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Abstract—Orthogonalized variant of Linear Discriminant 
Analysisis (LDA) is an effective statistical learning tool for 
dimension reduction. However, existing orthogonalized LDA 
algorithms suffer from various drawbacks, including the 
requirement for expensive computing time. This paper 
develops an efficient algorithm for dimension reduction, 
referred to as Fast Orthogonal Linear Discriminant Analysis 
(FOLDA), which adopts an iterative procedure to extract the 
orthogonal projection vectors. Different from previous efforts, 
this new approach applies QR decomposition and regression to 
solve for a new projection vector in each time of iterations, 
leading to the by far cheaper computational cost. FOLDA can 
achieve comparable recognition rates to existing orthogonal 
LDA algorithms. Experimental results on image databases, 
such as MNIST, COIL20, MEPG-7, and OUTEX, show the 
effectiveness and efficiency of FOLDA.  

Keywords—linear discriminant analysis; orthogonal linear 
discriminant analysis; orthogonal projection vectors; QR 
decomposition. 

I. INTRODUCTION  
Dimension reduction (DR) is a way of transforming 

large volumes of high-dimensional data into a meaningful 
low-dimensional space to further facilitate the underlying 
recognition tasks, such as face recognition, and text 
classification. Simply speaking, techniques for dimension 
reduction can be performed to seek for such an optimal low-
dimensional space that is helpful for mitigating the so-called 
“curse of dimensionality”.  

Linear dimension reduction finds a meaningful lower-
dimensional subspace which provides a compact 
representation of higher-dimensional data when the data 
structure is linear in the input space [1, 2]. Two most 
notable linear dimension reduction techniques are Principal 
Component Analysis (PCA) [1] and Linear Discriminant 
Analysis (LDA) [3] that have gained wide applications in 
computer vision and pattern recognition, because of their 
relative simplicity and effectiveness [1, 4, 5, 6]. Many 
comparative studies between LDA and PCA were made by 
numerous researchers [3, 5, 6,7], in which the results 
demonstrated that in the terms of recognition rates LDA 
outperformed PCA significantly [8], implying that it is 
important for satisfactory design of any classifier to 

incorporate supervised information into dimension reduction. 
Thus, LDA can be applied to a family of pattern recognition 
problems [1, 6, 9].  

The central idea of classical LDA is to find the optimal 
projection or transformation that better separates different 
classes. This optimal projection is obtained by maximizing 
the between-class projection distance and simultaneously 
minimizing the within-class projection distance, thus 
achieving the discrimination between classes. The objective 
function in classical LDA is a trace ratio problem, in which 
the optimal projection can be computed by a generalized 
eigenvalue problem. Due to the good discrimination of 
images from different classes, LDA has a direct connection 
to classification. Despite the effectiveness and applicability, 
there are some serious limitations in classical LDA, 
resulting in many extensions and improvements (we can 
only cite the most significant ones). Among the most well-
known is the undersampled or singularity problem, such as 
face recognition [3] where the dimension of feature space is 
much larger than the size of training set. Over the past 
decade, many algorithms have been proposed to solve this 
problem. In the research [3], Belhumeur et al. proposed to 
perform LDA after PCA. The authors in [11] performed 
LDA after Singular Value Decomposition (SVD). A 
common aspect of these two approaches is to perform LDA 
after another stage of dimension reduction. Since the rank of 
the within-class scatter matrix wS  is upper bounded by m-c, 
the maximum dimension of the PCA (or SVD) should be 
reduced to m-c, where m is the size of training set and c 
denotes the size of classes. However, there is a serious 
problem in PCA+LDA, which is that the most discriminant 
information may be lost [12]. To mitigate this problem, 
there are researchers who suggest keeping the most energy 
in the PCA stage [8, 13]. Another way to solve the 
singularity problem in classical LDA is to add the positive 
constants to the diagonal elements of wS [14]. These 
algorithms, like classical LDA, transform the trace ratio 
problems into the ratio trace problems, leading to a non-
optimal solution [15].  

In [16], Duchene et al. proposed Orthogonal Linear 
Discriminant Analysis (OLDA). OLDA enforces an 
orthogonality relationship between the discriminant 
projection vectors to eliminate the redundant information, 
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thus achieving the more powerful discriminant projection 
vectors than the classical ones in the terms of discriminant 
ratio and mean error probability. They adopt a well-
designed iterative procedure, and solve the primal problem 
of LDA under such an imposed constraint that a new 
projection vector is orthogonal to all the previously-obtained 
ones at each iteration. Since the projection vectors are 
independent of size of classes, there is no limitation on the 
number of projection vectors available (the number of 
projection vectors is limited to c-1). Similar to OLDA, 
Xiang et al. extended LDA to Recursive Fisher Linear 
Discriminant (RFLD) [8]. Different from OLDA which 
directly solves a Rayleigh Quotient (RQ) problem with an 
orthogonality constraint by employing the Lagrange 
multiplier method, RFLD firstly rewrites the LDA 
eigenvalue problem as the following generalized eigen-
equation b k w kλ=S w S w and then combines the 
orthogonality constraint with this equation at each iteration, 
where wS and bS denote the within-class scatter matrix and 
the between-class scatter matrix, respectively. Eventually, in 
each time of iterations, RFLD still solves a generalized 
eigen-equation problem, and furthermore, it also guarantees 
that the samples always involve the newest information by 
eliminating the old information represented by previously-
computed projection vectors. Despite the effectiveness of 
RFLD, it, like OLDA, is expensive computationally, due to 
that each iteration involves eigen-decomposition, many 
operations of matrix inverses as well as matrix 
multiplications. Still there is an orthogonal LDA algorithm, 
called Maximum Margin Criterion (MMC) [17], which casts 
the RQ formulation of the classical LDA as a difference 
formulation. In addition to establishing the orthogonality 
relationship between projection vectors, MMC can avoid the 
singularity problem. However, it, like LDA, can only extract 
at most 1c −  meaningful features [18]. Both OLDA and 
RFLD permit to define a best discriminant vector, 
orthogonal to a set of previously-computed vectors, without 
using any statistical property of this set [16], which is in 
contrast to MMC. Furthermore, when the dimensionality in 
the input space is large, it is not infeasible to apply MMC 
due to the expensive computation resulting from the 
solution to the formulated large-scale eigenvalue problem.  

In this paper, we develop a novel algorithm for 
discriminant analysis, referred to as Fast Orthogonal Linear 
Discriminant Analysis (FOLDA), which is essentially based 
on RFLD [8]. Like RFLD [8], the new approach seeks for 
the orthogonal projection vectors, iteratively. According to 
some unique properties of matrix, the solution is empirically 
obtained. Then, the spectral regression [19] is used to obtain 
a new orthogonal projection vector at each iteration. The 
process of solution does not involve eigen-decomposition, 
multiple matrix inverses, and multiplications, leading to the 
less computational cost than RFLD. FOLDA does not use 
any statistical property of the previously-obtained projection 
vectors and is permitted to define a “best discriminant” 
vector, orthogonal to them. Therefore, there is no limitation 
on the number of projection vectors available from FOLDA, 
which is in contrast to MMC. We also demonstrate the 
efficiency of FOLDA by analyzing and comparing the time 
complexities of existing orthogonal algorithms. The 
experiment, tried out on four image databases, such as 

MEPG-7, COIL20, MNIST, and OUTEX indicates both the 
effectiveness and efficiency of our proposed FOLDA 
algorithm. 

II. RELATED WORKS 
In this section, we briefly review two orthogonalized 

extensions of LDA, such as RFLD [8] and MMC [17]. We 
consider the problem of representing all of the vectors in a 
set [ ]1 2, ,..., n=X x x x , R d

i ∈x , where X , n ,and d denote the 
data matrix, the sample size, and the dimensionality, 
respectively. The class label of the sample ix  is from the 
set }{1, 2,...,c , where c is the number of classes. Define ln as 
the number of labeled samples from the thl class. Let 

[ ]( 1) ( 1)
1 2 1, ,..., Rk d k

k
− × −

−= ∈W w w w be a set of the 
previously-computed 1k − orthogonal projection vectors. 
Denote by R (1 )d r d∈ ≤ ≤z  a low-dimensional 
representation of a high-dimensional sample x in the original 
input space, where r  is the dimensionality of the reduced 
space. The purpose of DR is to seek for a transformation 
matrix W , such that a lower representation z of the 
sample x can be calculated as T=z W x , where “T ” denotes 
the transpose. Define X  as the centered data matrix. Letting 

[ ]( 1)
1 1,...,k

k
−

−=W w w and 

 

(1)

(2)

( )

0 ... 0
0 ... 0

R

0 0 ...

n n

c

×

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

V
V

V

V

             (1) 

Here, ( )lV is a l ln n× matrix with the entries equal to1/ ln . 

1 arg max
TT

TT
= w XVX ww

w XX w
                           (2) 

and  
( )

( )
( ) ( )

( ) ( )
arg max

Tk kT

k Tk kT
=

w X V X w
w

w X X w
                     (3) 

subject to      1 2 1 0T T T
k k k k −= = ⋅ ⋅⋅ = =w w w w w w    , where  

( 1) ( 1)( )
k k k T− −= −X X W W X                       (4)                    

is the updated sample matrix, which can eliminate the old 
information represented by the previously-computed 
orthogonal projection vectors. In practice, if there is no 
orthogonal constraint, the projection vector kw can be 
computed as the eigenvector corresponding to the largest 
eigenvalue of 

( ) ( )( ) ( ) ( ) ( )T Tk k k k
λ=X V X w X X w                 (5) 

However, to make kw orthogonal to the previously-
computed projection vectors, RFLD combines the 
orthogonal constraint in (3) with (5), leading to 
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solving k kλ=C w B w , in which ( 1)
1 1, ,...,( ) R + − ×

−= ∈k T d k d
v kw wB X  

(
( ) ( )

( )=
k k T

vX X V X ) and ( )( ) ( ) ( 1), 0,...,0 R
TTk kk d k d+ − ×⎛ ⎞= ∈⎜ ⎟

⎝ ⎠
C X X . 

Since kB is of full rank, one finally computes kw as the 
eigenvector corresponding to the largest eigenvalue 
of ( )( ) ( )k T k k T kλ=B C w B B w .  

MMC [17] is a very simple algorithm for orthogonal 
dimension reduction. It transforms the objective function in 
the classical LDA into  

( )arg max
T

T TT Ttr
=

= −
W W I

W W XVX W W XX W         (6) 

The MMC objective function is formulated in a 
difference form of the classical LDA. The projection 
vectors are selected as the eigenvectors corresponding to 
the first r largest eigenvalues of b w−S S . There is no 
singular problem in MMC, which is clear. The number of 
the most discriminant projection vectors employed to 
constitute the transformation matrix is limited to 

1c − [18]. 

III. THE PROPOSED ALGORITHM 
In this section, we introduce our FOLDA. The 

theoretical justification of our algorithm will be presented in 
next section. 

Denote by X the centered data matrix. The algorithmic 
procedure of FOLDA is stated as follows: 

1) PCA projection. We throw away the components 
corresponding to zeroes eigenvalues of tS to project the 
sample ix into the PCA subspace. Denote by PCAW the 
transformation matrix of PCA. Note that the rank of the new 
formed data matrix is equal to the number of features. 

2) Generate a set of response vectors of 
V 1 2 1[ , ,..., ]c−=A a a a . Let T=A W X . According to [19], 
the LDA eigenvalue problem can be transformed 
into λ=VA A . For this eigenvalue problem, there are 
c eigenvectors of V associated with non-zero eigenvalues, 
which are 

1

1 1

, 1, 2,..., .[0,...,0,1,...,1,0,...,0]
l ck

k k
k k l

T
k

n
n n

k c
−

= = +

==

∑ ∑

a      (7) 

It follows from [19] that we generate the set of response 
vectors of V A . 

3) Compute the projection vector 1w . Let us solve 1w by 

optimizing 2
1 1arg min ( )

T
= −

w
w X w a . 

4) Compute the projection vector kw (c>k>1). The 
projection vector kw , orthogonal to previously computed 

1k − vectors represented by ( 1)k −W ( [ ]1 1,..., k−= w w ), can be 

computed as follows: 

 Update the training set by subtracting the old 
information represented by the previously 1k −  projection 

vectors, i.e. ( 1) ( 1)( )
k k k T− −= −X X W W X . 

 Perform QR decomposition of ( 1)k −W to obtain two 
matrices ( 1)k −Q and ( 1)k −R , where ( 1)k −Q is an orthonormal 
matrix and ( 1)k −R an order 1k − upper triangular matrix.  

 Define ( 1)k−=w Q z , ( 1) ( 1)kk k− −=G X Q , and ( 1)k
k

− =G z a . 
We calculate kz  by optimizing ( 1) 2argmin (( ) )k T

k k
−= −z G z a . 

 Compute kw as 

( 1)k
k k

−=w Q Cz                                  (8) 

where [ ]10,..., T
d k− +=C I in which 1d k− +I is an identity 

matrix of dimensions ( 1) ( 1)d k d k− + × − + . 

5) If needed, go through the iteration from step 4) again 
to extract more feature vectors. Here, it should be pointed 
out that only there are 1c − response vectors generated. 
When the number of feature vectors to be extracted are 
more than 1c − , we reuse these 1c − response vectors. 

6) FOLDA Embedding. Denote [ ]FOLDA 1 2, ,..., k=W w w w . 
The embedding is as follows 

( )PCA FOLDA→ =x p W W x                         (9) 

where p is a r − dimensional vector representing the new 
coming sample x  in the reduced low-dimensional space and 

FOLDAW is the transformation matrix of FOLDA. 

IV. JUSTIFICATION 

A. Optimal Orthogonal Embedding 
Our proposed algorithm finds a set of orthogonal 

projection vectors 1 2, ,..., kw w w which minimizes the 
following function  

 ( ) .
TT

TT
f = w XVX ww

w XX w
 

Therefore, 1 2, ,..., kw w w are orthogonal projection 
vectors which minimizes ( )f w  subject to the constraint 

1 2 1 0.T T T
k k k k −= = ⋅⋅ ⋅ = =w w w w w w   

Just as RFLD, the objective function of our FOLDA 
aims to solve   

1 arg max
TT

TT
= w XVX ww

w XX w
                  (10) 

and                arg max
TT

k TT
= w XVX ww

w XX w
                        (11) 
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subject to ( 1) 0.
Tk

k
−⎡ ⎤ =⎣ ⎦W w                    (12) 

Next, we use an efficient method to solve for the set of 
orthogonal projection vectors 1 2, ,..., kw w w . 

Existing orthogonal LDA algorithms [8, 16] solve the 
problem in (10) by using a traditional matrix eigen-
decomposition technique, such as Singular Value 
Decomposition (SVD) which leads to the high computing 
complexity. To address this problem, we apply Spectral 
Regression (SR) [19]. To solve the problem (10) efficiently, 
we first use the following theorem. 

Theorem 1. Let a  be the eigenvector of eigen-equation 
λ=Va a with eigenvalue λ . If 1

T =X w a , then 1w is the 
eigenvector of eigen-problem in (10) with the same 
eigenvalue λ . 

  The proof of theorem 1 is similar as that in [19]. 
According to the theorem 1, we can directly obtain a by 
solving λ=Va a . There is only one non-zero eigenvalue of 
matrix ( )lV , since the rank of ( )lV is one. Therefore, there 
are c eigenvectors with the same eigenvalue 1, which are 

      
1

1 1

, 1, 2,...,[0,...,0,1,...,1,0,...,0]
l ck

k k
k k l

k
n

n n

k c
−

= = +

==

∑ ∑

a  

According to [19], we can generate 1c −  exact response 
vectors of V . When a is obtained, we find 1w which 
satisfies 1 1

T =X w a  by solving a least squares problem 

 2
1 1arg min ( )T= −w X w a                        (13) 

Many efficient algorithms, such as LSQR [21], can 
handle very large scale least squares problems.  

Now, we aim to compute kw ( 1k > ). Similar to RFLD, 
we update the data matrix first to keep the newest but useful 
formation in training set by ( 1) ( 1)( )

k k k T− −= −X X W W X . 
The QR decomposition of ( 1)k −W gives two matrices ( 1)k −Q  
and ( 1)k −R , such that we have ( 1) ( 1) ( 1)k k k− − −=W Q R , where 

( 1)k −Q is an orthonormal matrix and ( 1)k −R an order 

1k − upper triangular matrix. Note that ( 1) ( 1)Tk k− −⎡ ⎤ =⎣ ⎦Q Q I . 

Since ( 1)k −W  is an orthogonal set, it is of full rank. 

Naturally, we can write
( 1)

( 1) ( 1)
k

Tk k
−

− − ⎡ ⎤
⎡ ⎤ = ⎢ ⎥⎣ ⎦

⎣ ⎦

R
Q W

0
, where 0  is 

a zero matrix of dimensions ( 1) ( 1)d k k− + × − . Let 

( 1) ( 1) kk k
k k

k

− − ⎡ ⎤
= = ⎢ ⎥

⎣ ⎦

y
w Q z Q

v
, where ky is a vector of the first 1k −  

components of kz and kv of the last 1d k− +  components of 

kz . Thus, we have  

( 1) ( 1)( )
T kk k T T

k
k

− − ⎡ ⎤
⎡ ⎤ ⎡ ⎤= =⎢ ⎥⎣ ⎦ ⎣ ⎦

⎣ ⎦

y
W w R 0 0

v
          (14) 

and hence the following theorem is obtained 

Theorem 2. The vector ky in (14) is a zero vector. 

Proof: Denote by ( 1)( )k T
i

−R , 1,..., 1i k= − the thi row of 
( 1)( )k T−R . Let ( )k iy 1,..., 1i k= − the thi element of ky . It 

follows from (14) that ( 1)( )k T
k

− =R y 0 , which means that 
( 1)( ) 0k T

i k
− =R y . Since ( 1)k −R is an order 1k − upper 

triangular matrix, ( 1)( )k T−R is an order 1k −  lower triangular 
matrix. It is obvious that ( 1)

1( ) 0k T
k

− =R y if and only 
if 1( ) 0k =y . For ( 1)

2( )k T−R , it has at most two nonzero 
elements. Since 1( ) 0k =y and ( 1)

2( ) 0k T
k

− =R y ,we have 

2( ) 0k =y . The rest can be also deduced by analogy. Finally, 
we have k =y 0 .■� 

Theorem 2 tells us that if we set ky equal to zero, 
( 1)k −W and kw must satisfy orthogonality condition. 

Defining ( 1)k
k k

−=w Q z , it is possible to reformulate the 
objective function in (11) as  

( )
( )

( 1) ( 1)

( 1) ( 1)
arg max

TT k kT k k

k TT k kT k k

− −

− −

⎡ ⎤⎣ ⎦
=

⎡ ⎤⎣ ⎦

z Q X V X Q z
z

z Q X X Q z
          (15) 

Letting ( )( 1) ( 1)
Tkk k− −=G X Q , the problem (15) becomes  

( 1) ( 1)

( 1) ( 1)
arg max

TT k k

k TT k k

− −

− −

⎡ ⎤⎣ ⎦=
⎡ ⎤⎣ ⎦

z G VG z
z

z G G z
                   (16) 

The problem (16) contains 1k −  orthogonal projection 
vectors. We can obtain the solution to (16) by solving 

( 1) ( 1) ( 1) ( 1)T Tk k k kλ− − − −⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦G VG z G G z with eigenvalue λ . 
However, expensive computing cost is required in solving 
this eigenvalue problem. It is easy to observe that the 
equations in (16) and (10) have a very similar formulation. 
Therefore, the spectral regression technique can be directly 
used.  

Then, we can find kz , which should satisfy ( 1)k
k k

− =G z a , 
by solving the following least squares problem 

( 1) 2arg min ( )k
k k

−= −z G z a                       (17) 

Finally, we compute the components of kz , solution of 
the problem (11) with constraints (12): 

( 1)k
k k

−=w Q Cz                                 (18) 

where [ ]10,...., T
d k− +=C I in which 1d k− +I is an identity 

matrix of dimensions ( 1) ( 1)d k d k− + × − + . Recall that 
there is no limitation on the number of projection vectors in 
RFLD. In solving kw , we have to use the response vector 
of V ka . However, there are only 1c −  exact response 
vectors from V , leading to the limitation on the number of 
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projection vectors. To eliminate this problem, we re-use all 
these response vectors, when the desired subspace 
dimension is greater than 1c − . Note that similar idea in 
solving ka  was also discussed in the prior work [22] for 
binary classification problems. Our algorithm is an 
extension of this idea in dimension reduction.  

In some steps of our algorithm, we have to compute 
some regression problems. However, these regressions 
involve a singularity problem. It is observed that RFLD and 
classical LDA work under the assumption that the matrix 

T
XX or ( )( ) ( ) Tk k

X X  is nonsingular. However, this 

assumption does not hold in many real applications where 
sometimes the number of samples in the training set tends to 
be much smaller than that number of features in each 
sample. To overcome this problem, we can use the way in 
[3], which suggests projecting the sample set to the PCA 
space in the first stage and then performing the LDA or 
RFLD dimension reduction. Still there are two 
considerations for the use of PCA. First, some useless 
information, such as noise, can be eliminated by keeping 
most of energy. Second, the computational efficiency can be 
improved. Therefore, we use PCA to throw away the 
components corresponding to zeros eigenvalues of each 

of
T

XX and ( )( ) ( ) Tk k
X X  to guarantee the non-singularity in 

our problem and make fair comparisons. It should be 
pointed that in this work the within-class scatter wS  

replaced by 
T

XX , such that there will be no information 
loss in the PCA step. Similar discussion can be found in 
[20]. 

B. Time Complexity Comparison 
Our algorithm FOLDA and traditional orthogonal DR 

methods RFLD and MMC all generate the orthogonal 
projection vectors. However, they are different in the terms 
of solution, leading to different time complexities. We now 
analyze their time costs. 

MMC directly solves the standard eigenvalue problem 

of ( )T T
λ− =XVX XX w w . To solve this eigenvector 

problem, we need first to compute 
matrices

T
XVX and

T
XX . The time complexities for 

calculating them are 2 2O( )dn nd+ and 2O( )nd , respectively. 
To project the data points into a r -dimensional subspace, 
we must compute the first r largest eigenvectors of matrix 

T T
−XVX XX with dimensions d d× , whose time 

complexity is 2O( )rd . Thus, the total time complexity of the 
MMC algorithm is 

2 2O( ( ) )dn n r d+ +                                 (19) 

In RFLD, the first step is to find 1w by solving the 

generalized eigenvalue problem
T T

λ=XVX w XX w . 
Similar to MMC, it requires computing

T
XVX and

T
XX , 

whose time complexity is 2 2O( )dn nd+ . To solve the above 
generalized eigenvalue problem, we need first to take the 
time complexity of 3O( )d to compute the SVD of the 

matrix
T

XX [23]. To achiever 1w , we need to compute the 
first largest eigenvector of a d d× matrix, leading to the 
time complexity of 2O( )d . Therefore, the cost of the first 
step of RFLD is 2 2 3O( )dn nd d+ + . In the thk step of RFLD 
( 2k ≥ ) to compute the thk projection vector, it needs to 
compute the generalized eigenvalue 
problem ( )( ) ( )k T k k T kλ=B C w B B w , where both kC and 

kB are of dimensions ( 1)d k d+ − × . To compute this 
generalized eigenvalue problem, we need first to compute 

the components of kB and kC , i.e., ( )( ) ( ) Tk k
X V X and 

( )( ) ( ) Tk k
X X . For the computation of these two matrices, the 

time complexity is 2 2O( )dn nd+ . Then, we compute the 
matrices ( )k T kB C and ( )k T kB B , whose time complexities 
are all 2O(( 1) )d k d+ − . The other computation of 1w  is the 
same as the step1, whose time complexity is 2 3O( )d d+ . 
Thus, the complexity of the thk step 
is 2 2 3O( ( ) )dn n d k d d+ + + + . This time complexity is 
analyzed under the assumption that the first 1k − projection 
vectors are known. Therefore, to get the r -dimensional 
subspace, the time complexity 
becomes 2 2 3O(( 1) ( ( 1) ) ( 1) )r dn p r n d r d− + + − + − , in 
which ( 1) / 2 1p r r= × + − . Finally, the total complexity of 
RFLD is  

2 2 3O( ( ) )rdn p rn d rd+ + +                    (20) 

It is observed from (20) that the time complexity 
depends on the number of samples, the number of 
dimension in input space, and the dimension of reduced 
space.  

In order to solve for the first projection vector 1w , our 
algorithm FOLDA only needs to compute 1w by optimizing 

the regression problem 2
1 1arg min ( )

T
= −

w
w X w a . The time 

complexity of solving this regression problem is O( )ns  [19], 
where s is the average number of non-zero features for one 
sample in X . The time complexity for computing kw is 
dominated by three parts: QR decomposition, a small 
number of matrix multiplications, and solving a least 
squares problem. For the QR decomposition of ( 1)k −W , the 
time complexity is 2O( ( 1) )d k − [24]. To solve the 
problem ( 1) 2argmin ( )k

k k
−= −z G z a , we first 

compute ( 1)k −G ( ) ( 1)( )
Tk k −= X Q , whose time complexity is 

2O( )d n . To get kz , FOLDA requires time complexity of 
O( )ne to solve the above regression problem [19], where 
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e is average number of non-zero elements of each row of 
( 1)k −G . Finally, we compute kw as ( 1)k

k k
−=w Q Cz . Since 

C is sparse and only the last  ( 1)d k− +  diagonal elements 
are ones, the time complexity in this computation is 
around 2O( )d . Thus, the time complexity used for 
computing kw is around 2 2O( ( 1) ) O( ) O( )d k d n ne− + + . 
Similar to RFLD, we must compute the first 1k − projection 
vectors before getting kz . Therefore, to get the r -
dimensional subspace, the time complexity of computing 

kw is 2O( ( 1) ( 1) )dp r nd r ne+ − + − , in 
which ( 1)(2 1) / 6 1p r r r= − − − . As a result, the total time 
complexity for FOLDA is  

2O( ( 1) ( 1) )dp r nd r ne ns+ − + − +                  (21) 

Both e  and s  are equal to d  in the worst case. In real 
cases, r d<< . 

Clearly, RFLD has square-time complexity while our 
algorithm has linear-time complexity with respect to n  in 
computing 1w . In solving the r -dimensional subspace, 
RFLD also has cubic-time complexity while our FOLDA 
has only square-time complexity with respect to d . 
Furthermore, FOLDA is better than RFLDA, in the terms of 
computational cost used for matrix multiplications. Clearly, 
FOLDA gains significant computational saving on time. 

V. EXPERIMENTAL RESULT 
We evaluate our algorithm on four image databases: a 

shape image database MPEG-7 [25], an object database 
COIL20 [26], a handwritten digit database MNIST [27], and 
a terrain database OUTEX [28]. Maybe, the readers are not 
familiar with the OUTEX database, thus we simply 
introduce it. The OUTEX database includes 20 outdoor 
scene images. In the experiment, four object classes are 
defined as grass, tree, sky and road, with considerable 
changes of illumination and shadow. Following [29, 30], the 
rotation-invariant operators LBP riu28,1+16,3 and 4 bin color 
histogram were used for extracting features of each object 
image. Therefore, each image is represented by a 314-
dimensional vector. Table I describes the details for each 
database used in the experiments. For all the databases, a 
random subset with l (=20%, 30%, 40%, 50%) labeled 
samples per class are selected for training and the rest for 
testing. 

TABLE I.  DATA DESCRIPTION. FOUR IMAGE DATABASES, A SHAPE 
IMAGE DATABASE, AN OBJECT DATABASE, A TERRAIN DATABASE, AND A 
HANDWRITTEN DIGIT DATABASE ARE USED IN THE EXPERIMENTS. 

Database No. of samples No. of classes No. of dimensions 
MPEG-7 1400 120 2000 
COIL20 1440 20 1024 
MNIST 4000 10 784 

 

We investigate the recognition rates of LDA, MMC, 
RFLD, and FOLDA. All algorithms are implemented in 
MATLAB 7.1 and carried out experiments on a PC with 
Intel(R) Core2Duo processor (2.79GHz), 4GB RAM. 

According to [8], [20], the images are projected into the 
PCA subspace by throwing away the components 
corresponding to zero eigenvalues to avoid the singularity 
problem, for LDA, RFLDA, and FOLDA. Among them, 
LDA and MMC can extract at most 1c −  meaningful 
features [18]. According to [17], MMC does not do any pre-
processing due to that it has no singularity problem. We 
report the mean recognition rate ± standard deviation over 
10 random splits on the test set in Table II. Fig.1. shows 
recognition rate versus the variation of dimensions on 
MPEG-7, COIL20, MNIST, and OUTEX. From the results, 
we can see the following main points. Firstly, when 
comparing LDA, MMC, RFLD, and FOLDA, we observe 
that both RFLD and FOLDA are comparable, in the terms of 
recognition rates, which indicates that FOLDA is very 
effective. Secondly, RFLD and FOLDA are better than 
LDA and MMC in most cases, in the terms of recognition 
rates, possibly because of the limitation on the number of 
discriminant projection vectors resulting from LDA and 
MMC. In the experiments, MNIST and OUTEX are two 
typical small-class databases. For MMC, still there is a 
possible reason resulting in its ineffectiveness. Although 
MMC also generates a set of orthogonal projection vectors, 
it uses the statistical property of this set. In contrast to 
MMC, both OLDA and RFLD permit to define a best 
discriminant vector, orthogonal to the set of previously-
computed vectors, without using any statistical property of 
this set (similar discussion can be found in [16]).  

In Table III, we report the mean computing time over 10 
random splits at the optimal dimension. Fig.2 shows the 
computing time versus the variation of dimensions on 
MPEG-7, COIL20, MNIST, and OUTEX. From Table III 
and Fig.2, we can observe that in the terms of computing 
time, FOLDA is by far faster than RFLD. The 
computational costs of these two algorithms largely depend 
on the number of projection vectors. From the Table III, we 
also observe that the optimal dimension of RFLD is more 
than that of FOLDA in most cases. It is necessary to point 
out that FOLDA is by faster than RFLD, even if their 
optimal dimensions are equal (e.g. on MNIST). FOLDA is 
faster than MMC on MPEG-7 and COIL20, which is 
because MMC is time-consuming on high-dimensional 
datasets. It can be seen that the computing time of RFLD 
fiercely increases with the increase of the training set size. 
Our FOLD is contrast to RFLD. 

VI. CONCLUSIONS 
Enforcing the orthogonality relationship between 

projection vectors usually leads to the optimal 
discrimination for recognition or classification. However, 
existing effective orthogonal linear discriminant methods 
need high computing complexities. In this paper, we have 
proposed a very efficient linear discriminant analysis, called 
FOLDA. Different from previous work, FOLDA is inspired 
by Spectral Regression and QR decomposition, which 
decomposes the set of previously-computed projection 
vectors using QR, and then solves for the new projection 
vector by employing Spectral Regression. In entire process 
of solution, there is no need to perform eigen-
decomposition, leading to the less computing cost. We have 
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listed the algorithmic procedure of FOLDA, justified this 
algorithm, and analyzed the time complexity. The 
experiments, carried out on four image datasets, indicated 
the effectiveness and efficiency of our algorithm. The idea 

behind our algorithm is very simple, which can be naturally 
extended to other dimension reduction methods, including 
supervised and unsupervised variants. 

TABLE II.  RECOGNITION RATE (MEAN RECOGNITION RATE± STANDARD DEVIATION %) OF LDA, MMC, RFLD AND FOLDA ON MPEG-7, COIL20,   
MNIST AND OUTEX. NOTE THE NUMBERS IN PARENTHESES ARE THE OPTIMAL DIMENSIONS AFTER DIMENSION REDUCTION. 

          Result 
Method 

MPEG-7 Dataset COIL20 Dataset 
20% Train 30% Train 40% Train 50% Train 20% Train 30% Train 40% Train 50% Train 

LDA 55.3±2.3(19) 59.2±2.4(69) 54.4±2.4(25) 61.2±2.3(69) 92.9±0.7 (19) 93.4±0.8(19) 94.2±0.8(19) 93.9±0.9(19) 
MMC 71.5±0.8(69) 75.9±1.1(31) 79.7±1.1(69) 82.5±0.9(63) 94.4±1.3 (19) 96.8±0.6(19) 98.2±0.3(19) 99.1±0.2(19) 
RFLD 72.5±0.8(65) 77.6±1.2(71) 80.9±0.5(73) 82.9±0.9(75) 95.9±0.9 (89) 97.7±0.8(13) 98.6±0.3(21) 99.4 ±0.4(15) 

FOLDA 72.2±1.0(35) 76.1±1.3(31) 79.7±0.5(37) 82.1±.8 (39) 95.9±1.4 (21) 97.4±2.5(23) 98.6 ±0.4(21) 99.4±0.2(15) 
         Result 
Method 

MNIST Dataset OUTEX Dataset 
20% Train 30% Train 40% Train 50% Train 20% Train 30% Train 40% Train 50% Train 

LDA 50.8±3.2(9) 63.4±2.8(9) 69.0±3.2(9) 72.9±1.4(9) 67.2±0.7(3) 67.3±0.7(3) 67.2±0.6 (3) 67.4±0.5(3) 
MMC 67.6±1.0(9) 69.8±0.9(9) 71.3±1.0(9) 71.9±0.3(9) 60.0±0.8(3) 60.2±0.6(3) 59.9±0.5(3) 60.0±0.6(3) 
RFLD 87.2±0.7(37) 89.1±0.5(39) 90.3±0.3(39) 90.9±0.4(29) 74.3±0.3(61) 75.5±0.6(87) 75.7±0.4(77) 76.5±0.6(87) 

FOLDA 86.8±0.4(31) 89.0±0.5(33) 90.3±0.4(31) 90.9±0.5(31) 74.7±1.1(61) 75.6±0.8(29) 76.0±0.4(31) 76.4±0.7(29)   
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Fig.1. Recognition rate versus the variation of dimensions on MPEG-7, COIL20, MNIST, and OUTEX. 
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Fig.2. Computing time versus the variation of dimensions on MPEG-7, COIL20, MNIST, and OUTEX. 
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TABLE III.  AVERAGE COMPUTING TIME (SEC.) OF LDA, MMC, RFLD, AND FOLDA ON MPEG, COIL20, MNIST AND OUTEX. 

   Result 
Method 

MPEG-7 Dataset COIL20 Dataset 
20% Train 30% Train 40% Train 50% Train 20% Train 30% Train 40% Train 50% Train 

LDA 0.7544 3.2048 3.5716 9.7619 0.48247 1.91262 4.67463 8.1555 
MMC 52.7750 50.3870 69.4756 67.5073 22.5714 24.3851 26.8392 29.4859 
RFLD 13.2507 40.8480 99.9506 150.5965 1.9876 5.3927 20.5507 31.6138 

FOLDA 1.7961 2.0884 6.2510 9.9547 0.4663   1.6144 3.3508 5.5577 
   Result 

Method 
MINST Dataset OUTEX Dataset 

20% Train 30% Train 40% Train 50% Train 20% Train 30% Train 40% Train 50% Train 
LDA 5.2258 6.0149 6.8347 7.6602 0.7105 0.8203 0.5910 1.0649 
MMC 4.9844 5.3381 5.3381 5.9256 0.5628 0.5958 0.7189 0.7333 
RFLD 45.0733 55.8924 64.2818 76.0427 19.8371 35.5080 36.5736 67.5130 

FOLDA 7.0272 11.3364 16.6728 18.7547 11.4416 5.6886 15.1029 13.8071 
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