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Abstract—In this paper, we propose a recursive soft margin 
(RSM) subspace learning framework for dimension reduction 
of high-dimensional data, which has strong recognition ability. 
RSM is motivated by the soft margin criterion of support 
vector machines (SVMs), which allows some training samples 
to be misclassified for a certain cost to achieve higher 
recognition results. Instead of maximizing the sum of squares 
of Euclidean interclass (called intracluster in unsupervised 
learning) pairwise distances over all the similar points in 
previous work, RSM seeks to maximize every pairwise 
interclass distance between two similar points, and this 
distance is represented in absolute. Then, we introduce a 
symmetrical Hingle loss function into the RSM framework. 
Doing so is to allow some pairwise interclass distances to 
violate the maximization constraint, such that we can get 
satisfactory classification performance by losing some training 
performance. To find multiple projection vectors, a recursive 
procedure is designed. Our framework is illustrated with 
Graph Embedding (GE). For any dimension reduction method 
expressible by the GE, it can thus be generalized by the 
proposed framework to boost their recognition power by 
reformulating the original problems. 

Keywords—linear discriminant analysis; orthogonal linear 
discriminant analysis; orthogonal projection vectors; QR 
decomposition 

I. INTRODUCTION  
Dimension reduction (DR) is one of the fundamental 

topics in data mining, pattern recognition and computer 
vision, etc.. The primary goal of DR is to seek for such an 
optimal low-dimensional space that can help speed up the 
computation of any pattern classifier and gain the advantage 
of better analyzing the intrinsic data structures for large 
volumes of real-world applications. To be specific, the DR 
techniques are to construct a meaningful lower-dimensional 
representation in the reduced space of high-dimension data 
in the input space.  

Over past decades, a family of DR techniques has been 
widely studied. Two most notable linear DR techniques are 
Linear Discriminant Analysis (FDA) [1] and Principal 
Component Analysis (PCA) [2]. Recently, many research 
efforts have shown that many forms of real data, such as 
faces [3] [4] and webpages [5], exhibit the essential 
nonlinear manifold structure. Numerous manifold learning 
based techniques have been proposed to discover the 
nonlinear manifold structure, e.g., Isometric Feature 
Mapping (ISOMAP) [6], Local Linear Embedding (LLE) 

[7], Laplacian Eigenmap (LE) [8]. Despite the exhibited 
promising results, these nonlinear methods cannot solve the 
so-called “out-of-sample” problem. Locality Preserving 
Projections (LPP) [4] is proposed to address this problem.  

The above nonlinear techniques take into account only 
the local geometry of the data manifold. In subspace 
learning systems, the recognition performance of DR 
algorithms is known to be greatly improved with large 
margin training. Large margin DR (LMDR) techniques try 
to find the maximal margin projection by taking both 
interclass geometry (called intercluster geometry in 
unsupervised learning) and intraclass geometrical 
information (called intracluster geometry in unsupervised 
learning) into account, which is categorized into two 
classes: global and local. Global LMDA algorithms include 
FDA [1]. The past years can see many local LMDR 
algorithms, e.g., Marginal Isomap (M-Isomap) [9], Marginal 
Fisher analysis (MFA) [10], Local Fisher Discriminant 
Analysis (LFDA) [11], Locality Sensitive Discriminant 
Analysis (LSDA) [12], Maximum Margin Projection 
(MMP) [13], and Unsupervised Discriminant Projection 
(UDP) [14]. M-Isomap, MFA, and LFDA are supervised. 
M-Isomap, like ISOMAP, cannot address the “out-of-
sample” problem. MFA, LFDA and LSDA are similar in 
sprit, which construct two graphs, i.e. interclass graph and 
intraclass graph, by using class information and 
neighborhood information. UDP, an unsupervised 
algorithm, characterizes locality and nonlocality to represent 
the intracluster and intercluster scatters by using 
neighborhood information. UDP can be viewed as an 
unsupervised version of MFA, FDA, MMP and LFDA. The 
success of UDP is largely based on the manifold 
assumption. Yan et al. [10] pointed out that each of the 
LMDA algorithms can be expressible by the Graph 
Embedding (GE) framework with a penalty graph. 

Recall that the primary goals of SOMAP, LLE and LE, 
are focusing on best visualizing the given data. The LMDA 
algorithms discussed above devote to evaluating the maps 
on test data points without losing the primary goals of 
SOMAP, LLE and LE. Those studies are worthwhile in the 
endeavor of achieving large margin models or competitive 
visualized performance (or training performance) of given 
data; nevertheless, what makes us most interesting is that 
the map functions on test data can help obtain the optimal 
recognition results on the test data and simultaneously 
reflect and describe the rule of the given data in real 
applications. Furthermore, the given data are usually 
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disturbed by many negative factors, such as noise and not 
supported manifold assumption, etc., which usually leads to 
the unreliable visualization result and the undesired 
recognition performance.  

Support Vector Machines (SVMs) [15], as well-known 
large margin classifiers, use a soft margin criterion, which 
allow some samples to appear on the wrong side of the 
hyperplane in the training phase to yield higher 
generalization performance. With the soft margin criterion, 
training patterns are allowed to be misclassified for a certain 
cost. Inspired by SVMs, we, in this paper, develop a novel 
dimension reduction framework, referred to as Recursive 
Soft Margin (RSM). Many existing DR algorithms can 
naturally be generalized by our framework to boost their 
generalization power. RSM maximizes every pairwise 
interclass distance between two patterns rather than their 
Euclidean squares sum. We represent this distance in 
absolute to simplify the reformulated optimization problem. 
Then, we introduce a symmetrical Hingle loss function into 
the RSM framework, which leads to allow some interclass 
pairwise distances to violate the maximization constraint. 
Doing so helps us achieve higher generalization by losing 
some visual performance on given training data. Note that 
for our framework in unsupervised setting, “interclass” is 
called “interclass”, as in [14]. The constraint of the resultant 
optimization is nonconvex. We use the Concave-Convex 
Procedure (CCCP) [16] to solve our nonconvex 
optimization. In order to seek to find all the projections 
axes, a recursive algorithm is developed. In each time of 
iterations, only a projection axis is computed based on the 
updated dataset in which the “old” information represented 
by previously-computed projection axes has been discarded. 
We illustrate our framework with Graph Embedding (GE) 
with the penalty graph.  

II. GRAPH EMBEDDING 
We consider the problem of representing all of the 

vectors in a set [ ]1 2, ,..., n=X x x x , d
i ∈x R�, where X denotes 

the matrix of all the training samples, where n is the sample 
size and d the dimensionality. For supervised learning, the 
class label of the sample ix  is from the set }{1,2,...,c , 

where c is the number of classes. Define by (1 )d r n∈ ≤ ≤z R�  
a low-dimensional representation of a high-dimensional 
sample x in the original input space, where r  is the 
dimensionality of the reduced space. The purpose of DR is 
to seek for a transformation matrix W , such that a lower 
representation z of the sample x can be yielded as T=z W x , 
where “T ” denotes the transpose.  

A large family of dimension reduction algorithms has 
been designed for various motivations and application 
problems. GE, as a general formulation, can unify them 
within a common framework, which can be also used as a 
platform for developing new dimension reduction 
algorithms [10]. Let }{ ,G = X V denote a complete 

undirected graph with similarity matrix R n n×∈V . Each 
element of the matrix records the edge weight that measures 
the similarity between a pair of vertices. The matrix can be 

defined by various similarity criteria. In GE, the optimal 
projection can be yielded by solving the following graph-
preserving criterion 
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where = −L D V is the graph Laplacian of G , and D is a 
diagonal matrix whose elements on diagonal are the column 

sum of V , i.e., 
1

n

ii ij
j=

=∑D V . M from the constraint has 

two-fold choices. First, it is typically a diagonal matrix for 
scale normalization, that is, =M D . Second, it can also be 
selected as a graph Laplacian matrix of the penalty 
graph 'G , that is, ' '= −M D V , where 'V is a similarity 
matrix of 'G  and 'D is a diagonal matrix whose elements 
on diagonal are the column sum of 'V . As a result, the 

constraint can be formulated as 
2
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can be split into the following problems  
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or
2 '

, 1
1.

n
T T

i j ij
i j=
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The optimal solution of (2) can be found by solving an 
eigen-equation. Yan et al., [10] has shown that a large 
family of dimension reduction algorithms, such as PCA, 
LPP, FDA and UDP can be expressed by simply defining 
the similarity matrix V or 'V . We note that in FDA the 
similarity matrix is formed by using prior class information 
and each edge weight is1/ kn , where kn denote the number 
of the samples in the thk class. 

III. RECURSIVE SOFT MARGE SUBSPACE LEARNING 
The large margin dimension reduction (LMDR) 

algorithms are expressible by the framework (2) with the 
constraint in (4). In this section, we introduce our RSM 
algorithm, which is based the problem (2) with the 
constraint in (4). 

A. The Soft-margin Objective Function 
As we have described, previously, the distribution of 

training samples diverges from the distribution of new 
occurring test samples. To obtain high recognition results, 
we maximize a soft margin between any pair of vertices of 
graph 'G . Specifically, we define the objective function of 
RSM as follows: 

, 1

'

1min δ
2

s.t. , 0

n
T T

ij
i j

T T
i j ij ij ijf

=
+

− + ≥ ≥

∑w XLX w ξ

w x w x V ξ ξ
             (5) 
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where δ 0≥ is a parameter; 0f >  is a constant; and | |⋅  
denotes the absolute distance between any pair of vertices of 
graph 'G projected onto w . Note 

that
2

, 1

n
T T T T

i j ij
i j=

= −∑w XLX w w x w x V . The constraint in (2) 

demands the distance between any pair of points of 'G to be 
greater than f . The variable ijξ is used to measure the 

amount by which the constraint 'T T
i j ij f− ≥w x w x V  is 

violated. We can arbitrarily select the nonnegative 
constant f , and changing it to any other positive 
constant ω results in w being replaced by ωw . 

The problem (5) has an equivalent loss+regularization 
formulation  

'

, 1

1min δ ( )
2

n
T T T T

i j ij
i j

f +
=

+ − −∑w XLX w w x w x V    (6) 

where the subscript “+” means the positive part 
( max( ,0)z z+ = ). The loss function ( )f t +− is called 
symmetric Hingle loss, where 'T T

i j ijt = −w x w x V .  

B. Optimization 
For DR in multi-class settings, the absolute function in 

(5) will be retained, such that the constraint is nonlinear. 
Fortunately, it can be viewed as a difference of two convex 
functions 'T T

i j ij−w x w x V and 1 ij− ξ . Therefore, we can 
solve the problem with the constrained “concave-convex” 
procedure (CCP) [16]. Considering that the CCP is rarely 
used in dimension reduction, we simply introduce this 
algorithm. 

The CCP is designed for solving the optimization 
problems with a concave-convex function and concave-
convex constraints and aims at solving the following 
optimization problem [16] 

                         0 0min ( ) ( ),f g−
z

z z  

s.t. ( ) ( ) , 1, 2,..., ,i i if g i lπ− ≤ =z z  

where if  and ig  are two real-values convex functions on a 
vector space Z for all 1,2,...,i n=  and iπ ∈R . Denote by 

}{1 , ( ')T f z z  the first order Taylor expansion of f at 

location z , that is }{1 , ( ') ( ) ( )( ' )T f f f= +∂ −zz z z z z z , where ( )f∂z z  
is the gradient of the function f at z . For non-smooth 
functions, ( )f∂z z can be replaced by the subgradient. 
Initialize 0z with a random value or a best guess. The CCP 
calculates 1t +z from tz  by replacing ( )ig z  

with }{1 , ( )i tT g z z , and then sets 1t +z to the solution of the 
following convex optimization problem 

}{
}{

0 1 0

1

min ( ) , ( ),

s.t. ( ) , ( ) , 1,2,..., .

t

i i t i

f T g

f T g c i l

−

− ≤ =
z

z z z

z z z
 

The above recursive procedure continues until tz  
converges. Smola et al. [16] has proved the fast 
convergence of CCP. Clearly, the minimization (5) satisfies 
the condition of the CCP: simply define 

0
, 1

1( , ) δ
2

n
T T

ij ij
i j

f
=

= + ∑w ξ w XLX w ξ , ( , )i ij ijf f= −w ξ ξ , 

0 ( , ) 0ijg =w ξ , and '( , ) T T
i ij i j ijg = −w ξ w x w x V . 

We also set iπ equal to zero for all i . We now solve the 
optimization (5) with the CCP. It is important to notice that 
while 'T T

i j ij−w x w x V is a convex function with respect to 
w , it is non-smooth. Thus, the gradient can be replaced by 
its subgradient [16]. Initiate the 0w , and then the CCP 
calculates 1t +w from tw  by replacing 'T T

i j ij−w x w x V  with 
the first order Taylor expansion, i.e. 

' T T T '

T ( ) T T '

T T '

T T '

sign ( ) ( )( )

| ( ) | sign ( ) [ ( )]

sign ( ) [ ( )]

sign ( ) ( )

T T
i j ij t i j t i j ij

l
t t i j i j ij

t i j t i j ij

t i j i j ij

⎡ ⎤− + − − −⎣ ⎦
⎡ ⎤= − + − −⎣ ⎦

⎡ ⎤− − −⎣ ⎦
⎡ ⎤⎡ ⎤= − −⎣ ⎦⎣ ⎦

w x w x V w x x w w x x V

w μ μ w x x w x x V

w x x w x x V

w x x w x x V

(7) 

Substituting (7) back into the problem (5), we arrive at 

, 1

1min δ
2

s.t. , 0.

n
T T

ij
i j

ij ij ijf
=

+

+ ≥ ≥

∑w XLX w ξ

S w ξ ξ
                    (8) 

in which T '=sign ( ) ( )T
ij t i j i j ij⎡ ⎤− −⎣ ⎦S w x x x x V . We rewrite 

the optimization problem (8) in matrix form as 

1min δ  
2

s.t. , .

T T T

f

+

+ ≥ ≥

w XLX w e ξ

Fw ξ e ξ 0
                     (9) 

where  

{
}

T ' T '
1 1 1 1 11 1 1 1

T ' T '
1 1 1

sign ( ) ( ) ,...,sign ( ) ( ) ,...,

sign ( ) ( ) ,...,sign ( ) ( )

⎡ ⎤ ⎡ ⎤= − − − −⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤− − − −⎣ ⎦ ⎣ ⎦

F w x x x x V w x x x x V

w x x x x V w x x x x V

t t n n n

t n n n t n n n n nn

 

and e is a column vector of ones of appropriate dimensions. 
The label of the newly-constructed ijk mentioned above is 

computed as Tsign ( )t i j⎡ ⎤−⎣ ⎦w x x at the tht iteration. The 
model in (9) is a constrained convex optimization problem, 
which can be solved using its dual problem 

11min ( )
2

s.t. 0 δ ,

T T T T− −

≤ ≤

α F XLX F α e α

α e
           (10) 

in which α is the Lagrange multiplier vector and TXLX is 
assumed to be nonsingular. After α is computed, the 
solution w is calculated as 1( )T T−=w XLX F α , which is 
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obtained by setting the Lagrange multiplier function of (9) 
with respect to the variable w equal to zero. It is easy to 
check that the optimization problem (10) is also convex 
if TXLX is nonsingular.  

According to the CCP, the solution w obtained from the 
minimization (9) is then replaced with 1t +w . RSM obtains 
the final solution by solving the problems as defined in (9), 
iteratively. The aforementioned computation aids the 
generation of only one projection vector. In the following, 
we show how to generate multiple projection vectors by a 
recursive procedure. 

C.  Produce the Multiple Projection Vectors  
We develop a recursive procedure to extract more 

discriminant projection vectors. Instead of calculating all the 
projection vectors once, the projection vectors will be 
obtained step by step. At each step, we calculate only a new 
projection vector based on the previously-obtained 
projection vectors. Before the next projection vector is 
computed, the training samples are updated, such that all the 
information represented by the “old” projection vectors will 
be eliminated. The first RSM projection vector 1w  is 

calculated by (5). Let ( 1)
1 1 2 1, ,..., Rd p

p p
× −

− −⎡ ⎤= ∈⎣ ⎦W w w w  be the 
matrix representing the previously-computed normalized 

1p − ( 1 p r< ≤ ) projection vectors. Before the thp  
projection vector pw is solved, we discard the information 
represented by 1p−W from all the training samples as follows 

1 1( )T
p p p− −= −X X W W X                      (11) 

Based on the new training set, we find the thp  feature 
vector pw by optimizing the following problem 

, 1

'
, 2 ,

1min δ
2

s.t. ,

n
T T
p p p P ij

i j

T T
p p i p j ij ij f

=
+

− + ≥

∑w X LX w ξ

w x w x V ξ
             (12) 

which has the similar problem as defined in (5), just 
replacing X  with pX . The solution pw can be found with the 
CCP, similar to finding the solution 1w . RSM bears the 
similar idea as suggested by Recursive Fisher Linear 
Discriminant (RFDA) [18], which is to generate new sample 
sets by projecting the samples into a subspace that is 
orthogonal to previously-computed projection vectors. 
RFDA can be viewed a variant of FDA, which solves a 
similar eigenvalue problem defined in FDA at each 
iteration. However, Out RSM algorithm casts RFDA as a 
SVM-type problem at each iteration. Clearly, RFDA is a 
special example of our approach. 

In next section we will describe the algorithm of RSM in 
detail and give some theoretical proofs. 

IV. ALGORITHM AND THEOREM 
In summary, the algorithmic procedure of RSM formally 

stated below: 

Step 1. Construct the graphs G and 'G using the original 
sample set X . 

Step 2. Use RSM to extract the first projection vector 
1w based on the set X .  

Step 3. Generate the new set ( )pX in which the 
information represented by all the previously extracted 
projection vectors is discarded by 1 1( )T

p p p− −= −X X W W X , 
where 2p ≥ . 

Step 4. Use RSM to find another projection vector pw . 
This solution is similar to step 2. 

Step 5. Go to step 3 if needed to extract more projection 
vectors. 

After accomplishing the training of RSM, we obtain a 
projection matrix d r×∈W R . Depending on applications, 
some postprocessing, such as the nearest rule for 
classification, is applied to the projected samples to 
complete classification tasks.  

It is observed that the optimization problem (5) is solved 
under the assumption that the matrix TXLX is nonsingular. 
However, this assumption does not hold in many real 
applications, such as face recognition problems where 
sometimes the number of samples in the training set tends to 
be much smaller than that number of projection vectors in 
each sample, such that the matrix TXLX is singular. A 
popular method to overcome this problem is to first project 
the sample set to the PCA space. Hereafter, we suppose that 
the matrix TXLX is singular.  

Given three sets  

{ }1 i j( ,  ) | there is largersimilarity between and ,1 ,i jS i j n= ≤ ≤x x x x

{ }2 i j( ,  ) | thereissmaller similaritybetween and ,1 ,i jS i j n= ≤ ≤x x x x  

and }{( ,  ) | , 1,...,i jS i j n= =x x ，it is easy to conclude that 

1 2S S∩ = ∅  and 1 2S S S∪ ⊆ , according to [10]. 

Definition 1:  Given a nonzero edge weight ijK put 

between ix and jx , the weights V and 'V  can be defined as 
[4, 8, 14] 

1, if ( ,  )

0, otherwise
ij i j

ij

S⎧ ∈⎪= ⎨
⎪⎩

K x x
V ,    

2' , if ( ,  )

0, otherwise
ij i j

ij

S⎧ ∈⎪= ⎨
⎪⎩

K x x
V  

Typically, ijK is set as the Gaussian kernel, namely, 
2

exp( / )ij i j σ= − −K x x , where σ is a variance. 

Proposition 1: Denote by  

, 1
( )( )

n
T

T ij i j i j
i j=

= − −∑S K x x x x  
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the generation matrix of the global scatter matrix in PCA. 
Based on above definitions on V and 'V , it is easy to check 
that  

, 1

L N R

( )( )
n

T
T ij i j i j

i j=

= − −

= + +

∑S K x x x x

S S S
                 (14) 

where '
N

, 1
( )( )

n
T

ij i j i j
i j=

= − −∑S V x x x x , R
, 1

( )( )
n

T
ij i j i j

i j=
= − −∑S A x x x x ,

L
, 1

( )( )
n

T T
ij i j i j

i j=
= − − =∑S V x x x x XLX , and '

ij ij ij ij= − −A K V V .  

Let }{ 1 2span , ,..., q= β β βB be the subspace and denote 

by }{ 1span ,...,q d
⊥

+= β βB its orthogonal complement, where 

1 2, ,..., qβ β β are the first q  eigenvectors of TS corresponding 
to positive eigenvalues. Obviously, ⊥B is the null space 
of TS . Based on the equation (5), we have the following 
theorem. 

Proposition 2: Let = +w u θ  be a decomposition of 
w ( n∈w R ) into a part ∈u B  and a part ⊥∈θ B , then the 
constrained optimization problem (5) is equivalent to 

, 1

'

1min δ
2

s.t. , 0

n
T T

ij
i j

T T
i j ij ij ijf

=
+

− + ≥ ≥

∑u
u XLX u ξ

u x u x V ξ ξ
            (15) 

The proof is provided in Appendix A.  

Proposition 2 discloses the fact that the solution of (5) 
can be produced in the subspace B without any loss of the 
information. Let P  denote a transformation matrix 
of q dimensions, each column vector of which is 
corresponding to a non-zero eigenvalue of TS . By linear 
algebra theory, B  is isomorphic to the q -dimensional 
Euclidean space qR  [14]. The isomorphic mapping is 
exactly the transformation matrix P , one has =u Pη , ∈u B , 

q∈η R , where 1 2, ,...,( )q= β β βP . By the above mapping, 
the formulation (15) can be re-formulated as the following 
problem 

, 1

'

1min δ
2

s.t. , 0

n
T T

ij
i j

T T
i j ij ij ijf

=

+

− + ≥ ≥

∑η
XLX ξ

x x V ξ ξ

η η

η η
           (16) 

where T=X P X  is the PCA transformation of data matrix 
X . Therefore, η  can be generated in the PCA subspace. If 

*η  is the solution to (16), then, * *=u Pη  is the first RSM 
optimal feature. With the recursive procedure in our 
algorithm, the solution *

pη to (16) on the set (2)X can be 
calculated. Then, the r optimal projection vectors of RSM 
are * * ,=u Pηp p p 1, 2,..., .=p r  

V. ALGORITHM AND THEOREM 
We generalize FDA and UDP by RSM to evaluate the 

performance of the proposed subspace framework. The 
resulting schemes are termed as RSM/FDA and 
RSVM/UDP, respectively. In this way, PCA, FDA, RFDA, 
LPP, UDP, and the proposed RSM/FDA and RSM/UDP are 
used to extract features. Note that PCA, UDP and RSS/UDP 
are unsupervised and the others are supervised. In all the 
experiments, two face databases YALE [19] and ORL [20] 
are used. 

A. Face recognition on YALE database 
The YALE database [18] was constructed by the Yale 

Center for Computational Vision and Control. It contains 
165 grayscale images of 15 individuals. All the images 
demonstrate variation in lighting condition (center light, left 
light, and right light), facial expression (normal, happy, sad, 
sleepy, surprised, and winking). Original images were 
manually normalized, aligned, cropped and scaled to 32× 32 
pixels. 

 In our experiment, the first 2, 3 and 4 images per 
individual are used for training, respectively, and the 
remaining images for testing. Before implementing all the 
algorithms, PCA is first applied to throw away the 
components corresponding to zeroes eigenvalues. After 
dimension reduction, the Nearest Neighbor classifier is used 
for classification. The maximum recognition rate of each 
method and the corresponding dimension is listed in TableI. 
Fig. 1 plots the recognition rate versus the variation of 
dimensions. 

TABLE I.  THE MAXIMUM RECOGNITION RATES (%) ON YALE DATABASE. THE NUMBERS IN PARENTHESES ARE THE OPTIMAL DIMENSIONS AFTER 
DIMENSION REDUCTION. 

Training Size PCA FDA RFDA RSM/FDA LPP UDP RSM/UDP 
2 Train 52.6(25) 60.7(13) 64.4(15) 66.7(25) 48.2(28) 48.2(29) 57.1(26) 
3 Train 59.2(24) 65.8(14) 70.8(28) 72.5 (27) 49.2(43) 55.0(37) 60.0(38) 
4 Train 63.8(47) 71.4(14) 74.3(35) 79.1 (36) 52.4(59) 61.9(55) 66.7(43) 

 
As can be seen, our supervised algorithm RSM/FDA 

outperforms all other six algorithms. The supervised 
algorithms FDA, RFDA and RSM/FDA outperform the 
unsupervised PCA, LPP, UDP and RSM/UDP. UDP 
performs better than LPP, which is consistent with [17]. 
Among all the unsupervised algorithms PCA, LPP, UDP 
and RSM/UDP, RSM/UDP performs the best. 

B. Face recognition on YALE database 
The ORL face database [19] contains 400 images of 40 

individuals and has become a standard database for testing. 
The images were captured at different times with the 
different variations, including expression like open or closed 
eyes and smiling or non-smiling, and facial details like 
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glasses or no glasses. The images were aligned, cropped and 
scaled to 32 × 32 pixels. Each image is represented by a 
32 × 32 (i.e., 1024) dimensional vector in image space. 8 

images per individual are randomly selected for training, 
and the remaining 3 images are used for testing.  
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Fig1. Recognition rate versus the variation of dimensions. 

TABLE II.  THE MAXIMUM RECOGNITION RATES (%) ON ORL DATABASE. THE NUMBERS IN PARENTHESES ARE THE OPTIMAL DIMENSIONS ATER 
DIMENSION REDUCTION. 

Training Size PCA FDA RFDA RSM/FDA LPP UDP RSM/UDP 
2 Train 71.6(44) 82.5 (39) 82.2(47) 83.5 (41) 69.7(77)  76.9(73)  77.2(65) 
3 Train 76.8(63) 87.9 (36) 88.9(39) 90.0(40) 71.1(116)  79.3(74)  82.5(93)  
4 Train 85.8(103) 91.3(39) 95.0(41) 95.8(39)  80.8 (156) 87.1(157)  91.3(125)  

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dimensions

R
ec

og
nt

io
n 

R
at

e(
%

)

2 images/individual

 

 

PCA

FDA

RFDA

RSS/FDA
LPP

UDP

RSM/UDP

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Dimensions

R
ec

og
nt

io
n 

R
at

e(
%

)

3 images/individual

 

 

PCA

FDA

RFDA

RSS/FDA
LPP

UDP
RSM/UDP

0 20 40 60 80 100 120 140 160
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensions

R
ec

og
nt

io
n 

R
at

e(
%

)

3 images/individual

 

 

PCA

FDA

RFDA

RSS/FDA
LPP

UDP

RSM/UDP

 
Fig.2. Recognition rate versus the variation of dimensions. 
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Fig.3. Recognition rate of RSM/FDA with Respect to different values of the parameter δ . 

The experimental design is the same as the previous 
experiment. The best result obtained in the optimal subspace 
and the corresponding dimension of each method is listed 
TableII. As can be seen, our supervised RSM/FDA performs 
the best for all the cases. UDP obtains better result than 
other two unsupervised methods PCA and LPP, but is worse 
than its generalized version RSM/UDP. These results 
indicate the effectiveness of the proposed RSM. 

C. Parameter Selection 
In this section, we evaluate the performance of our 

algorithm with the different values of the parameter δ . In 
above experiments, the parameter is determined using the 
global-to-local strategy [14] to make the recognition result 
optimal. We select RSM/FDA as an instance. 
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Fig.3 shows the recognition rate of our algorithm 
RSM/FDA on YALE and ORL with respect to different 
values of this parameter. As can be seen, our algorithm is 
not sensitive to δ  when it is selected from 0.0001 to 0.1. 

VI. CONCLUSION 
We have introduced a novel subspace learning 

framework, called Recursive Soft Margin  Subspace 
Learning (RSM). Different from traditional large margin 
subspace learning algorithms involving the eigen-
decomposition, RSM casts them as related SVM-type 
problems, respectively. Doing so makes these traditional 
algorithms possess the soft-margin concept, and thus further 
help improve the discriminant powers of the traditional 
large margin subspace learning algorithms by allowing 
some interclass pairwise distances to violate the 
maximization constraint. To achieve more projection 
vectors, a recursive procedure is designed. Theoretically, we 
reveal some nature of RSM. The experiments on two face 
databases YALE and ORL indicates the effectiveness of 
RSM. From the RSM model, it can be seen that it is easy to 
directly develop the sparse RSVM model, which is our 
future work. 

ACKNOWLEDGMENT 
The authors are extremely thankful to Scientific 

Research Foundation for Advanced Talents and Returned 
Overseas Scholars of Nanjing Forestry University, China 
National Funds for Distinguished Young Scientists 
(31125008), Jiangsu Qing Lan Project, Jiangsu talent peaks 
of six fields Project, Jiangsu Science Foundation 
(BK2012399), and National Science Foundations of China 
(61101197 and 61272220) for support. 

REFERENCES 
[1] P.N. Belhumeur, J.P. Hespanha, and D.J. Kriegman. Eigenfaces vs. 

Fisherfaces: Recognition Using Class Specific Linear Projection. 
IEEE Trans. Pattern Analysis and Machine Intelligence, 19(7): 711-
720, 1997. 

[2] I. Joliffe. Principal Component Analysis. Springer-Verlag, 1986.  
[3] Y. Chang, C. Hu, and M. Turk. Manifold of Facial Expression. Proc. 

IEEE Int’l Workshop Analysis and Modeling of Faces and Gestures, 
Oct. 2003. 

[4] X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang. Face Recognition 
Using Laplacianfaces. IEEE Trans. Pattern Analysis and Machine 
Intelligence, 27(3): 328-340, 2005. 

[5] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schölkopf. Learning 
with local and global consistency. Proc. Neural Inf. Process. Syst., 
321–328, 2004. 

[6] J. B. Tenenbaum, V. de Silva, and J.C. Langford, A Global Geometric 
Framework for Nonlinear Dimensionality Reduction”, Science, 
290:2319-2323, 2000. 

[7] S.T. Roweis, and L. K. Saul. Nonlinear Dimensionality Reduction by 
Locally Linear Embedding. Science, 290:2323-2326, 2000. 

[8] M. Belkin, and P. Niyogi. Laplacian Eigenmaps for Dimensionality 
Reduction and Data Representation. Neural Computation, 
15(6):1373-1396, 2003. 

[9] Z. Zhang, W. S. C. Tommy, and M. B. Zhao. M-Isomap: Orthogonal 
Constrained Marginal Isomap for Nonlinear Dimensionality 
Reduction. IEEE Transactions on Systems, Man and Cybernetics Part 
B: Cybernetics (TSMC-B), 2012, to appear. 

[10] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin. Graph 
Embedding and Extensions: A General Framework for 
Dimensionality eduction. IEEE Trans. Pattern Analysis and Machine 
Intelligence, 29(1): 40-51, 2007. 

[11] M. Sugiyama, Dimensionality Reduction of Multimodal Labeled Data 
by Local Fisher Discriminant Analysis. Journal of Machine Learning 
Research 8:1027-1061, 2007. 

[12] D. Cai, X. He, K. Zhou, J. W. Han and H. J. Bao, Locality Sensitive 
Discriminant Analysis, Proc. 2007 Int. Joint Conf. on Artificial 
Intelligence (IJCAI'07), Hyderabad, India, Jan. 2007. 

[13] X. He, D. Cai, and J. W. Han. Learning a Maximum Margin Subspace 
for Image Retrieval. IEEE TRANSACTIONS ON KNOWLEDGE 
AND DATA ENGINEERING, 20(2):189-201,2008. 

[14] J. Yang, D. Zhang, J.Y. Yang, and B. Niu, “Globally Maximizing, 
Locally Minimizing: Unsupervised Discriminant Projection with 
Applications to Face and Palm Biometrics”, IEEE Trans. Pattern 
Analysis and Machine Intelligence, 29(4): 650-664, 2007. 

[15] C. Cortes and V. Vapnik. Support Vector Networks. Machine 
Learning, 20: 273-297, 1995. 

[16] A. J. Smola, S. Vishwanathan, and T. Hofmann. Kernel methods for 
missing variables, In AISTATS, 2005. 

[17] Ronan Collobert, Fabian Sinz, Jason Weston, Large Scale 
Transductive SVMs, Journal of Machine Learning Research 7 (2006) 
1687–1712. 

[18] C. Xiang, X. Fan, T. Lee, Face recognition using recursive Fisher 
linear discriminant, IEEE Trans Image Process. 15(8): 2097-105, 
2006. 

[19] Yale. Face Database. (Online), available from: 
/http://cvc.yale.edu/projects/yalefaces/yalefaces.html.. 

[20] ORL. Face Database. (online), available from: 
/http://www.uk.research.att.com/facedatabase.html. 

[21] Framework for Semi-Supervised and Unsupervised Dimension 
Reduction,” IEEE Trans. Image Process., no. 11, 2010,  pp.1921-
1932. 

[22] F. P. Nie, D. Xu, X.L. Li, and S.M Xiang, “Semisupervised 
Dimensionality Reduction and Classification Through Virtual Label 
Regression”, IEEE Trans. on Systems, Man, and Cybernetics—Part 
B: Cybernetics, vol. 41, no. 3, 2011, pp. 675-685. 

[23] D. Cai, “Spectral regression: A regression framework for efficient 
regularized subspace learning”, Ph.D. dissertation, Dept. Comput. 
Sci., Univ. Illinois Urbana-Champaign, Urbana, May, 2009. 

[24] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A 
geometric framework for learning from examples”, J. Mach. Learn. 
Res., vol. 7, Nov. 2006, pp. 2399-2434. 

[25] X. Zhu,“Semi-supervised learning literature survey,” University 
Wisconsin Madison, 2007. 

[26] D. Y. Zhou, J.Weston, and A. Gretton et al., “Ranking on Data 
Manifolds”, in Advances in Neural Information Processing Systems, 
2004. 

[27] C. Liu, H. Y. Shum, and W. T. Freeman, “Face hallucination: Theory 
and practice,” Int. J. Comput. Vision., vol. 75, no. 1, 2000, pp. 115–
134. 

[28] E. Kokiopoulou and Y. Saad, “Orthogonal neighborhood preserving 
projections: A projection-based dimensionality reduction technique,” 
IEEE Trans. Pattern. Anal. Mach. Intell.,  vol. 29, no. 12, 2007,  pp. 
2143–2156,. 

[29] J. H. Friedman, “Regularized discriminant analysis,” J. Amer. Stat. 
Assoc., vol. 84, no. 405, 1989, pp. 165–175. 

[30] T. P. Zhang, B. Fang, Y.Y. Tang, Z, W. Shang, and B. Xu, 
“Generalized Discriminant Analysis: A Matrix Exponential 
Approach”, IEEE Trans. on Systems, Man, and Cybernetics—Part B: 
Cybernetics, vol. 40, no. 1, 2010, 186-197. 

Appendix A: The proof of proposition 2 
Every θ  can be decomposed as a linear combination of 

the orthogonal eigenvectors of TS that correspond to zero 
eigenvalues. Since ⊥∈θ B , we have T 0T =θ S θ and 0.T =S θ  
Sin L N RT = + +S S S S , one can get T T T T

L N R 0T = =+ +θ θ θ θ θ θ θS S θS S . 
We further get T 0L =θ S θ , T 0N =θ S θ  and R

T 0=θ S θ , since 

LS , NS  and RS are positive semi-definite, which implies 
0L =S θ , 0N =S θ  and R 0=S θ . Therefore, 

T T( ) ( )= + + =w S w S Su θ u θ u uT
L L L  
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T
N N N

T( ) ( )= + + =w S w Su θ u θ u S uT  

Since ' T
Nsqrt( )T T

i j ij− =w x w x V w S w , we further 

conclude T' 'TT T
i j ij i j ij− = −w x w x V x x Vu u . Therefore, 

the projection axis w needing to be estimated can be 
replaced with u . Thus, optimization problem (5) is 
equivalent to that in (15).■� 
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