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Abstract—We present a new fuzzy c-means algorithm for
image segmentation by introducing a novel spatially constrained
Student’s t-distribution and a new regularization term. Firstly,
considering that conventional distribution models lack spatial in-
formation and the multivariate Student’s t-distribution is heavily
tailed, we propose a new way to incorporate spatial information
between neighboring pixels into the Student’s t-distribution based
on Markov random field (MRF) in order to enhance robustness.
Secondly, the new regularization term, inspired by the geodesic
active contour (GAC) with a strong ability in capturing boundary,
can preserve the details of edges and further enhance its robust-
ness to noise and outliers by capitalizing on the local context
information and edge information. Finally, in comparison to other
Markov random fields that are complex and computationally
expensive, the parameters are easily optimized with the EM
algorithm in our proposed method. The proposed algorithm
demonstrates the robustness and effectiveness, compared with
other state-of-the-art methods on synthetic and real images.

I. INTRODUCTION

Image segmentation is fundamental to image/vision analysis
and pattern recognition, regarded as an image pre-processing
technique and process. Because of the diversity and complexity
of image, it has been a challenging problem. The objective of
image segmentation is to partition pixels in an image into dis-
joint sets that correspond to objects or parts of objects. There
are many different approaches to image segmentation, such
as graph based methods [1]-[4], partial differential equations
(PDE) based segmentation techniques [5]-[7], and clustering
approaches [8]-[9]. In this paper, we focus on segmentation
based on fuzzy clustering.

The fuzzy c-means algorithms (FCMs) [10] have been
well studied and successfully and widely applied to image
segmentation. Based on fuzzy set theory [11] and introducing
the idea of partial membership, FCM allows pixels to belong
to multiple classes with certain similarity measure and makes a
final classification decision. It is very important in applications
in many real situations, such as limited spatial resolution, poor
contrast, overlapping intensities, noise and intensity inhomo-
geneities, see [15]. Although the conventional FCM algorithm
works well on most noise-free images, it is still sensitive
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to noise and outliers, since it does not consider any spatial
information.

To overcome this drawback of FCM, many extensions of
the FCM algorithm have been explored and proposed [12]-
[19]. Ahmed et al. [12] proposed FCM S, which modifies
the objective function of the standard fuzzy c-means (FCM)
algorithm by incorporating regularized term on spatial neigh-
borhood in order to compensate intensity inhomogeneity and
to encourage the labeling of a pixel to be influenced by the
its immediate neighborhood labels. However this approach
results in a very time-consuming scheme as the neighborhood
labelling was computed in each iteration step. Chen and Zhang
[13] presented two variations of the original FCM S, named,
FCM S1 and FCM S2. These two new models incorporate
the spatial contextual information by using the extra mean and
median-filtered images, respectively, which can be calculated
in advance. Hence the computation time is relatively reduced.
Sotirios and Varvarigou [14] incorporated spatial constraints
into the fuzzy objective function by Hidden Markov Random
Field Models (HMRF). In this model, a fuzzy objective func-
tion is regularized by Kullback-Leibler divergence information
and a mean-field-like approximation of the Markov field
prior is adopted. Krinidis and Chatzis [15] presented a novel
robust fuzzy local information c-means clustering algorithm
(FLICM), which is free of any parameter selection. In FLICM,
the novel fuzzy factor, incorporated with the local spatial
information and pixel gray level information, was defined to
improve noise insensitiveness and image detail preservation.
This algorithm was fully free of the empirically adjusted
parameters. In [16], a variant of FLICM was presented, named
RFLICM. The important contribution is that the local coeffi-
cient of variation replacing the spatial distance was represented
as a local similarity measure. The authors of [19] further
improve the performance of FLICM by exploiting a new factor
concerning on spatial distance of all neighbor pixels and their
gray level difference simultaneously. Furthermore they used
the kernel distance measure to replace the traditional Euclidean
distance in the objective function. However, the experiments
have demonstrated that these models still suffer from such as
limited robustness to outliers and noise and the negligence of
image edge information.

In this paper, we combine the benefits of FCM, Student’s
t-distribution, MRF and the regularization term. As real image
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objects are often nonlinearly various and heterogeneous, and
Student’s t-distribution is heavily tailed and more robust than
Gaussian, we exploit multivariable Student’s t-distribution to
describe each phase rather than single constant in the conven-
tional FCM. To enhance robustness to noise and outliers, local
context information is fused into the probability distribution
model with MRF. Integrated with the advantage of edge-based
methods (GCA), the new regularization term is presented in
the new algorithm in order to meet the criterion of the FCM
algorithm. Finally, the proposed method adopts expectation
maximization (EM) algorithm to optimize parameters.

II. PRELIMINARY THEORY

The Student’s t-distribution has been widely used as a robust
modeling method [20]-[23]. A D-dimensional random variable
x is said to follow a multivariate t-distribution S(x) with mean
µ, a real covariance matrix Σ (positive definite) and ν ∈ [0,∞)
degrees of freedom, if its density function is given by

S(x) =
Γ(ν/2 +D/2)|Σ|(−1/2)

(νπ)D/2Γ(ν/2)

×
(
1 + ν−1(x− µ)TΣ−1(x− µ)

)−(ν+D)/2
,

where Γ(.) is the Gamma function:

Γ(n) =

∫ ∞
0

tn−1e−tdt.

As shown in Fig.1 (a) and (b), the Student’s t-distribution is
more heavily tailed than the Gaussian distribution. Compared
with the Gaussian distribution, the Student’s t-distribution has
one more parameter ν which is viewed as a robustness tuning
parameter. As ν →∞, this distribution tends to the Gaussian
distribution. Hence, the Student’s t-distribution provides a
more powerful and flexible approach for probabilistic data
clustering compared with the Gaussian distribution.

The FCM clustering algorithm was introduced by Dunn
[24] and later extended by Bezdek [10]. The segmentation
process of an image can be defined as the minimization of the
following objective function:

Jm =
K∑
i=1

N∑
j=1

umijd(xi, µj) (1)

where N is the total number of pixels, K represents cluster
number, xi is the intensity value of the i-th pixel in the image,
uij stands for the certain similarity degree of i-th pixel in
the j-th clustering, m is a weighting exponent on each fuzzy
membership uij , µj is the mean value of j-th clustering and
d(xi, µj) is the Euclidean measure between object xi and
cluster centre µj .

Caselles et al. [25] propose a geodesic active contour (GAC)
model by defining an energy function along a curve C and
minimizing the evolving curve in the normal direction. A new
length definition in a different Riemannian space is given:

Lg(C) =

∫ L(C)

0

g(|∇I(C(s))|)ds (2)

−15 −10 −5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(a) Gaussian distribution

−15 −10 −5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

 

 

v=100

v=1

v=0.5

v=0.3

v=0.1

(b) Student’s-t distribution for various values of v

Fig. 1. Plot of the 1-D distributions

where L(C) is the length of the curve C, s is arc length
parameters, |∇I| is length of the gradient and g : [0,+∞]→
R+ is a strictly decreasing function such that g(r) → 0 as
r →∞.

Nguyen et al. [26] present the Spatially Constrained Gaus-
sian Mixture Model based on MRF. The log-likelihood func-
tion can be expressed as:

L =
N∑
i=1

log


K∑
j=1

πijp(xi|θj)

+
N∑
i=1

K∑
j=1

G
(t)
ij logπij (3)

where

G
(t)
ij = exp

 β

Ni

∑
q∈∂i

(
z
(t)
qj + π

(t)
qj

)
z
(t)
qj is the posterior probability, π(t)

qj is the prior probability
of the pixel xq in the j-th label, β is the temperature value,
∂i is the neighborhood of the i-th pixel, Ni is the number of
neighboring pixels around the pixel xi in the neighborhood ∂i
and t indicates the iteration steps.
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III. PROPOSED METHOD

We exploit the advantages of (1)-(3) to present a new
objective function:

J =
N∑
i=1

K∑
j=1

umijdij +
N∑
i=1

K∑
j=1

Ĝ
(t)
ij logπij

+ λ
N∑
i=1

K∑
j=1

∑
q∈∂i

g(|∇Iσ|q)(1− uqj)mumij (4)

where the distance function dij in (4) is different from that in
(1), which is defined by the student’s t-distribution S(x) and
the prior information πij as follows:

dij = −2log(πijS(xi|ϕj))

where ϕj = {νj , µj ,Σj} , (j = 1, 2, ...,K) and πij satisfies
the constraints:

πij ≥ 0, j = 1, 2, ...,K and
K∑
j=1

πij = 1 (5)

S(xi|ϕj) =
Γ(νj/2 +D/2)|Σj |(−1/2)

(νjπ)D/2Γ(νj/2)

×
(
1 + ν−1j (xi − µj)TΣ−1j (xi − µj)

)−(νj+D)/2
.

In the 2nd term of J , a novel factor Ĝ(t)
ij , inspired by

anisotropic diffusion, is introduced in (6), in order to incorpo-
rate the local context information and preserve the details of
image edge.

Ĝ
(t)
ij = −

exp

 β

Ni

∑
p∈∂i

ωpj(π
(t)
pj + u

(t)
pj − π

(t)
ij − u

(t)
ij )


m

(6)
where

ωpj =
1

1 + ρpi
× 1

1 + |∇(π(t)
pj + u

(t)
pj )|

Here, ρpi is the Squared Euclidean distance between the
point(p) and the point(i). The factor defined in (6) is different
from that in (3).

For the 3rd term of J , we introduce the novel regularization
term. According to the paper [27], the length of the cluster
boundaries is defined as

EL =
N∑
i=1

K∑
j=1

∑
p∈∂i

χj(xp, xi)

where the characteristic function χj is defined as

χj(xp, xi) =

{
1 xp ∈ Ωj and xi ∈ Ωj .

0 otherwise.

where Ωj stands for the region corresponding to the j-
th clustering, j = 1, 2, ...,K. Let us introduce a vector-
valued characteristic function û = (û1, û2, ..., ûK). Each ûj :

Ω→ {0, 1}, where Ω is defined on a bound domain of image,
is defined as

ûij =

{
1 xi ∈ Ωj .

0 otherwise.

So EL can be rewritten as

EL =
N∑
i=1

K∑
j=1

∑
p∈∂i

∑
k=1,k ̸=j

ûpk

 ûij

=

N∑
i=1

K∑
j=1

∑
p∈∂i

(1− ûpj)ûij

It was shown in [27] that: EL ∝ L(C), where ∝ represents
a proportional relation. It is well-known that GCA is the
essentially weighted arc length, expressed as:

Lg(C) =

∫ L(C)

0

g(|∇I(C(s))|)ds

∝
N∑
i=1

K∑
j=1

∑
p∈∂i

g(|∇I|p)(1− ûpj)ûij

Lg(C) is modified in order to satisfy the criterion of the FCM
algorithm. We present the novel regularizer named improved
GCA, which is

L̂g =
N∑
i=1

K∑
j=1

∑
p∈∂i

g(|∇Iσ|p)(1− ûpj)mûmij

Iσ stands for the image preprocessed by Gaussian filter ( 0
mean, σ variance). g(r) = (1 + r/M)−1 where M is a con-
stant. Finally, we shall consider the constrained optimization
problem (4) under the condition:

N∑
i=1

uij = 1, uij ≥ 0, for every j ∈ {1, 2, ..,K} (7)

IV. PARAMETER LEARNING

We use the Lagrange multiplier to minimize the objective
function (4) over parameters πij under the condition (5), so
we have

π
(t+1)
ij =

(u
(t)
ij )

m −G(t)
ij

K∑
k=1

(
(u

(t)
ik )

m −G(t)
ik

) (8)

As to uij , in the same way, the uij is given as

u
(t+1)
ij =

1

K∑
k=1

 dij+λ
∑

p∈∂i

g(|∇Iσ|p)(1−u(t)
pj )m

dik+λ
∑

p∈∂i

g(|∇Iσ|p)(1−u(t)
pk )m


1/(m−1) (9)

The parameter set ϕj = {νj , µj ,Σj} , (j = 1, 2, ...,K) are
optimized by minimizing the objective function (4). Note
that there is no closed form solution under a Student’s-
t distribution. In order to make use of the EM algorithm
and overcome this problem, we use the fact, refer to [28]
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. (a) Original image (b) Corrupted original image with Gaussian noise (0mean,0.03variance) (c) SVFMM (MCR=13.77%) (d) DCA-SVFMM
(MCR=19.81%) (f) HMRF-FCM (MCR=2.32%) (e) ST-FCM (MCR=2%) (g) KWFLICM (MCR=1.37%) (h) Proposed method (MCR=1.35%)

(a) (b) (c) (d)

Fig. 3. (a) Original image (b) Corrupted original image with Gaussian noise (0mean,0.08variance) (c) FCM based on spatially constrained Student’s
t-distribution (d) FCM based on spatially constrained Student’s t-distribution and the new regularization term

and [29], that the Student’s t-distribution can be decomposed
into a superposition of infinite number of Gaussians with the
precision scaling factor Sij given by:

S(xi|ϕj) =
∫

Φ(xi|µj ,Σj/Sij)d℘(Sij |νj/2, νj/2).

where Φ(xi|µj ,Σj/Sij) =

1

(2π)D/2
S
D/2
ij

|Σj |1/2
exp

{
−1

2
Sij(xi − µj)TΣ−1j (xi − µj)

}
and the Gamma distribution ℘(Sij |νj/2, νj/2) is given by:

℘(Sij |νj/2, νj/2) =
1

Γ(νj/2)
(νj/2)

νj/2(Sij)
νj/2−1e−νjSij/2

Considering Sij as an introduced latent variable, following
[30], we can updated the scaling factor as follows

S
(t)
ij =

ν
(t)
j +D

ν
(t)
j + (xi − µ(t)

j )T (Σ
(t)
j )−1(xi − µ(t)

j )
(10)

As for the estimate of µj at the (t+ 1) step, we have

µ
(t+1)
j =

N∑
i=1

S
(t)
ij (u

(t)
ij )

mxi

N∑
i=1

S
(t)
ij (u

(t)
ij )

m

(11)
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Fig. 4. (a) Original image (b)KL-FCM (c) SVFMM (d) DCA-SVFMM (f) HMRF-FCM (e) ST-FCM (g) KWFLICM (h) Proposed method

Regarding Σj at the (t+ 1) iteration step, we have

Σ
(t+1)
j =

N∑
i=1

S
(t)
ij (u

(t)
ij )

m(xi − µ(t+1)
j )(xi − µ(t+1)

j )T

N∑
i=1

(u
(t)
ij )

m

(12)

The estimates of the degrees of freedom (νj) are given by the
solution of the equation:

log
(νj
2

)
−Ψ

(νj
2

)
+ 1 +

N∑
i=1

(
u
(t)
ij

)m (
log(S(t)

ij )− S
(t)
ij

)
N∑
j=1

(
u
(t)
ij

)m
+Ψ

(
ν
(t)
j +D

2

)
− log

(
ν
(t)
j +D

2

)
= 0 (13)

To summarize it, we have the following algorithm procedure
for the proposed method as follows:

Step 1 Initialize the parameters: µj , Σj , νj , πij , β and λ.
Step 2 (E step):

* Evaluate fuzzy membership function uij by (9).
* Compute the factor Gij by (6)
* Compute the scaled precision Sij by (10).

Step 3 (M step):
* Update the means µj by (11)
* Update the covariance matrices Σj by (12).
* Update the degree of freedom νj by (13).
* Update prior distributions πij by (8).

Step 4 Evaluate the objective function in (4) and check for
the convergence of either the objective function or the
parameter values. If the convergence criterion is not
satisfied, then go to step 2

In the next section, we will demonstrate the robustness,
accuracy and effectiveness of the proposed model, as well as
comparing with other approaches.

V. EXPERIMENTS

In this section, some comprehensive experiments are con-
ducted to evaluate the performance of our proposed model,
compared with some state-of-the-art image segmentation mod-
els. These models include the spatially constrained mixture
model (SVFMM) [31], the class-adaptive spatially variant
mixture model (DCA-SVFMM) [32], the fuzzy c-means clus-
tering with regularization by K-L information (KL-FCM) [33],
the fuzzy clustering approach toward hidden Markov random
field models for enhanced spatially constrained image seg-
mentation (HMRF-FCM) [14], the fuzzy C-Means Clustering
With Local Information and Kernel Metric for Image Seg-
mentation (KWFLICM) [19] and the Robust Fuzzy Algorithm
Based on Student’s t-Distribution and Mean Template for
Image Segmentation Application (ST-FCM) [34]. The source
code of SVFMM and DCA-SVFMM can be downloaded
from http://www.cs.uoi.gr/kblekas/sw/MAPsegmentation.html
and http://www.cs.uoi.gr/cnikou/, respectively. HMRF-FCM
code and KWFLICM code are available at the website: http-
s://www.cut.ac.cy/eecei/staff/sotirios.chatzis/languageId=2 and
http: //see.xidian.edu.cn/faculty/mggong/publication.htm, re-
spectively.
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(a) 253036 (b) 135069 (c) 201080 (d) 28083

(e) (f) (g) (h)

Fig. 5. Segmentation examples of our method based on the Berkeley database. First row: original image. Second row: the segmentation results of image in
first row by our proposed method.

The proposed method was implemented and tested on
synthetic and real-world images. To quantify segmentation
results, the misclassification ratio (MCR) [36], which is the
number of misclassified pixels divided by the total number
of pixels, is adopted to evaluate the segmentation accuracy
of synthetic images. The probabilistic rand (PR) index [37]
is used to evaluate the image segmentation performance of
the natural images. All methods are initialized by the K++
means algorithm [35]. Parameters β, m, M and λ are assigned
to 20, 2, 100 and 60 respectively. The proposed method is
implemented in Matlab and tested on a PC with Intel Pentium
D running at 2.8 GHz and 2 GB of RAM.

TABLE I
COMPARISON OF IMAGE SEGMENTATION RESULTS BY PROBABILISTIC

RAND (PR) INDEX

SVFMM DCA- HMRF ST Proposed
SVFMM -FCM -FCM method

28083 0.839 0.841 0.849 0.865 0.866
201080 0.884 0.874 0.873 0.925 0.926
135069 0.976 0.989 0.987 0.977 0.991
253036 0.923 0.923 0.922 0.923 0.924
mean 0.9055 0.9067 0.9077 0.9225 0.9267

A. Synthetic Images

In the first experiment, a synthetic image (256x256 image
resolution) as shown in Fig. 2(a), is used to compare the pro-
posed algorithm with others. The image has three classes with
luminance values [0.1,0.5,1]. The image shown in Fig. 2(b)
is obtained by corrupting the original image with Gaussian
noise with mean 0 and variance 0.03. Segmentation results
shown in Fig. 2(c)-(g) are obtained by using SVFMM, DCA-
SVFMM, HMRF-FCM, ST-FCM, KWFLICM, respectively.
Misclassification ratio (MCR) [36] has been used to compare
the results. As can be seen, a lot of noise exist in the
segmentation results of SVFMM and DCA-SVFMM. From a

quantitative perspective, the MCR of the SVFMM and DCA-
SVFMM is much higher than that of others, respectively.
Under a given level of noise, the two algorithms (SVFMM
and DCA-SVFMM) are sensitive to noises. As shown in Fig.
2(e), the HMRF-FCM algorithm reduces the effect of noise
significantly. However, there still exist a little catchy noise.
Obviously segmentation results of ST-FCM algorithm shown
in Fig. 2(f) have further reduced the effect of noise. As MCR
of ST-FCM is lower 0.32% than that of HMRF-FCM, ST-FCM
algorithm obtains a better result than the previous algorithms.
But after careful observation, some details are lost in this
segmented images. We can see that the proposed method
obtains the best performance and the edge information of
the image is kept very well in Fig. 2(h). From the objective
perspective, our algorithm has lower MCR compared with the
other methods.

The second experiment is used to test and verify the effect
of our innovations. As is shown in Fig. 3(a), the synthetic
image with 256x256 pixels includes two classes with two
luminance values {0, 1}. This image can be downed from the
website: https://sites.google.com/site/nguyen1j/home/10-code.
Fig. 3(b) shows this synthetic image corrupted by Gaussian
noise with mean 0 and variance 0.08. Next, we test our
proposed algorithm performance in this noised image. We
conducted an experiment in order to test the effect of spatially
constrained Student’s t-distribution in our proposed algorithm.
Fig. 3(c) shows the segmentation result of FCM based on
spatially constrained Student’s t-distribution. We can see that
the effect of noise is reduced clearly and the details of the
image is well preserved. To test and verify effect of the
novel regularizer terms in our method, another experiment is
conducted. Fig. 3(d) shows the image segmentation result by
the FCM based on spatially constrained Student’s t-distribution
and the new regularization terms. It can be seen that the
influence of the noise is significantly reduced with a better
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image segmentation result than the previous results.

B. Natural Images

It is very difficult and challenging to segment natural im-
ages. In this series of experiments, we tested the performance
of our proposed algorithm on the real medical image and the
images in the Berkeley image segmentation database [40]. This
image set includes natural images along with their ground
truth segmentation results provided by human subjects. So
performance of the various algorithms can be quantitative
estimated by PR index [37]. The value of PR is bounded by
the interval [0, 1], where the larger PR values indicate better
segmentation results.

In order to further test the accuracy of the proposed algorith-
m, the third experiment was conducted. A positron emission
tomography (PET) image (128x128 image resolution) of a dog
lung [38] [39], as shown in Fig. 4(a), is used to compare
the proposed algorithm with other algorithms. These methods
include KL-FCM, SVFMM, DCA-SVFMM, HMRF-FCM,
ST-FCM, and KWFLICM. The objective is to segment the
image into three classes (K = 3). Fig. 4(b) to Fig. 4(h)
show the results obtained by implementing KL-FCM, SVFM-
M, DCA-SVFMM, HMRF-FCM, ST-FCM, KWFLICM and
the proposed method. From a visual perspective, segmented
result of KL-FCM in Fig. 4(b) keep the image’s edges well.
However, there are a few noise in this image. From Fig. 4(c)-
(d), we can see that the results of SVFMM, DCA-SVFMM,
HMRF-FCM, ST-FCM, and KWFLICM lost a lot of edge
information. As we observe, the proposed algorithm manages
to derive more homogeneous regions and reserves more the
edge details, compared with other algorithms.

In this experiment, we evaluate the performance of the
proposed algorithm based on a subset of the Berkeley image
dataset, which consists of 300 natural color and grayscale
images. Each image in the image database has 481 × 321
pixels. Four images (253036, 135069, 201080, 28083) are used
to test the effectiveness of the algorithm. In order to facilitate
the segmentation performance estimation visually and quan-
titatively, the proposed method is compared with many latest
algorithms. These methods includes SVFMM, DCA-SVFMM,
HMRF-FCM and ST-FCM. Fig. 5(a)-(d) show the original
image, respectively. Segmentation results of Fig. 5(a)-(d) by
our method are shown in Fig. 5(e)-(h). As we observe, our
method effectively retain the local homogeneity and preserve
more details at the same time. To quantitatively evaluate the
performance of the proposed method against SVFMM, DCA-
SVFMM, HMRF-FCM and ST-FCM, PR index [37] values are
provided in Table 1 for the comparing methods on the given set
of real world images from the Berkeley image segmentation
dataset. As can be easily seen, on average, the proposed
method outperforms other methods with a higher PR index.

VI. CONCLUSION

In this paper, we propose a novel fuzzy-clustering algorithm
that integrates Student’s t-distribution, MRF and the novel
regularizer term. The Student’s t-mixture model is heavily

tailed and more robust for outliers, but it lacks local context
information. In order to unite Student’s t-distribution with
local information, we present the new spatially constrained
Student’s t-distribution by the MRF. With the aim of further
enhancing robustness to the noise and capturing boundary, the
novel regularizer term is presented by capitalizing on the local
context information and the edge information. At last, they are
integrated into the framework of FCM. In comparison to other
MRFs that are complex and computationally expensive, our
proposed method is easier to optimize the parameters with the
EM algorithm.
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