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Abstract— The multi-armed bandit (MAB) problem is the
simplest sequential decision process with stochastic rewards
where an agent chooses repeatedly from different arms to
identify as soon as possible the optimal arm, i.e. the one of
the highest mean reward. Both the knowledge gradient (KG)
policy and the upper confidence bound (UCB) policy work well
in practice for the MAB-problem because of a good balance
between exploitation and exploration while choosing arms.

In case of the multi-objective MAB (or MOMAB)-problem,
arms generate a vector of rewards, one per arm, instead of
a single scalar reward. In this paper, we extend the KG-
policy to address multi-objective problems using scalarization
functions that transform reward vectors into single scalar
reward. We consider different scalarization functions and
we call the corresponding class of algorithms scalarized KG.
We compare the resulting algorithms with the corresponding
variants of the multi-objective UCB1-policy (MO-UCB1) on a
number of MOMAB-problems where the reward vectors are
drawn from a multivariate normal distribution. We compare
experimentally the exploration versus exploitation trade-off and
we conclude that scalarized-KG outperforms MO-UCB1 on
these test problems.

I. INTRODUCTION

THE MULTI-ARMED BANDIT (MAB) is a sequential
decision problem where an agent tries to optimize its

decisions while improving its knowledge concerning the
arms among which it has to choose. At each time step t,
the agent pulls one arm from the set A of available arms
and receives a reward as feedback signal. That reward is
independent from the past rewards of the selected arm and
all the other arms. The rewards from each arm i are drawn
from a stationary probability distribution, e.g. the normal
distribution N(µi, σ

2
i ) with mean µi and variance σ2

i and
we assume that these parameters are unknown to the agent.
By pulling an arm i, the agent improves its estimates µ̂i and
σ̂2
i of the true mean µi and variance σ2

i , respectively.
The goal of the agent is to minimize the total expected

regret RL = Lµ∗ −
∑L
t=1 µ(t) of not pulling the best arm

i∗ at all time steps L. In this expression, i∗ is the arm with
the maximum mean µ∗ = maxi=1,··· ,|A| µi and µi(t) is the
mean of the selected arm i at time step t.

In the MAB-problem, at each time step t, the agent
either selects the arm with the highest estimated mean
µ̂∗ (exploitation of the greedy arm) or selects one of the
other arms in order to improve its corresponding estimate
(exploration of the other arms). And, the agent has to find a
proper trade-off between exploitation and exploration [1] to
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minimize the total expected regret RL. To find a good trade-
off, [2] compares several action selection policies on the
MAB-problem and shows that Knowledge Gradient (or KG)-
policy [3] outperforms other MAB-policies including the
Upper Confidence Bound (UCB1) policy [4]. UCB1 and KG
are similar in the way they trade-off between exploitation and
exploration, both add an exploration bonus to the estimated
mean of each arm i and select the arm that has the highest
combined value of estimated mean and exploration bonus.
But in case of UCB1, the exploration bonus of arm i requires
only knowledge about that arm itself, while in case of KG
it also requires knowledge about the other arms.

The Multi-Objective Multi-Armed Bandit (MOMAB)-
problem has a set of Pareto optimal arms (Pareto front)
that all can be considered best since they are all non-
dominated [6], [9]. The agent trades-off conflicting objectives
of the mean reward vectors as follows: exploration equals
finding the Pareto optimal arms while exploitation equals
selecting fairly among these optimal arms.

A popular way to identify the Pareto optimal arm set
is by using scalarized functions [5]. Scalarized functions
transform the multi-objective space into a single-objective
space, i.e. the mean reward vectors are transformed into
scalar rewards. We consider linear and non-linear scalariza-
tion. Linear scalarization is simple and intuitive but cannot
find all the Pareto optimal arms on a non-convex Pareto front.
The Chebyshev scalarization function, which is a non-linear,
has an extra parameter that can be tuned to find all arms in
the Pareto front set, even if it is non-convex. Recently, [6]
introduced a multi-objective version of UCB1, the multi-
objective UCB1 (or MO-UCB1) and [9] adapted the KG
policy for the MOMAB-problem.

In this paper, we introduce the multi-objective knowledge
gradient framework and the scalarized multi-objective know-
ledge gradient function (scalarized-KG). And, we study the
exploration vs exploitation trade-off for the MOMAB by
comparing empirically scalarized-KG with multi-objective
UCB1. We consider three variants of scalarized-KG: 1) linear
scalarized-KG across arms and 2) across objectives, and 3)
non-linear scalarized-KG. Scalarized-KG converts the multi-
objective space into a single objective space and then adds an
exploration bound in order to trade-off between exploration
and exploitation.

The rest of the paper is organized as follows. Section II
presents background information on the algorithms and the
notation used. Section III introduces the MOMAB-problem.
Section IV introduces the three variants of the scalarized
KG functions mentioned above. Section V describes the
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experimental set up followed by the experimental results.
Finally, Section VI concludes the paper and discusses future
work.

II. BACKGROUND

We consider MOMAB-problems with |A| ≥ 2 arms and
with D objectives per arm. The mean reward vector of arm
i, i = 1 ≤ i ≤ |A| is represented as µµµi = (µ1

i , · · · , µDi )T ,
where T is the transpose. When the objectives are conflicting
with one another then the mean reward component µdi of arm
i corresponding with objective d, d ∈ D, can be better than
the component µdj of another arm j but worse if we compare
the components for another objective d′: µdi > µdj but µd

′

i <

µd
′

j for objectives d and d′, respectively. If there is an arm k
for which at least one component µdk corresponding with one
of the objectives d is strictly greater than the corresponding
components µdi of all other arms i, then that arm k is Pareto
optimal and the set of all Pareto optimal arms is the Pareto
front A∗.

A. Scalarized Functions

We consider scalarization functions that take the weighted
sum of the components of the mean reward vector µµµ and
return a scalar value [5]. We discuss linear and Chebyshev
scalarizations.

A linear scalarization fwww with predefined weights www =
(w1, · · · , wD) such that

∑D
d=1 w

d = 1 assigns to each
component µdi of the mean vector µµµi of an arm i a weight
wd and returns the weighted sum of the means:

fwww(µµµi) = w1µ1
i + · · ·+ wDµDi (1)

Apart from the weights www, the Chebyshev scalarization fwww
also takes into account a D-dimensional reference point zzz =
(z1, · · · , zD)T which has to be dominated by all elements in
the Pareto front. Chebyshev scalarization for maximization
problem is as follows [6]:

fwww(µµµi) = min
1≤d≤D

wd(µdi − zd) ∀i

zd = min
1≤i≤A

µdi − ε ∀d (2)

where ε, ε > 0 is a small value. As a consequence, the
reference point zzz is dominated by all the elements in the
Pareto front. The parameter ε can be varied in order to
find all the Pareto optimal arms in A∗ [7]. Once the multi-
objective MAB-problem is converted into a single-objective
problem, the scalarization function fwww (linear or Chebyshev
scalarization functions) select its arm i∗fwww that maximizes the
function fwww:

i∗fwww = argmax
1≤i≤A

fwww(µµµi) (3)

Scalarized functions convert MOMAB-problems into cor-
responding single objective MAB-problems that have in
general a unique optimal arm as solution. In order to find
all Pareto optimal arms in the Pareto front set A∗, we need a
set of scalarization functions fswww, s = 1, · · · , S that generates

variety of elements belonging to the Pareto front set, like in
multi-objective optimization the scalarization functions are
uniformly random spread in the weighted space. Each fswww
has the corresponding predefined weights wwws.

B. Regret Metrics

To measure the performance of scalarized functions fwww,
the authors of [6] have proposed two regret metrics.

The scalarized regret metric measures the distance be-
tween the maximum of a scalarized function and the scalar-
ized mean vector of the arm chosen at time step t. The
scalarized regret Rs(fwww)(t) for a scalarized function fwww at
time step t is the difference between the maximum for that
function fwww and the scalarized mean vector for the arm k
chosen at time step t by the scalarized function fwww

Rs(fwww)(t) = max
1≤i≤A

fwww(µµµi)− fwww(µµµk)(t) (4)

The unfairness regret metric for the MOMAB takes the
mean rewards of all the optimal arms into account. It looks
at how many times an optimal arm is chosen compared with
total times of optimal arms are chosen so far. Let |A∗| be
the number of optimal arms. Let Ni∗(t) be the number of
times optimal arm i∗ has been selected and N|A∗|(t) be the
number of times optimal arms in the Pareto front set A∗ have
been selected till time step t using the scalarization function
fwww, then the unfairness regret Ru is defined as:

Ru(fwww)(t) =
1

|A∗|
∑
i∗∈A∗

(Ni∗(t)−N|A∗|(t))2 (5)

C. UCB1 in MOMABs

In the multi-objective multi-armed bandit MOMAB prob-
lem [6] extends the UCB1-policy to scalarized multi-
objective UCB1 and it shows that this new policy can find
all Pareto optimal arms in the Pareto front. Scalarized UCB1
converts a multi-objective MAB-problem into a correspond-
ing single objective MAB-problem and then uses UCB1 [4]
to trade-off between exploration and exploitation. It adds
an upper confidence bound to the pulled arm i under the
scalarized function (linear or Chebyshev scalarized function)
fswww with scalarization s that has a predefined set of weight
wwws. The upper confidence bound depends on the number of
times the scalarized function fswww has been selected, Ns and
on the number of times the arm i has been pulled Ns

i under
the scalarized function s. Firstly, the scalarized UCB1 plays
each arm once and estimates the mean vector of each arm,
µ̂i, i = 1, · · · , |A|. At each time step t, it pulls the optimal
arm i∗UCB1 as follows:

i∗UCB1 = argmax
1≤i≤A

(
fswww(µ̂̂µ̂µi) +

√
2 ln(Ns)

Ns
i

)
(6)

where fswww a scalarization function as before. In this paper,
we use scalarized multi-objective UCB1 in the MOMAB
problem with normal distributions.

2291



D. Knowledge Gradient Policy

In the single-objective MAB problem, KG policy is an
index policy that determines for each arm i the index V KGi

as follows [3]:

V KGi = ˆ̄σi ∗ g

−| µ̂i − max
j 6=i,j∈|A|

µ̂j

ˆ̄σi
|

 (7)

where ˆ̄σi = σ̂i/Ni is the root mean square error (RMSE)
of the estimated mean µ̂i of arm i. The function g(ζ) =
ζΦ(ζ) + φ(ζ) where ζ = −|(µ̂i − max

j 6=i,j∈|A|
µ̂j)/ˆ̄σi|, φ(ζ) =

1/
√

2π exp(− ζ/2) is the density and Φ(ζ) =
∫ ζ
−∞ φ(ζ ′)dζ ′

is the cumulative distribution of the standard normal distri-
bution N(0, 1). KG chooses the arm i with the largest V KGi

and it prefers those arms about which comparatively little is
known. These arms are the ones whose distributions around
the estimate mean µ̂i have larger estimated standard deviation
σ̂i. Thus, KG prefers an arm i over its alternatives if its
confidence in the estimate mean µ̂i is low. The KG policy
trades-off between exploration and exploitation by selecting
the arm i∗KG as follows:

i∗KG = argmax
i∈|A|

(
µ̂i + (L− t)V KGi

)
(8)

where L is the horizon of experiment, i.e. the total number of
times an agent can play. For more details about KG policy,
we refer to [3]. In [2], it is shown that the KG policy out-
performs other policies on single-objective MAB problems
in terms of the collected average reward and the average
frequency of optimal selection performances. Moreover, the
KG policy does not have any parameter to be tuned. For
these reasons, we propose scalarized knowledge gradient
(scalarized-KG) functions which make use of the estimated
mean µ̂ and variance σ̂2. Scalarized-KG functions either
convert the multi-dimension to one-dimension environment
and then trades-off between exploration and exploitation, or
vice versa.

III. MULTI-OBJECTIVE KNOWLEDGE GRADIENT
FRAMEWORK

In the MOMAB problem with normal distribution, at each
time step t, the agent selects one arm i and receives a reward
vector. The reward vector is drawn from a normal distribution
N(µµµi,σσσ

2
i ), where µµµi = (µ1

i , · · · , µDi )T is the mean vector
and σσσ2

i = (σ2,1
i , · · · , µ2,D

i )T is the diagonal covariance
matrix of arm i since the reward distributions corresponding
with different arms are assumed to be independent. These
parameters are unknown to the agent. But by drawing arm i
at time step t, the agent can update its estimates µ̂̂µ̂µi and σ̂̂σ̂σ2

i

in each dimension d as follows [8]:


µ̂dt+1 = (1− 1

Nit+1
) µ̂dt + 1

Nit+1
rdt+1,

σ̂2,d
t+1 =

Nit+1−2

Nit+1−1 σ̂
2,d
t + 1

Nit+1
(rdt+1 − µ̂dt )2,

Nit+1 = Nit + 1

(9)

where Nit+1 is the updated number of times arm i has been
selected, rdt+1 is the collected reward from arm i in the
dimension d and µ̂dt+1, and σ̂2,d

t+1 are the updated estimated
mean and covariance of arm i for dimension d, respectively.

A. The Scalarized Multi-Objectieve KG Bandits

The pseudocode of the scalarized multi-objective, multi-
armed bandit MOMAB problems is given in Fig. 1.

1. Input: length of trajectory L;type of
scalarized function ywww;set of scalarized
function S = (y1www, · · · , ySwww);reward rd ∼ N(µ, σ2

r).
2. Initialize: For s = 1 to S

plays each arm Initial steps;
observe (rrri)

s;
update: Ns ← Ns + 1;

Ns
i ← Ns

i + 1;
(µ̂̂µ̂µi)

s, (σ̂̂σ̂σi)
s

End
3. Repeat
4. Select:a function s uniformly, randomly
5. Select:the optimal arm i∗ that maximizes

the scalarized function yswww
6. Observe:reward vector rrri∗,rrri∗ = [r1i∗ , · · · , rDi∗ ]T
7. Update:the estimated mean vector µ̂̂µ̂µi∗;

the estimated standard deviation vector
σ̂̂σ̂σi∗;N

s
i∗ ← Ns

i∗ + 1;Ns ← Ns + 1
8. Compute:unfairness and scalarized regret
9. Until L
10. Output:Unfairness and scalarized regret

Fig. 1. Algorithm:(Scalarized multi-objective function).

Given the type of the scalarized function ywww, (ywww is either
UCB1 scalarized functions, Section II-C or KG scalarized
functions IV and the scalarized function set (y1

www, · · · , ySwww)
where each scalarized function yswww has different weight set,
wwws = (w1,s, · · · , wD,s),

∑D
d=1 w

d,s = 1.
The algorithm in Fig. 1 plays each arm of each scalarized

function yswww, Initial plays (step: 2). Ns is the number of
times the scalarized function yswww is pulled and Ns

i is the
number of times the arm i under the scalarized function yswww
is pulled. (rrri)

s is the reward vector of the pulled arm i which
is drawn from a normal distribution N(µµµ,σσσ2

r) where µµµ is the
mean vector and σσσr is the standard deviation vector of the
reward. (µ̂̂µ̂µi)

s and (σ̂̂σ̂σi)
s are the estimated mean and estimated

standard deviation vectors of the arm i under the scalarized
function s, respectively. After initial playing, the algorithm
chooses randomly at uniform one of the scalarized function
(step: 4) and selects the optimal arm i∗ that maximizes
the type of this scalarized function (step: 5). The algorithm
simulates the selected arm i∗, and updates Ns

i , Ns, (µ̂̂µ̂µi)
s

and (σ̂̂σ̂σi)
s (step: 7). This procedure is repeated until the end

of playing L steps which is the horizon of an experiment.
Note that the proposed algorithm is an adapted version

from [6], but here the algorithm can be applied to both KG
and UCB1 policies with normal reward distribution.

IV. SCALARIZED KNOWLEDGE GRADIENT

In this section, we introduce three instances of the scalar-
ized knowledge gradient functions.
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A. Linear Scalarized-KG across Arms

Linear scalarized-KG across arms (LS1-KG) converts im-
mediately the multi-objective estimated mean µ̂̂µ̂µi and es-
timated variance σ̂̂σ̂σ2

i of each arm to one-dimension, then
computes the corresponding exploration bound ExpBi to
trade-off between exploration and exploitation (trading-off
after scalarization). We use σ̂̂σ̂σ2

i to refer to the estimated
variance vector of arm i. At each time step t, LS1-KG weighs
both the estimated mean vector, i.e. ([µ̂1

i , · · · , µ̂Di ]T ) and
estimated variance vector, i.e. ([σ̂2,1

i , · · · , σ̂2,D
i ]T ) of each

arm i, converts the multi-dimension vectors to one-dimension
values by summing the elements of each vector. Thus, we
have one-dimension MAB problem. KG calculates for each
arm, an exploration bound which depends on all other arms
and selects the arm that has the maximum estimated mean
plus exploration bound. LS1-KG is as follows:


µ̃i = fswww(µ̂i) = w1µ̂1

i + · · ·+ wDµ̂Di ∀i,
σ̃2
i = fswww(σ̂2

i ) = w1σ̂2,1
i + · · ·+ wDσ̂2,D

i ∀i,˜̄σ2
i = σ̃2

i/Ni ∀i,

ṽi = ˜̄σi g(−| µ̃i− max
j 6=i, j∈A

µ̃j˜̄σi
|
)

∀i,

(10)

where fswww is a linear scalarized function that has a predefined
set of weight wwws. µ̃i and σ̃2

i are the modified estimated
mean and variance of an arm i, respectively which are
one-dimension values. ˜̄σ2

i is the RMSE of an arm i. ṽi is
the modified KG index of an arm i. The function g(ζ) =
ζΦ(ζ) +φ(ζ) where Φ and φ are the cumulative distribution
and the density of the standard normal density, respectively.
LS1-KG selects its optimal arm i∗LS1−KG according to:

i∗LS1−KG = argmax
i=1,··· ,|A|

fsLS1KG

= argmax
i=1,··· ,|A|

(
µ̃i + ẼxpBi

)
= argmax
i=1,··· ,|A|

(µ̃i + (L− t) ∗ |A|D ∗ ṽi)

(11)

where fsLS1−KG is a linear scalarized-KG across arms with
scalarization s, ẼxpBi is the modified exploration bound of
arm i, |A| is the number of arms and D is the number of
dimensions.

B. Linear Scalarized-KG across Dimensions

Linear scalarized-KG across dimensions (LS2-KG) com-
putes the exploration bound vector ExpBExpBExpBi for each arm, i.e.
ExpBExpBExpBi = [ExpB1

i , · · · , ExpBDi ], adds the ExpBExpBExpBi to the cor-
responding estimated mean vector µ̂̂µ̂µi to trade-off between ex-
ploration and exploitation, then converts the multi-objective
problem to one-objective (scalarization after trading-off ). At
each time step t, LS2-KG computes exploration bounds for
all dimensions of each arm, sums the estimated mean in each
dimension with its corresponding exploration bound, weighs
each dimension, then converts the multi-dimension to one-
dimension value by taking the summation over each vector
of each arm. LS2-KG is as follows:

fsLS2−KG(µ̂i) = w1(µ̂1
i+ExpB1

i )+· · ·+wD(µ̂Di +ExpBDi )∀i
(12)

where,


ExpBdi = (L− t) ∗ |A|D ∗ vdi ∀d∈D,

vdi = ˆ̄σdi g

(
−|

µ̂d
i− max

j 6=i, j∈A
µ̂d
j

ˆ̄σd
i

|

)
∀d∈D,

(13)

fsLS2−KG is a linear scalarized-KG across dimensions with
scalarization s, vdi is the index of arm i for dimension d,
µ̂di is the estimated mean for dimension d of arm i, ˆ̄σdi is
the root mean square error of arm i for dimension d, and
ExpBdi is the exploration bound of arm i for dimension d.
LS2-KG selects its optimal arm i∗LS2−KG that has maximum
fsLS2−KG(µ̂i) as follows:

i∗LS2−KG = argmax
i=1,··· ,|A|

fsLS2−KG(µ̂i) (14)

C. Chebyshev Scalarized-KG

Chebyshev scalarized-KG (Cheb-KG) computes the ex-
ploration bound vector of each arm in each dimension, i.e.
ExpBExpBExpBi = [ExpB1

i , · · · ,ExpBDi ] to trade-off between ex-
ploration and exploitation, then converts the multi-objective
problem to one-dimension problem. Cheb-KG is as follows:

fsCheb−KG(µ̂i) = min
1≤d≤D

wd(µ̂di + ExpBdi −zd) ∀i (15)

where fsCheb−KG is a Chebyshev KG-scalarized function
with scalarization s, ExpBdi is the exploration bound of arm
i for dimension d which is calculated by using Equation 13.
And, zzz = [z1, · · · , zD]T is a reference point. For each
dimension d, the corresponding reference zd is the minimum
of the current estimated means of all arms minus a small
positive value, εd > 0. The reference zd for dimension d is
calculated as follows:

zd = min
1≤i≤|A|

µ̂di − εd, ∀d (16)

Cheb-KG selects its optimal arm i∗Cheb−KG that has maxi-
mum fsCheb−KG(µ̂i) as follows:

i∗Cheb−KG = argmax
i=1,··· ,|A|

fsCheb−KG(µ̂i) (17)

LS1-KG, LS2-KG and Cheb-KG balance two terms when
they select their arms. First, they prefer the arms that have
large estimated variance σ̂2. Second, they prefer the arms
with |µ̂i − maxj 6=i µ̂j | close to 0. LS1-KG, LS2-KG and
Cheb-KG reduce gradually the exploration bound of arms
by multiplying the time step (L − t) with the index vi of
each arm. As we get close to the end of the horizon, they
select the arms with high estimated mean.
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V. EXPERIMENTS

In this section, we experimentally compare the scalarized-
UCB1 (linear scalarized UCB1 (LS-UCB1) and Cheby-
shev scalarized-UCB1 (Cheb-UCB1)), Section II-C and
the scalarized-KG (linear scalarized-KG across arms (LS1-
KG), linear scalarized-KG across dimensions (LS2-KG),
and Chebyshev scalarized-KG (Cheb-KG)), Section IV on
MOMABs with convex and non-convex (concave) mean
vector arm set. The performance measures are: 1) The
number of times optimal arms are pulled, i.e. the average
of M experiments that optimal arms are pulled. 2) The
number of times each of the optimal arms is drawn, i.e.
the average of M experiments that each one of the optimal
arms is pulled. 3) The average regret and the average
unfairness regret, Section II-B at each time step which are
the average of M experiments. The number of experiments
M is 1000. The horizon of each experiment L is 1000.
The weight sets wwws, s = 1, · · · , S are chosen uniformly
at random. For instance, for 2-objective 2-arm problem,
we consider 11 weight sets w = {(1, 0)T , (0.9, 0.1)T ,
· · · , (0.1, 0.9)T , (0, 1)T }. The rewards of each arm i in
each dimension d, d = 1, · · · , D are drawn from normal
distribution N(µµµi,σσσ

2
i,r) where µµµi = [µ1

i , · · · , µDi ]T is the
true mean and σσσi,r = [σ1

i,r, · · · , σDi,r]T is the true standard
deviation of the reward. For Chebyshev scalarization (Cheb-
UCB1 and Cheb-KG), ε is generated uniformly at random,
ε ∈ [0, 0.1] as [6] and we used fixed ε value in all the M
experiments. According to [2], the performance of KG policy
increases as the standard deviation increases, therefore, the
standard deviation for arms in each dimension is set to 0.01.
The true means and the true standard deviations of arms
are unknown parameters to the agent. Knowledge gradient
KG needs the estimated standard deviation for each arm, σ̂i,
therefore, each arm is played initially 10 times, Initial = 10.
For upper confidence bounce UCB1, each arm is also played
initially 10 time, i.e. Initial = 10 to get fairly comparison
with KG policy.

A. Non-Convex Mean Vector Set

Experiment 1. We use the same example in [6], since it
is simple to understand and the Pareto mean set contains
values close to each others. The number of arms |A| equals
6, the number of dimensions D equals 2. The true mean
set vector is (µµµ1 = [0.55, 0.5]T ,µµµ2 = [0.53, 0.51]T ,µµµ3 =
[0.52, 0.54]T ,µµµ4 = [0.5, 0.57]T ,µµµ5 = [0.51, 0.51]T ,µµµ6 =
[0.5, 0.5]T ). Note that the Pareto optimal arm (Pareto front)
set is A∗ = (a∗1, a

∗
2, a
∗
3, a
∗
4) where a∗i refers to the optimal

arm i∗. The suboptimal a5 is not dominated by the two
optimal arms a∗1 and a∗4, but a∗2 and a∗3 dominates a5 while
a6 is dominated by all the other mean vectors. Fig. 2 shows
a set of bi-objective true means with a non-convex set.

We consider 11 weight sets, i.e. w = {(1, 0)T , (0.9, 0.1)T ,
· · · , (0.1, 0.9)T , (0, 1)T } as [6].

Table I gives the average number ± the upper and lower
bounds of the confidence interval that the optimal arms are
selected in column A∗, and one of the optimal arm a∗ is

(a) non-convex mean vectors (b) convex mean vectors

Fig. 2. Bi-objective, 6-armed. The optimal means are: µ∗1, µ
∗
2, µ

∗
3 and

µ∗4 . Non-convex (concave) mean vector set is given in sub-figure a. Convex
mean vector set is given in sub-figure b.

pulled in columns a∗1, a∗2, a∗3, and a∗4 using the scalarized
functions in column functions.

Table I shows scalarized-KG (LS1-KG, LS2-KG and
Cheb-KG) is able to explore all the optimal arms, where the
number of selecting the optimal arms is increased. While,
scalarized-UCB1 (LS-UCB1 and Cheb-UCB1) is able to
exploit the optimal arms fairly. Linear scalarized functions
outperform Chebyshev scalarized functions in selecting the
optimal arms, i.e. LS1-KG and LS2-KG perform better
than Cheb-KG, and LS-UCB1 performs better than Cheb-
UCB1 in selecting the optimal arms. In opposite, Chebyshev
scalarized functions outperform linear scalarized functions
in playing fairly the optimal arms, i.e. Cheb-KG performs
better than LS1-KG and LS2-KG, and Cheb-UCB1 performs
better than LS1-UCB1 in playing fairly the optimal arms.
LS1-KG outperforms other scalarized functions in exploring
the optimal arms, where the number of times optimal arms
are pulled is increased with high confidence. While, Cheb-
UCB1 outperforms other scalarized functions in exploiting
the optimal arms.

Increasing Arms: We add another 14 additional arms in
Experiment 1, resulting 20 armed. We used the same set of
weights, w of Experiment 1.

Instance 1. We add 14 dominated arms by all the arms in
A∗. We take µµµ7, · · · ,µµµ20 = [0.48, 0.48]T , leaving the Pareto
optimal arm set A∗ unchanged in Experiment 1. Fig. 3 gives
the average scalarized and unfairness regret performances.
The x-axis is the horizon of each experiment. The y-axis is
either the average of the scalarized or the unfairness regret
performance which is the average of 1000 experiments.

Instance 2. We add 14 arms in Experiment 1, three of
them are optimal arms and 11 of them are dominated by
all the arms in A∗, i.e. we increase the number of optimal
arms. We take µµµ7 = [0.56, 0.52]T ,µµµ8 = [0.52, 0.56]T ,
µµµ9 = [0.54, 0.54]T ,µµµ10 = [0.48, 0.48]T = · · · ,µµµ20 =
[0.48, 0.48]T . Pareto optimal arm set contains 7 optimal
arms, i.e. A∗ = (a∗1, a

∗
2, a

∗
3, a
∗
4, a
∗
7, a
∗
8, a
∗
9). Fig. 4 gives the

average scalarized and unfairness regret performances.
According to the scalarized regret performance, Fig. 3

and 4 show as the number of optimal arms is increased
KG outperforms UCB1 in exploring the optimal arms. Cheb-
KG is the best one and LS-UCB1 is the worst one. Cheb-
KG performs better than LS1-KG and LS2-KG. Cheb-UCB1
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TABLE I
NUMBER OF TIMES OPTIMAL ARMS A∗ ARE PULLED AND NUMBER OF TIMES EACH ONE OF THE OPTIMAL ARM IS PULLED PERFORMANCES ON

NON-CONVEX 2-OBJECTIVE MABS WITH NUMBER OF ARMS |A| = 6

functions A∗ a∗1 a∗2 a∗3 a∗4
LS1-KG 999.9± .04 222± 9.7 122.6± 7.4 301.5± 14.4 353.8± 12.2
LS2-KG 999.7± .33 368.2± 17.6 303.1± 18.2 96± 9.3 232.4± 8.5
Cheb-KG 999.2± .25 279± 6 228.7± 7 264.4± 6 227.1± 4.3
LS-UCB1 680.1± .07 168.9± .08 166.6± .06 170.9± .06 173.7± .07

Cheb-UCB1 670.4± .08 167.5± .06 168.3± .06 168.7± .06 165.9± .06

(a) scalarized regret (b) unfairness regret

Fig. 3. 2-objective, 20-armed with concave mean vector set. A∗ =
(a∗1, a

∗
2, a

∗
3, a

∗
4). Sub-figure a shows the scalarization regret performance.

Sub-figure b shows the unfairness regret performance.

(a) scalarized regret (b) unfairness regret

Fig. 4. 2-objective, 20-armed with concave mean vector set. A∗ =
(a∗1, a

∗
2, a

∗
3, a

∗
4, a

∗
7, a

∗
8, a

∗
9). Sub-figure a shows the scalarization regret

performance. Sub-figure b shows the unfairness regret performance.

performs better than LS-UCB1. According to the unfairness
regret performance, UCB1 outperforms KG in exploiting the
optimal arms. LS-UCB1 performs as same as Cheb-UCB1.
Cheb-KG performs better than linear scalalized-KG, but as
the number of optimal arms is increased, Cheb-KG performs
as same as linear scalalized-KG (LS1-KG and LS2-KG).

Increasing dimensions: We add extra dimensions to the
previous concave, 2-objective, 20-armed bandit problem in
order to compare the KG and UCB1 performances on a more
complex MOMAB problem, resulting in a 5-objective, 20-
armed MOMAB problem. We used 11 set of weights, w.

Instance 3. We add 3-objective in Instance 1, such that
the Pareto optimal arm set is not changed i.e. |A∗| = 4,
A∗ = (a∗1, a

∗
2, a
∗
3, a
∗
4). Fig. 5 gives the average scalarized

and unfairness regret performances.
Instance 4. We add 3-objective in Instance 2, such that

the Pareto optimal arm set is not changed i.e. |A∗| = 7,

(a) scalarized regret (b) unfairness regret

Fig. 5. 5-objective, 20-armed with concave mean vector set. A∗ =
(a∗1, a

∗
2, a

∗
3, a

∗
4). Sub-figure a shows the scalarization regret performance.

Sub-figure b shows the unfairness regret performance.

(a) scalarized regret (b) unfairness regret

Fig. 6. 5-objective, 20-armed with concave mean vector set. A∗ =
(a∗1, a

∗
2, a

∗
3, a

∗
4, a

∗
7, a

∗
8, a

∗
9). Sub-figure a shows the scalarization regret

performance. Sub-figure b shows the unfairness regret performance.

A∗ = (a∗1, a
∗
2, a
∗
3, a

∗
4, a
∗
7, a
∗
8, a
∗
9). Fig. 6 gives the average

scalarized and unfairness regret performances.

According to the scalarized regret performance, Fig. 5
and 6 show as the number of dimensions is increased, the
performance of Chebyshev-scalarization (KG and UCB1)
is increased. Cheb-KG and Cheb-UCB1 outperform linear-
scalarization (LS1-KG, LS2-KG and LS-UCB1) in exploring
the optimal arms, where Cheb-KG performs as same as
Cheb-UCB1. LS-UCB1 is the worst one. According to the
unfairness regret performance, Fig. 5 and 6 show as the
number of dimensions is increased, the performance of LS2-
KG is increased. LS2-KG performs better than Cheb-KG and
LS1-KG. UCB1 outperforms KG in exploiting the optimal
arms.
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(a) scalarized regret (b) unfairness regret

Fig. 7. 2-objective, 20-armed with convex mean vector set.. A∗ =
(a∗1, a

∗
2, a

∗
3, a

∗
4). Sub-figure a shows the scalarization regret performance.

Sub-figure b shows the unfairness regret performance.

B. Convex Mean Vector Set

Experiment 2. With number of arms |A| equals 6, number
of dimensions D equals 2. The true convex mean set vector is
(µµµ1 = [0.57, 0.5]T ,µµµ2 = [0.55, 0.53]T ,µµµ3 = [0.53, 0.55]T ,
µµµ4 = [0.5, 0.57]T ,µµµ5 = [0.51, 0.51]T ,µµµ6 = [0.5, 0.5]T ).
Note that the Pareto optimal arm (Pareto front) set is A∗ =
(a∗1, a

∗
2, a
∗
3, a
∗
4). The suboptimal a5 is not dominated by the

two optimal arms a∗1 and a∗4, but a∗2 and a∗3 dominates a5

while a6 is dominated by all the other mean vectors. Fig. 2
shows a set of 2-objective true means with a convex set.
We consider 11 weight sets for UCB1 and KG scalarization
functions, i.e. w = {(1, 0)T , (0.9, 0.1)T , · · · , (0.1, 0.9)T ,
(0, 1)T }.

Table II gives the average number ± the upper and
lower bounds of the confidence interval that the optimal
arms are selected in column A∗, and one of the optimal
arm a∗ is pulled in columns a∗1, a∗2, a∗3, and a∗4 using the
scalarized functions in column functions. Table II shows
the performance of KG is increased when the mean vector
set is a convex set. KG policy performs better than UCB1
policy in selecting (exploring) the optimal arms. UCB1
policy performs better than KG in (playing fairly) exploiting
the optimal arms. LS2-KG outperforms all other scalarized-
KG functions in playing fairly the optimal arms. LS-UCB1
outperforms Cheb-KG in selecting and playing fairly the
optimal arms.

Increasing arms: We add another 14 arms in Experiment
2, resulting 20 armed bandits. We use the same set of
weights, w of Experiment 2.

Instance 5. We add 14 dominated arms by all the arms in
A∗. We take µµµ7, · · · ,µµµ20 = [0.48, 0.48]T , leaving the Pareto
optimal arm set unchanged in Experiment 2. Fig. 7 gives the
average scalarized and unfairness regret performances.

Instance 6. We add 14 arms in Experiment 2, three of
them are optimal arms and 11 of them are dominated by
all the arms in A∗. We take µµµ7 = [0.56, 0.52]T ,µµµ8 =
[0.52, 0.56]T , µµµ9 = [0.54, 0.54]T ,µµµ10 = [0.48, 0.48]T , · · · ,
µµµ20 = [0.48, 0.48]T . Pareto optimal arm set contains 7 opti-
mal arms, i.e. A∗ = (a∗1, a

∗
2, a
∗
3, a

∗
4, a
∗
7, a
∗
8, a
∗
9). Fig. 8 gives

the average scalarized and unfairness regret performances.
Fig. 7 and 8 show KG outperforms UCB1 in exploring the

optimal arms while UCB1 outperforms KG in exploiting the

(a) scalarized regret (b) unfairness regret

Fig. 8. 2-objective, 20-armed with convex mean vector set.. A∗ =
(a∗1, a

∗
2, a

∗
3, a

∗
4, a

∗
7, a

∗
8, a

∗
9). Sub-figure a shows the scalarization regret

performance. Sub-figure b shows the unfairness regret performance.

(a) scalarized regret (b) unfairness regret

Fig. 9. 5-objective, 20-armed with convex mean vector set. A∗ =
(a∗1, a

∗
2, a

∗
3, a

∗
4). Sub-figure a shows the scalarization regret performance.

Sub-figure b shows the unfairness regret performance.

optimal arms. Cheb-UCB1 performs better than LS-UCB1
according to the scalarized regret performance and as same
as LS-UCB1 according to the unfairness regret performance.
According to the unfairness regret, the performance of LS1-
KG does not change with increasing the number of the
optimal arms. While, the scalarized regret of LS1-KG is
improved when the number of optimal armed is increased.

Increasing dimensions: We add extra dimensions to the
previous convex, 2-objective, 20-armed bandit problem in
order to compare the KG and UCB1 performances on a more
complex MOMAB problem, resulting in a 5-objective, 20-
armed MOMAB problem. We used 11 set of weights.

Instance 7. We add 3-objective in Instance 5, such that
the Pareto optimal arm set is not changed i.e. |A∗| = 4,
A∗ = (a∗1, a

∗
2, a
∗
3, a
∗
4). Fig. 9 gives the average scalarized

and unfairness regret performances.
Instance 8. We add 3-objective in Instance 6, such that

the Pareto optimal arm set is not changed i.e. |A∗| = 7,
A∗ = (a∗1, a

∗
2, a
∗
3, a

∗
4, a
∗
7, a
∗
8, a
∗
9). Fig. 10 gives the average

scalarized and unfairness regret performances.
According to the scalarized regret performance, Fig. 9

and 10 show Chebyshev scalarization (using KG and UCB1)
outperforms linear-scalarization. The worst scalarized regret
is achieved by using LS-UCB1 and the best scalarized regret
is achieved by using Cheb-KG and Cheb-UCB1. According
to the unfairness regret performance, Fig. 9 and 10 show
the worst unfairness regret is achieved by using Cheb-KG.
As the number of optimal arms equals 4, Fig. 9 shows
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TABLE II
NUMBER OF TIMES OPTIMAL ARMS A∗ ARE PULLED AND NUMBER OF TIMES EACH ONE OF THE OPTIMAL ARM IS PULLED PERFORMANCES ON

CONVEX BI-OBJECTIVE MABS WITH NUMBER OF ARMS |A| = 6

functions A∗ a∗1 a∗2 a∗3 a∗4
LS2-KG 1000± 0 251.9± 14.3 251.2± 16.51 240.6± 15.84 256.3± 14.56
LS1-KG 1000± 0 239± 10.89 257.4± 12.26 270.5± 12.47 233.1± 10.98
Cheb-KG 1000± 0 267± 5.38 324.3± 5.9 321.6± 6.13 87.1± 5.69
LS-UCB1 686.1± .08 170.6± .08 172.5± .06 172.5± .07 170.5± .07

Cheb-UCB1 671.6± .08 167.4± .06 169± .06 168.7± .06 166.5± .06

(a) scalarized regret (b) unfairness regret

Fig. 10. 5-objective, 20-armed with convex mean vector set. A∗ =
(a∗1, a

∗
2, a

∗
3, a

∗
4, a

∗
7, a

∗
8, a

∗
9). Sub-figure a shows the scalarization regret

performance. Sub-figure b shows the unfairness regret performance.

the performance of LS2-KG as same as LS-UCB1 and
Cheb-UCB1 outperforms all the scalarized functions. As the
number of optimal arms is increased (A∗ = 7), Fig. 10
shows scalarized-UCB1 outperforms scalarized-KG. LS2-
KG performs better than LS1-KG and Cheb-KG.

From the above results, we see that KG explores better
than UCB1, while UCB1 exploits better than KG. The
intuition is the exploration bonus. The exploration bonus for
UCB1 depends on the time step t and the number of times
Ni arm i is pulled. The exploration bonus is high if the arm
i is less selected. Thus, UCB1 plays fairly the optimal arms
because it selects the optimal arms that have either larger
estimated mean or larger exploration bonus. In contrast, the
exploration bonus for KG policy depends on the estimated
mean of all other arms and on the estimated variance of arm
i. The exploration bonus is large if the variance of arm i is
low, or if the estimated mean of arm i exceeds in the future.
Thus, KG selects more efficiently the optimal arms.

VI. CONCLUSIONS AND FUTURE WORK

We presented multi-objective, multi-armed bandit prob-
lem MOMAB, linear, and non-linear scalarized functions
and the scalarized and unfairness regret measures. We also
presented UCB1 policy in MOMAB and the knowledge
gradient KG policy. We proposed two types of linear
scalarized-KG (linear scalarized-KG across arms (LS1-KG)
and linear scalarized-KG across dimensions (LS2-KG)) and
Chebyshev-scalarized-KG (Cheb-KG). We studied the trade-
off between exploration and exploitation in the MOMAB.
The scalarized multi-objective KG bandits is either converts

the multi-objective space to one-objective space then trade-
off between exploration and exploitation or trade-off between
exploration and exploitation directly in the multi-objective
space. Finally we compared KG and UCB1 and concluded
that: 1) In the MOMAB problem, KG and UCB1 policies
are able to find the Pareto optimal arms set in convex and
concave mean vector set. The scalarized regret is improved
using KG policy, while the unfairness regret is improved
using upper confidence bound (UCB1) policy. 2) Chebyshev-
KG and Chebyshev-UCB1 are able to find the Pareto optimal
arm set without moving the reference point. 3) According
to the scalarized regret performance, Cheb-KG performs
better than linear-scalarized KG (LS1-KG and LS2-KG) and
LS1-KG performs better than LS2-KG. According to the
unfairness regret performance, LS2-KG performs better than
LS1-KG, while the performance of Cheb-KG depends on
the number of armed and objectives. 4) Chebyshev-UCB1
(Cheb-UCB1) performs better than linear-scalarized UCB1
(LS-UCB1) according to the scalarized regret performance.
While, LS-UCB1 performs as same as Cheb-UCB1 accord-
ing to the unfairness regret performance. Future work should
provide theoretical analysis for the KG in MOMAB.
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