− (U (N) ⊗ · · · ⊗ U (1))Chl‖2

where C = [vec(C1(1)), ..., vec(CK(1))]. This is a non-
negative least square problem which can be solved by, for
example, Matlab function lsqlin.m.

B. Algorithm Non-negative Tensor Clustering Models

Here we consider model (7) and we will discuss algorithms
for model (8) in a separate paper. The difference between (6)
and (7) is the non-negativity constraints U (n) ≥ 0. Hence
when we adopt an alternating method, we only need to
change the subproblem for optimizing U (n) in the algorithm

introduced in the last subsection. Specifically we consider
the following problem

min
U(1)≥0,...,U(N)≥0

F (U (1), ..., U (N)) =
L∑
l=1

‖El‖2F . (9)

Now we consider optimizing (9) with respect to U (n)

in turn under the alternative fashion by using an iterative
procedure. Suppose we are at iteration k, then we up-
date U

(n)
k around its current estimate U

(n)
k−1 while fixing

U1, ..., U (n−1) to their new values U1
k , ..., U

(n−1)
k at itera-

tion k and U (n+1), ..., U (N) to U
(n+1)
k−1 , ..., U

(N)
k−1 at the last

iteration k−1. That is, the sub-optimization problem is given
by

min
U(n)≥0

F k = F (U (1)
k , ..., U

(n−1)
k , U (n), U

(n+1)
k−1 , ..., U

(N)
k−1).

Then we apply the linearized proximal gradient method to
the above problem so that the new updated is defined as

U
(n)
k = argmin

U(n)≥0

〈G(n)
k , U (n) − U (n)

k−1〉+
L

(n)
k−1

2
‖U (n) − U (n)

k−1‖
2

(10)

where G(n)
k = ∂Fk

∂U(n) (U
(n)
k−1) is the block-partial gradient of

F at U (n)
k−1 and L(n)

k−1 > 0 is an appropriate constant, which
can be chosen as the Lipschitz constant of the derivative
G

(n)
k .
The derivative G

(n)
k can be calculated in the following

way. For the sake of notation simplicity, denote the new N -
order tensors Cl = C×N+1hl with mode-n matrix Cl(n). Then
using Proposition 4.3b and Section 4.5 of [5] and applying
the chain rule give

∂F

∂U (n)
=

L∑
l=1

(
X l

(n) − U
(n)Cl(n)U

−n
⊗

T
)
U−n⊗ ClT(n)

Note that in the definition of U−n⊗ we shall replace those
U (m) with U

(m)
k (m ≤ n − 1) and U

(m)
k−1 (m ≥ n + 1)

respectively. Given the above derivative, in our experiments,
we set

L
(n)
k−1 = ‖

L∑
l=1

Cl(n)U
−n
⊗

T
U−n⊗ ClT(n)‖.

It is a common practice to use an linear extrapolation to
speed up convergence. In our experiments, we adopt Nes-
terov’s extrapolation [34]. We replace the current estimate
U

(n)
k−1 in (10) by its linear combination of previous estimates

defined as

Û
(n)
k = U

(n)
k−1 + ωk−1

n (U (n)
k−1 − U

(n)
k−2)

where the weights are given by

ωk−1
n = min

ŵk−1, δw

√√√√L
(n)
k−2

L
(n)
k−1

1568

where δw < 1 is a preselected constant and ŵk−1 = tk−1−1
tk

with

t0 = 1, tk =
1
2
(1 +

√
1 + 4t2k−1).

The above algorithm is actually a generalization of the
alternative algorithm for non-negative matrix factorization in
[35].

IV. SIMULATION STUDY

In this section, we present a set of experimental results
on some real world data sets with high dimensional spatial
structures. The intention of these experiments is to demon-
strate our new models’ superiority over some state-of-the-art
clustering methods in prediction accuracy.

A. Recent Algorithms and Evaluation Metrics

Data clustering is indeed a classification task of assigning
samples to different groups. There are many different types of
clustering algorithms such as spectral clustering approaches
[36] and the recent popular matrix factorization approaches.
As the Tucker decomposition is a kind of multidimensional
generalization of matrix factorization, in this section, we will
focus on the comparison between the proposed models with
some recent matrix factorization clusterings. The following
methods for clustering are compared

1) Multiplicative Method for Nonnegative Matrix Factor-
ization (MM) [18]

2) Alternating Least Square (ALS) algorithm [37];
3) Bayesian Nonnegative Matrix Factorization (B-NFM)

[38];
4) Projected Gradient Method for Nonnegative Matrix

Factorization (PGM) [19];
5) Dual Regularized Co-Clustering (DRCC) [39];
6) Nonnegative tri-Factor tensor decomposition with ap-

plications (Tri-ONTD) [24].
To quantitatively and effectively evaluate the clustering re-
sults, we adopt two quantity metrics, the accuracy (AC)
and the normalized mutual information (NMI) [40], in our
experiments. Given a data point xi, let L and L̂ be the ground
truth label and the cluster label provided by the clustering
approaches, respectively, then the AC measure is defined by

AC =

n∑
i=1

δ
(
L̂(i),Map(L̂,L)(i)

)
n

where n is the number of samples in total and function
δ(a,b) is set to 1 if and only if a = b, and 0 otherwise.
Map(·) is the best mapping function that permutes L̂ to match
L, which is usually implemented by the Kuhn-Munkres
algorithm [41].

The other metric is the normalized mutual information
between two index sets L and L̂, defined as,

NMI(L, L̂) =
MI(L, L̂)

max
(

H (L) ,H
(
L̂
))

where H(L) and H(L̂) denote the entropy of L and L̂,
respectively, and

MI
(
L, L̂

)
=
∑
y∈L

∑
x∈L̂

p (x, y) log2

(
p (x, y)
p (x) p (y)

)

where p (y) and p (x) denote the marginal probability dis-
tribution functions of L and L̂, respectively, and p (x, y)
is the joint probability distribution function of L and L̂.
Usually, NMI(L, L̂) ranges from 0 to 1, for which the value
1 means the two sets of clusters are identical and the value
0 means that two are independent. Different from AC, NMI
is invariant with the permutation of labels, namely, does not
require the matching processing in advance.

B. Dataset Description

1) CBCL face database: This face database1 contains two
classes of data: face and non-face. The size of each image is
19x19. The goal of clustering for this database is to cluster
the images into two different classes: face and non-face.

2) Entended Yale B dataset: For this database2, we simply
use the cropped images and resize them to 32x32 pixels. This
dataset now has 38 individuals and around 64 near frontal
images under different illuminations per individual.

3) MNIST database: This handwritten digits database3

has a training set of 60,000 examples, and a test set of 10,000
examples. The digits have been size-normalized and centered
in a fixed-size image

4) ORL Database: The AT&T ORL database4 consists of
10 different images for each of 40 distinct subjects, thus 400
images in total. All the images were taken against a dark
homogeneous background with the subjects in an upright,
frontal position, under varying lighting, facial expressions
(open/closed eyes, smiling/not smiling), and facial details
(glasses/no glasses).

5) PIE database, CMU: This database5 consists of 41,368
images of 68 people. Each subject was imaged under 13
different poses, 43 different illumination conditions, and with
4 different expressions. It is called CMU Pose, Illumination,
and Expression (PIE) database. In this paper, we test the
algorithms on Pose27 subdataset as described in [42].

C. Experimental Results

We ran nonnegative matrix factorization algorithms MM,
ALS, B-NFM, PHM based on MATLAB NMF Toolbox
provided by Kasper Winther Joergensen. Matlab code for
Algorithm DRCC was provided by the authors of [39] and we
implemented all the other algorithms. The tri-FTM algorithm
is based on the description in [24].

1http://cbcl.mit.edu/projects/cbcl/software-datasets/FaceData2.html
2http://vision.ucsd.edu/˜leekc/ExtYaleDatabase/ExtYaleB.html
3http://yann.lecun.com/exdb/mnist/
4http://www.uk.research.att.com/facedatabase.html.
5http://www.ri.cmu.edu/research project detail.html?project id=418&me

nu id=261

1569

TABLE I
AC AND NMI RESULTS FOR THE TWO CLASSES CBCL FACE DATABASE WITH 1200 RANDOMLY CHOSEN DATA (600 FROM EACH CLASS)

Models: MM ALS B-NFM PGM DRCC Tri-ONTD PCA-TC NNTC
AC (%) 0.6888 0.6863 0.6738 0.6338 0.7850 0.5800 0.5013 0.8450

NMI 0.1056 0.1029 0.0897 0.0530 0.2545 0.0788 0.0106 0.4396

Experiment I: We first tested all the algorithms on the
CBCL face database as this is the simplest case where there
are only two clusters of images. We chose the datasizes
from 200 to 1600 by 100 for each class and the experiment
results indicate that when size = 600 almost all the algorithms
achieved the best accurary. Under this size, we also tested
different tensor core sizes from 4 to 10 and found both
PCA Tensor Clustering Model (PCA-TC) and Non-negative
Tensor Clustering model (NNTC) gave better results for
the tensor core size 7. Table I compares all the results.
We can see that at two class cases all the algorithms are
comparable. Clearly the NNTC model is the winner while
the performance of the PCA-TC model is a bit disappointing
in this case, although PCA-TC had better results AC = 0.7358
and NMI = 0.1994 when the tensor core size is 8.

Experiment II: In the next experiment, we tested the
impact of the number of classes on the performance of all the
algorithms. We chose the NMIST handwritten digits dataset
for this purpose. There are ten different classes. We randomly
picked digits for training data according to the class number
K = 3, 4, ..., 10 with 100 images for each class. We report
the experimental results in Table II, however for most of
cases Tri-ONTD failed, so no results reported. From the
results we can see that in lower class number cases NNTC
performs much better than all the others while in the case of
higher class numbers PCA-TC takes over.

Experiment III: Then we did a similar test as Experiment
II on PIE database to further confirm the observation in Ex-
periment II. As the tri-ONTD algorithm provides meaningful
results in our experiments, we abandoned further testing on
the tri-ONTD algorithm. In this experiment, we randomly
chose 600 images and tested on the cluster numbers 8, 18, 28,
38, 48, 58 and 68 where 68 is the maximal cluster number in
the database. The results are collected in Table III. Obviously
NNTC performs much better than all the others, except for
several occasions where the classical ALS gave slightly better
results.

Experiment IV: Finally we tested all the algorithms on
the ORL database (40 subjects with 400 images) and YaleB
extended database (38 subjects with 2414 images), respec-
tively. For the ORL database we randomly chose 10 subjects
with five runs while for the YaleB database we used all
the images. The results are summarized in Table IV. We
noted that almost all the algorithms failed over the YaleB
database although NNTC manages to achieve the best result
among them. Part of the reason is due to the larger database
size and there are more variants among the images. For the
ORL database, it seems NNTC is comparable to all the other
classical algorithm while its NMI score is much better than

others.

V. CONCLUSIONS

We have proposed two tensor clustering models based on
tensor Tucker decomposition with different regularization.
Two relevant algorithms have been proposed to solve the
clustering problems based on alternative optimization strat-
egy. We implemented the clustering algorithms based on
different linearized proximal gradient method. We have also
used a number of real world datasets to test the proposed
algorithms and compared them with some existing nonnega-
tive matrix factorization methods. Numerical results illustrate
the high efficiency of the proposed algorithms. Based on
the experiment results, we highly recommend the NNTC for
tensor clustering.

Further work can be carried out in several different direc-
tions. For example, the general tensor clustering model (5) is
an unsupervised learning task. It cannot be applied directly to
the situation when some label information is available. We
will further explore a semi-supervised extension of model
(5) in which label information can be utilized. Consider a
tensorial set of L N -order tensors {Xl}Ll=1, among which
the label information is available for the first l0 tensors
X1, ...,Xl0 , and the rest of L − l0 tensors Xl0+1, ...,XL
are unlabelled. Given this information, we can design the
membership matrix H as follows: Let hl = ek if the l-th
tensor is in class k (l = 1, 2, ..., l0 and k = 1, 2, ...,K). Thus
the membership matrix H = [H0;H1] with H0 having been
determined. Under this framework, problems (6) to (8) can be
easily extended to semi-supervised cases. For example, the
Semi-supervised Non-negative Tensor Cluster Model related
to (7) can be defined as

min
H1,C1,...,CK ,U(1)>0,...,U(N)>0

L∑
l=1

‖El‖2F . (11)

Due to the limitation of space, we leave this for another
paper.

ACKNOWLEDGMENTS

The authors thank Dr. Quanquan Gu for sharing his DRCC
code with us.

REFERENCES

[1] B. Schölkopf and A. Smola, Learning with Kernels. Cambridge,
Massachusetts: The MIT Press, 2002.

[2] H. Lua, K. N. Plataniotisb, and A. N. Venetsanopoulos, “A survey
of multilinear subspace learning for tensor data,” Pattern Recognition,
vol. 44, pp. 1540–1551, 2011.

[3] X. Guo, L. Zhang, and X. Huang, “Hyperspectral image noise re-
duction based on rank-1 tensor decomposition,” ISPRS Journal of
Photogrammetry and Remote Sensing, vol. 83, pp. 50–63, 2013.

1570

TABLE II
AC AND NMI RESULTS FOR THE TEN CLASS NMIST HANDWRITTEN DIGITS WITH 1000 RANDOMLY CHOSEN IMAGES (100 FROM EACH CLASS)

Models: MM ALS B-NFM PGM DRCC PCA-TC NNTC
K = 3 AC (%) 0.6063 0.6067 0.6200 0.5967 0.5900 0.7067 0.7900

NMI 0.3273 0.3466 0.3789 0.3164 0.3168 0.4426 0.4576
K = 4 AC (%) 0.7950 0.7975 0.7925 0.7900 0.7375 0.7900 0.8425

NMI 0.5406 0.5549 0.5613 0.5361 0.4568 0.5484 0.6006
K = 5 AC (%) 0.6000 0.5540 0.6360 0.5360 0.5180 0.5820 0.6440

NMI 0.4247 0.4324 0.4373 0.3733 0.3225 0.4365 0.4508
K = 6 AC (%) 0.6133 0.6117 0.5867 0.5933 0.4850 0.6100 0.6033

NMI 0.4578 0.4623 0.4164 0.4532 0.4264 0.4452 0.4919
K = 7 AC (%) 0.5529 0.5486 0.4829 0.5300 0.6014 0.6443 0.5900

NMI 0.4351 0.4835 0.4258 0.4479 0.4486 0.5071 0.4628
K = 8 AC (%) 0.5463 0.6350 0.5288 0.6750 0.6475 0.6200 0.5962

NMI 0.4361 0.5010 0.4538 0.5282 0.4987 0.4644 0.4445
K = 9 AC (%) 0.4989 0.4822 0.4189 0.4644 0.5111 0.5522 0.4556

NMI 0.4249 0.4197 0.3771 0.4272 0.4324 0.4219 0.3524
K = 10 AC (%) 0.4810 0.4750 0.4330 0.3910 0.5140 0.5150 0.5210

NMI 0.4367 0.4170 0.4038 0.4243 0.3978 0.4438 0.4481

TABLE III
AC AND NMI RESULTS FOR MULTIPLE CLASS PIE FACE DATABASE WITH 600 RANDOMLY CHOSEN DATA

Models: MM ALS B-NFM PGM DRCC PCA-TC NNTC
K = 8 AC (%) 0.6575 0.7123 0.5753 0.6301 0.4384 0.6438 0.8219

NMI 0.6590 0.7258 0.6402 0.5989 0.4206 0.5891 0.8764
K = 18 AC (%) 0.7200 0.6933 0.5267 0.6733 0.4000 0.5733 0.8067

NMI 0.8250 0.7972 0.7186 0.7790 0.5253 0.7314 0.8822
K = 28 AC (%) 0.6104 0.5542 0.5783 0.5944 0.3052 0.4859 0.7430

NMI 0.7819 0.7369 0.7655 0.7669 0.5335 0.6615 0.8421
K = 38 AC (%) 0.6170 0.5805 0.6444 0.5623 0.3100 0.4711 0.6748

NMI 0.7821 0.7688 0.8066 0.7475 0.5536 0.6708 0.8185
K = 48 AC (%) 0.6458 0.5759 0.6289 0.5133 0.3108 0.4916 0.6361

NMI 0.8079 0.7714 0.7983 0.7840 0.5687 0.7117 0.8260
K = 58 AC (%) 0.6257 0.5901 0.6000 0.6059 0.2733 0.4891 0.6198

NMI 0.8207 0.7957 0.8089 0.7973 0.5616 0.7071 0.8132
K = 68 AC (%) 0.6033 0.5550 0.5900 0.5933 0.2483 0.4917 0.6133

NMI 0.8064 0.7849 0.8073 0.8220 0.5444 0.7507 0.8069

TABLE IV
AC AND NMI RESULTS FOR BOTH ORL AND YALEB FACE DATABASES

Models: MM ALS B-NFM PGM DRCC PCA-TC NNTC
ORL AC (%) 0.6440 0.6820 0.6280 0.6300 0.5580 0.6360 0.6680

NMI 0.7308 0.7269 0.7107 0.7236 0.6498 0.6968 0.7362
YaleB AC (%) 0.2175 0.2270 0.2104 0.2084 0.1002 0.2117 0.2709

NMI 0.3534 0.3470 0.3508 0.3477 0.1455 0.3402 0.3995

[4] D. Cai, X. He, and J. Han, “Tensor space model for document
analysis,” in Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval,
2006, pp. 625 – 626.

[5] T. G. Kolda, “Multilinear operators for higher-order decompositions,”
Sandia National Laboratories, Tech. Rep., 2006.

[6] T. G. Kolda and B. W. Bader, “Tensor decompositions and applica-

tions,” SIAM Review, vol. 51, no. 3, pp. 455–500, 2009.
[7] G. A. Shaw and H. hua K. Burke, “Spectral imaging for remote

sensing,” Lincoln Laboratory Journal, vol. 14, no. 1, pp. 3–28, 2003.
[8] C. Bishop, Pattern Recognition and Machine Learning, ser. Informa-

tion Science and Statistics. Springer, 2006.
[9] G. Golub and C. van Loan, Matrix Computations, 3rd ed. Maryland:

The Johns Hopkins University Press, 1996.

1571

[10] S. Aja-Fernández, G. R. Luis, D. Tao, and X. Li, Tensors in Image
Processing and Computer Vision. Springer, 2009.

[11] Y. Tang, R. Salakhutdinov, and G. Hinton, “Tensor analyzers,” in Pro-
ceedings of the 30th International Conference on Machine Learning,
Atlanta, USA, 2013.

[12] A. Shashua and T. Hazan, “Non-negative tensor factorization with
applications to statistics and computer vision,” in Proceedings of
International Conference on Machine Learning (ICML), 2005, pp.
792–799.

[13] M. Morup, “Applications of tensor (multiway array) factorizations and
decompositions in data mining,” Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, vol. 1, no. 1, pp. 24–40, 2011.

[14] H. Kiers, “Towards a standardized notation and terminology in multi-
way analysis,” Journal of Chemometrics, vol. 14, no. 3, pp. 105–122,
2000.

[15] L. DeLathauwer, B. DeMoor, and J. Vandewalle, “A multilinear
singular value decomposition,” SIAM Journal of Matrix Analysis and
Applications, vol. 21, no. 4, pp. 1253–1278, 2001.

[16] ——, “On the best rank-1 and rank-(r1, r2, · · · , rn) approximation
of higherorder tensors,” SIAM Journal of Matrix Analysis and Appli-
cations, vol. 21, p. 13241342, 2000.

[17] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, p. 788791,
1999.

[18] ——, “Algorithms for non-negative matrix factorization,” in Advances
in Neural Information Processing Systems (NIPS), T. K. Leen, T. G.
Diettercih, and V. Tresp, Eds., vol. 13. MIT Press, 2001, pp. 556–562.

[19] C. Lin, “Projected gradient methods for nonnegative matrix factoriza-
tion,” Neural Computation, vol. 19, no. 10, p. 27562779, 2007.

[20] M. Welling and M. Weber, “Positive tensor factorization,” Pattern
Recognition Letters, vol. 22, pp. 1255–1261, 2001.

[21] M. P. Friedlander and K. Hatz, “Computing non-negative tensor
factorizations,” Optimization Methods and Software, vol. 23, no. 4,
pp. 631–647, 2008.

[22] J. Liu, J. Liu, P. Wonka, and J. Ye, “Sparse non-negative tensor fac-
torization using columnwise coordinate descent,” Pattern Recognition,
vol. 45, pp. 649–656, 2012.

[23] F. Wu, X. Tan, Y. Yang, D. Tao, S. Tang, and Y. Zhuang, “Supervised
nonnegative tensor factorization with maximum-margin constraint,”
in Proceedings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence, 2013, pp. 962–968.

[24] Z. Y. Zhang, T. Li, and C. Ding, “Non-negative tri-factor tensor
decomposition with applications,” Knowledge Information Systems,
vol. 34, pp. 243–265, 2013.

[25] H. Liu, Z. Wu, X. Li, D. Cai, and T. S. Huang, “Constrained nonnega-
tive matrix factorization for image representation,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 34, no. 7, pp. 1299–
1311, 2012.

[26] A. Adler, M. Elad, and Y. Hel-Or, “Probabilistic subspace clustering
via sparse representations,” IEEE Signal Processing Letters, vol. 20,
no. 1, pp. 63–66, 2013.

[27] A. Kapteyn, H. Neudecker, and T. Wansbeek, “An approach to n-mode
components analysis,” Psychometrika, vol. 51, pp. 269–275, 1986.

[28] C. Ding and T. Li, “Adaptive dimension reduction using discriminant
analysis and K-means clustering,” in Proceedings of International
Conference on Machine Learning, 2007, pp. 521–528.

[29] M. Vichi and H. A. L. Kiers, “Factorial K-means analysis for two-way
data,” Computational Statistics & Data Analysis, vol. 37, pp. 49–64,
2001.

[30] N. D. Ho, “Non-negative matrix factorization algorithms and ap-
plications,” Ph.D. dissertation, Department of Applied Mathematics,
Universite Catholique de Louvain, 2008.

[31] Y.-D. Kim and S. Choi, “Nonnegative Tucker decomposition,” in
Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2007.

[32] E. C. Chi and T. G. Kolda, “On tensors, sparsity, and nonnegative
factorizations,” SIAM Journal on Matrix Analysis and Applications,
vol. 33, no. 4, pp. 1272–1299, 2012.

[33] P. Schonemann, “A generalized solution of the orthogonal Procrustes
problem,” Psychometrika, vol. 31, pp. 1–10, 1966.

[34] Y. Nesterov, Introductory lectures on convex optimization: A basic
course. Kluwer Academic Publishers, 2003.

[35] Y. Xu and W. Yin, “A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor
factorization and completion,” SIAM J. of Imaging Sciences, vol. 6,
no. 3, pp. 1758–1789, 2013.

[36] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22,
pp. 888–905, 1997.

[37] H. Kim and H. Park, “Sparse non-negative matrix factorization via
alternating non-negativity-constrained least squares for microarray data
analysis,” Bioinformatics, vol. 23, no. 12, pp. 1495–1502, 2007.

[38] M. Schmidt, O. Winther, and L. Hansen, “Bayesian non-negative
matrix factorization,” in Lecture Notes in Computer Science (LNCS):
Proc. of International Conf on Independent Component Analysis and
Signal Separation, vol. 5541, 2009, pp. 540–547.

[39] Q. Gu and J. Zhou, “Co-clustering on manifolds,” in The 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), Paris, France, 2009.

[40] D. Cai, X. He, X. Wang, H. Bao, and J. Han, “Locality preserving
nonnegative matrix factorization,” in Proc. of Int. Joint Conference on
Artificial Intelligence (IJCAI), 2009.

[41] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposi-
tion by basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, Jan.
2001.

[42] D. Cai, X. He, J. Han, and T. S. Huang, “Graph regularized non-
negative matrix factorization for data representation. , 33(8):, 2011.”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 33, no. 8, pp. 1548–1560, 2011.

1572

