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Abstract—Visual area V4 lies in the middle of the ventral
visual pathway in the primate brain. It is an intermediate stage in
the visual processing for object discrimination. It plays an impor-
tant role in the neural mechanism of visual attention and shape
recognition. V4 neurons exhibit selectivity for salient features of
contour conformation. In this paper, we propose a novel model
of V4 neurons based on a multilayer neural network inspired by
recent studies on V4. Its low-level layers consist of computational
units simulating simple cells and complex cells in the primary
visual cortex. These layers extract preliminary visual features
including edges and orientations. The V4 computational units
calculate the entropy of the extracted features as a measure of
visual saliency. The salient features are then selected and encoded
with a layer of Restricted Boltzmann Machine to generate an
intermediate representation of object shapes. The model was
evaluated in shape distinction, handwritten digits classification,
feature detection, and feature matching experiments. The results
demonstrate that this model generates discriminative local rep-
resentation of object shapes. It provides clues to understand the
high level representation of visual stimuli in the brain.

I. INTRODUCTION

Understanding the content of images has always been a
difficult task in image analysis due to the well known semantic
gap [1] between low-level representation of images and the
highly abstracted semantic content contained in the images.
However, biological brains accomplish this task accurately and
effortlessly. It is an attractive goal to understand the neural
mechanism of vision in the brain and simulate this mechanism
with electronic computers. Neuroscience studies in the past
decades have provided us with the opportunity to understand
the neural processes of visual perception [2].

Visual stimuli captured by the eye are transformed into
neural impulses in the retina and further processed by the
visual cortex for high level cognitive tasks. The visual cortex
plays an important role in filling the gap between visual
stimuli and the implied semantic information. Neural impulses
travel through the visual pathways in the visual cortex and
finally contribute to a unified percept of the object of interest.
Primate brains possess two distinct visual pathways [3], [4].
The dorsal pathway is involved with processing the object’s
spatial location relevant to the viewer. The ventral pathway
is involved with object discrimination and recognition. In this
paper, we concentrate on the latter, the ventral pathway, and
visual area V4 in particular.

V4 lies in the middle of the ventral pathway (Fig. 1).
Lower levels of the pathway (visual areas V1 and V2) extract

preliminary visual features including edges and orientations
[5], [6]. Higher levels of the pathway (inferior temporal cortex)
exhibit selectivity to complex objects like faces and body parts
[7], [8]. As an intermediate stage, V4 plays a crucial role in
transforming low-level orientation signals into complex object
representations.

Fig. 1. V4 is an intermediate stage in visual recognition.

In the following section, we briefly introduce the neu-
robiological studies on V4 by which our model is inspired.
We also discuss several previous work on the computational
models of V4 and their limitations. In section III, we describe
our model in details. The proposed model is a multilayer
neural network. It extracts low-level orientation features from
images and measures the visual saliency of the features. The
salient features are further encoded into discriminative local
representation of object shapes. In section IV, the model
is evaluated in a series of experiments. The conclusion is
summarized in section V.

II. RELATED WORK

A. Shape Selectivity of V4 Neurons

Neurobiological studies on V4 have not produced a unified
model of its function or circuitry. V4 neurons are known to
be selective for color, shape, depth and even motion [9]. In
this paper, we focus on the V4 selectivity for shapes. Early
experiments examined the selectivity of cells in V4 with clas-
sical stimuli including bars and sinusoidal gratings (Fig. 2a)
[10]. Similar to earlier processing stages, some V4 neurons
are tuned for orientation and spatial frequency of edges and
linear sinusoidal gratings. However, the majority of V4 neurons
are sensitive to more complex shape properties. Later exper-
iments demonstrated that V4 neurons display a clear bias in
their responses in favor of non-Cartesian gratings (Fig. 2b)
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and they show a significant degree of invariance in their
selectivity across changes in stimulus position [11]. More
recent experiments showed that V4 neurons can be strongly
selective for curvature of contours and angular position of
acute curvatures [12], [13]. Fig. 2c shows a response map
of a V4 neuron (reproduced from [13]). The white shapes in
Fig. 2c is presented in the receptive field of this V4 neuron
with equally dark background. The gray scale in the response
map indicates the strength of the neuronal response. Darker
background indicates that the neuronal response is stronger.
This neuron is selectively tuned for acute convex border at the
bottom left. The curvature and the angular position are both
necessary conditions of the activation of this neuron. Neither
rounded protrusions nor sharp curvatures towards directions
other than the bottom left activate the neuron.

(a) (b) (c)

Fig. 2. Shapes to examine V4 selectivity. (a) Classical gratings. (b) Non-
Cartesian gratings. V4 neurons prefer non-Cartesian gratings rather than
classical gratings. (c) Response map of a V4 neuron which responds to a sharp
convex curvature at the bottom left. Darker background indicates a stronger
response.

B. Previous Models of V4

Several models have been proposed to explain the shape
selectivity and invariance of V4 neurons. We briefly introduce
the SRF model [14] and the HMAX model [15], [16].

The spectral receptive field (SRF) [14] describes properties
of V4 receptive field in terms of the orientation and spatial
frequency spectrum. The model is based on the fact that V4
neurons have large orientation and spatial frequency band-
width. They respond selectively to stimuli such as contour
conformations and non-Cartesian gratings, which generally
consist of multiple orientations and spatial frequencies. The
spectral model is also invariant to small changes in stimulus
position and thus explains the invariance property of V4
response patterns. The model is powerful in describing the
shape selectivity of V4 neurons. However, it does not explain
the emergence of the selectivity. It does not either provide the
neural computing process to achieve such spectral receptive
field.

The HMAX model was first proposed in [15] as a generic
model for object recognition in the visual cortex. It models
the visual cortex into a hierarchical architecture consisting
of cascaded linear filters and non-linear maximum pooling
operations. It was then adopted as a model for V4 shape
selectivity and invariance [16]. The training of the model is an
NP-complete problem. The authors used a greedy algorithm
to obtain approximated solutions but they did not provide any
biological evidence for the algorithm.

The proposed model of V4 in this paper overcomes the
limitation of the previous models. In the next section, we

demonstrate that its architecture and function is analogous to
those of the visual cortex. We also provide efficient training
method for our model.

III. NEURAL NETWORK MODEL OF V4

The information processing in the visual cortex follows a
hierarchical scheme. Our model employs a similar hierarchical
structure. Fig. 3 shows the architecture of our model.

Simple cells

Input image

Complex cells

MAXEntropyMAXEntropy MAXEntropyMAXEntropy

Saliency filters

RBM encoders

V4

Fig. 3. Multilayer neural network model of V4.

In the feed-forward direction, the first two layers consist of
simple cells and complex cells providing orientation features
as input to V4 computation units. The layer of saliency filters
measures visual saliency in terms of the entropy of features.
Salient features are accurately located by maximizing neuronal
response. The extracted features are then further encoded into
local representation of object shapes.

A. Input Layers

According to the hierarchy of the ventral visual pathway,
area V4 receives input from the lower levels including area
V1 and V2. These areas have been well studied since 1960s
by Hubel, Wiesel [5], [6] and succeeding researchers.

Neurons in V1 and V2 respond to local orientations. They
fall into two categories, simple cells and complex cells. Simple
cells respond primarily to oriented edges and gratings. Com-
plex cells have larger receptive fields. A stimulus is effective
wherever it is placed in the complex receptive field, provided
that the orientation is appropriate [5].
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The receptive fields of simple cells can be understood as
linear filters modeled as Gabor functions [17],

gθ,σs
(x, y) = exp

(
−x
′2 + y′2

2σ2
s

)
cos

(
2π
x′

λ

)
, (1)

where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ. In the
equation, θ represents the preferred orientation, σs approxi-
mates the radius of the receptive fields, and λ is the wavelength
of the sinusoidal factor. λ controls the spatial frequency of
the filter. It is twice the width of the central excitatory sub-
region of the receptive field (Fig. 4b). In this paper, it is taken
according to the size of the simple receptive field. (λ = 1.3σs).
We can have different Gabor functions by changing the phase
offset of the sinusoidal factor. Fig. 4 shows two typical cases.
They are equivalent with respect to extracting the orientation of
edges. Equation 3 produces an even function (Fig.4b), which
was used in this paper.

λ

σs

(a) Odd symmetry

σs

λ

(b) Even symmetry

Fig. 4. Gabor functions with different phases.

In our model, the layer of simple cells operates on raw
image input (Fig. 3). The output of simple cells with preferred
orientation θ and scale σs is the following convolution passed
through a transfer function φ,

Sθ,σs
(x, y) = φ(I ⊗ gθ,σs

), (2)

where I is an image and

φ(u) =

{
u if u > 0,
0 otherwise. (3)

Complex cells are commonly thought as the squared sum-
mation of simple cells in phase quadrature [18]. In our model,
complex cells are simplified as a linear summation of simple
cells in different positions, weighted with a Gaussian function,

fσc
(x, y) =

1

2πσc
exp

(
−x

2 + y2

2σ2
c

)
, (4)

where σc is the scale of complex cells. Complex receptive field
is usually 2 to 5 times larger than simple receptive field [19]
and therefore in this paper, we have σc = 2σs.

In section IV, we show experimentally that complex cells
provide sufficient information for the V4 model to form the
selectivity for shapes.

B. Saliency Filters

V4 is an area of attentional modulation [9]. Visual attention
involves selecting an interested region or selecting specific
object features. Visual attention in V4 is influenced by both
top-down feedback from higher levels in the visual pathway
and bottom-up input from lower levels. We focus on the

bottom-up influence. In a bottom-up process, V4 evaluates the
saliency of the input from lower levels and focuses its attention
automatically on the salient features.

We use entropy to measure the saliency of images [20]. In
[20], it is assumed that salient regions have high complexity
(and correspondingly high entropy).The entropy of features is
used as a scale invariant measure. The salient region is selected
at entropy peaks over scales. To avoid erroneously selecting
noise or texture as salient regions, a measure of self-similarity
is employed. Self-similar regions are filtered out.

In this paper, we use entropy in a different approach. V4
neurons encode fragments of object contour [13], [21]. They
are selective for simple structures such as convex or concave
curvature. Therefore, in our assumption, well ordered struc-
tures with low complexity are preferred in cognitive activities.
We filter out regions with high complexity (or entropy).

The entropy is calculated according to the output of
complex cells. Given a point (x, y), in the neighborhood of
(x, y), a complex cell with preferred orientation θ has output
value Cθ(x, y), We suppose that the probability of a complex
cell being activated is proportional to the output value. The
probability is thus defined as:

P (θ) =
1∑

θi
Cθi(x, y)

· Cθ(x, y). (5)

The entropy of the complex cell activity in this neighborhood
is

E = −
∑
θ

P (θ) logP (θ). (6)

Fig. 5 shows four image patches. For each image patch,
the output values of complex cells with different preferred
orientations (from 0◦ to 180◦) are plotted in a bar chart. The
charts show the distribution of complex cell activities. The en-
tropy calculated accordingly indicates that patches composed
of simple structures have non-uniform distributions and thus
low entropy values. Therefore, we filter out regions with high
entropy.

Fig. 5. Entropy of image patches. Bar charts in the second row show the
output values of complex cells with different preferred orientations (from 0◦

to 180◦).

In addition to entropy, local competition also plays a role
in attentional selection [22]. With limited neural resources,
only strong and competitive neuronal signals get transmitted
and processed. In our model, the saliency layer finds local
maximums of complex cell output and filters out those points
with high entropy values or low activities (or output values).
The algorithm is listed in Algorithm 1.
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Algorithm 1 Saliency filter
1: procedure FINDSALIENTPOINT(image I , scale σc,

threshold tA, tE)
2: for each orientation θ do
3: Cθ ← φ(I ⊗ gθ)⊗ fσc . complex cell output
4: end for
5: for each point (x, y) in image I do
6: C(x, y)← maxθ Cθ(x, y)
7: E(x, y)← entropy at point (x, y)
8: end for
9: Divide image I into patches of size σc × σc

10: for each patch p do
11: (x̂, ŷ)← argmax(x,y)∈p C(x, y)
12: if C(x̂, ŷ) > tA and E(x̂, ŷ) < tE then
13: Mark (x̂, ŷ) as a salient point
14: end if
15: end for
16: end procedure

C. RBM Encoders

With saliency filters described in the previous subsection,
we are able to focus on a limited number of salient points. The
V4 computation units in our model encode the shape in the
neighborhood of each salient point. The encoding is achieved
with Restricted Boltzmann Machine (RBM).

RBM can learn a probability distribution over its set of
inputs. It has been found efficient in training deep neural
network [23]. The encoder layer in our model is part of a
deep network. Therefore, we use the RBM as a training model
for this encoder layer. The RBM is trained to encode shape
features in the neighborhood of a salient point. Fig. 6 shows
such an RBM encoder.

Salient point

Central 
neuron

Surrounding 
neuron

Complex cells

Orientation 1 Orientation 2 Orientation 3

RBM encoder

Vector 
representation 
of shape

Fig. 6. RBM encoder for local shape feature.

Let (x, y) denote a salient point. For each preferred ori-
entation, we select the complex cell of which the receptive
field is centered at point (x, y), and its eight neighbors. Fig. 6
demonstrates an example of three preferred orientations. In
this case, 9 × 3 complex cells are selected. The number of
selected neurons depends on the number of orientations we
choose. The selected complex cells are then used as the input
layer (or visible layer) of the RBM. The representation of the
shape in the neighborhood of (x, y) is formed in the output
layer (or hidden layer) of the RBM.

RBM can be trained efficiently with a contrastive diver-
gence learning algorithm [24]. Let wij be the weight of the
connection from the i-th visible unit to the j-th hidden unit.
In each learning iteration, the change in the weight is given
by

∆wij = ε (〈vihj〉data − 〈vihj〉recon) , (7)

where ε is a learning rate, 〈vihj〉data is the product of two
units when the visible layer is given the data, and 〈vihj〉recon
is the product of two units when the visible layer is given the
reconstruction ([24] for details on training RBM).

We use weight-decay [25] to reduce overfitting by adding
an L2 penalty term, 1

2λw
2. The weight change is then given

by
∆wij = ε (〈vihj〉data − 〈vihj〉recon)− ελwij , (8)

where λ is a weight-cost coefficient. We followed [25] for
the choice of the coefficient λ and the learning rate ε in our
experiments.

The output vector of the hidden layer forms a representa-
tion of local shape features. It can be used directly as input
for classification tasks. We can also use the RBM connection
weight matrix to initialize a multilayer neural network for
supervised back-propagation training.

D. Model Parameters

The size of the receptive field increases along the hierar-
chy of the visual system. Lower levels have relatively small
receptive fields while higher levels have larger receptive fields.
The size of receptive field in our model follows the same
scheme. The relationship is shown in Table I. V4 neurons
receive afferent connections from 3 × 3 complex cells that
have partially overlapped receptive fields. Therefore the radius
of the V4 receptive field is not 3 times as long as that of the
complex cell.

TABLE I. SIZE OF RECEPTIVE FIELD

Category Radius of receptive field

Simple cells σs

Complex cells σc = 2σs

V4 RBM encoders 2.5σc

We used two schemes for the number of different preferred
orientations of simple cells and complex cells. For black
and white images of shapes and handwritten digits in our
experiment, we used 4 orientations (from 0◦ to 135◦ in steps of
45◦). For gray scale images, we used 18 orientations (from 0◦

to 170◦ in steps of 10◦) in order to preserve more information.

The output of complex cells was normalized to the [0, 1]
interval to serve as the input of RBM encoders. The saliency
filters took a threshold tE = 2.8 for the entropy and a threshold
tA = 0.4 for complex cell output value (or complex cell
activity). These values were roughly the median values of
natural images.

With the above set of model parameters, the execution time
to extract RBM encoded salient features from a single gray-
scale image is linear to the number of pixels in the image and
the size of the receptive field. The time complexity is O(nσ2

s),
where n is the number of pixels. Processing an image with
150,000 pixels at the scale σs = 4 requires 1.0 second with
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MATLAB 2011 on the author’s computer (Intel Core i5 with
4GB RAM). Due to limited space, we do not provide detailed
analysis of the execution time of RBM training here.

IV. EXPERIMENTS

In this section, we demonstrate a series of experiments in
which we evaluated our model.

A. Perceptron over Complex Cells

We have reviewed the shape selectivity of V4 neurons in
section II. In the following experiment, We examined that the
output of complex cells provides sufficient information for
the emergence of neuronal response pattern of V4. A single
perceptron was trained to distinguish between two shapes
(Fig. 7a). The shapes were also used to examine the selectivity
of V4 in [13]. The difference between the two shapes is that
one has a sharp projection towards the top right.

(a) Response map (b) Weight matrices

Fig. 7. Response map and weight matrices of a perceptron that distinguishes
two shapes. (a) Responses of the perceptron over 18 samples. The perceptron
prefers the shape in the left half of the samples. It is insensitive to stimulus
position. (b) The input weight of the perceptron. Each block shows the weight
of connections from complex cells of a certain orientation. Complex cells of
18 different orientations provide input for this perceptron.

Since V4 neurons show a certain degree of invariance in
their selectivity across changes in stimulus position, we moved
the shapes randomly within the receptive field of the perceptron
to generate samples for training and testing (Fig. 7a shows
several samples). The samples were then used as input of
the layers of simple cells and complex cells. The output of
complex cells were passed to the perceptron. We had complex
cells with different preferred orientations (from 0◦ to 170◦

in steps of 10◦) and over different positions in the receptive
field. Therefore, the input of the perceptron consisted of 18
matrices, each corresponding to the output of complex cells
with a certain orientation. The input weight of the perceptron
was thus also 18 matrices.

The trained perceptron exhibited a strong bias towards
the shape with convex curvature towards the top right. It
also showed a significant degree of invariance to the stimulus
position. It is obvious that the selectivity is not formed from
certain excitatory sub-regions or inhibitory sub-regions of the
receptive field which was found of simple cells [5], [13].
The selectivity of the perceptron tallies with the selectivity of
actual V4 neurons. The response map is shown in Fig. 7a.
Darker background colors indicate stronger responses. The
input weight of this perceptron is shown in Fig. 7b. Each block
shows the weight from the complex cells of a certain preferred
orientation. Red color denotes positive weight while blue color
denotes negative weight.

This experiment demonstrates that complex cells provide
sufficient information for V4 neurons to show selectivity
observed in neurobiological experiments.

B. Shape Selectivity

In the following experiment, we trained our model to learn
shapes. The training samples were collected from [11], [12],
[13], including 4 categories of stimuli, i.e., sinusoidal gratings,
non-Cartesian gratings, segmented curves, and closed shapes.
The simple cells in our model took these sample images as
input. The images were processed by simple cells and complex
cells. Since the sample images were fitted into V4 receptive
fields in neurobiological experiments, we adjusted the scale of
the images to fit the size of a single V4 receptive field in our
model too. Therefore the saliency filters were not necessary
in this experiment. The output of complex cells were passed
directly on to an RBM encoder.

We used an RBM with 256 hidden units (RBM output
neurons) in this experiment. In order to assess the selectivity
of these units, we assigned each unit a selectivity index over
a category of stimuli. The selectivity index is defined as the
ratio of the maximal response to the average response over
the stimuli of a certain category. Given an RBM output unit
h and its output value hi over a category of N stimuli for
i = 1, 2, . . . , N . The selectivity index S of h is given by

S(h) =
max{hi|i = 1, 2, . . . , N}∑N

i=1 hi/N
. (9)

In the following statistics, we assumed that a neuron has sig-
nificant selectivity over a category of stimuli if the selectivity
index is greater than 3.5. Among the 256 units, 171 units
exhibited significant selectivity for different stimuli. 102 units
showed selectivity for segmented curves (Fig. 8). 55 units
showed strong bias towards non-Cartesian gratings (Fig. 9)
while 50 units showed selectivity for classical sinusoidal grat-
ings. 68 units exhibited selectivity for closed shapes (Fig. 10).
The shape selectivity of our model is listed in TABLE II. The
categories of selectivity are not mutually disjoint. A single unit
may possess more than one kind of selectivity simultaneously.

TABLE II. SHAPE SELECTIVITY OF OUR MODEL

Selectivity Number of Units Percentage

Sinusoidal gratings 50 19.5%
Non-Cartesian gratings 55 21.5%

Segmented curves 102 39.8%
Closed shapes 68 26.6%

Fig. 8a shows the sample patterns of segmented curves.
Fig. 8b to Fig. 8d show the response maps of 3 RBM output
neurons. Darker background indicates stronger response. The
selectivity indexes is shown at the top. It is shown that the
three neurons exhibited strong bias towards curves rather than
straight lines. The neurons were tuned for the orientation of
the projection of the segmented curves. This is compliant with
the selectivity of V4 neurons described in [12].

Fig. 9 shows the response maps of two RBM output
neurons which are selective for non-Cartesian gratings. Both
of the two neurons were not sensitive to sinusoidal gratings.
The one in Fig. 9a was selective for a pair of circular sectors.
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(a) Patterns (b) Response map (c) Response map (d) Response map

Fig. 8. RBM output neurons responding to convex curves towards certain
directions. (a) Sample patterns of segmented curves. (b) Response map of a
neuron tuned for curves projecting upwards. (c) Response map of a neuron
tuned for curves projecting downwards. (d) Response map of a neuron tuned
for curves projecting towards the top left.

(a) Response map of a neuron selective for a pair of circular sectors
(selectivity index = 3.92).

(b) Response map of a neuron selective for helix shapes (Selectivity
index = 6.37).

Fig. 9. Response maps of RBM output neurons tuned for non-Cartesian
gratings.

The one in Fig. 9b preferred non-Cartesian gratings of helix
shapes.

Fig. 10 shows the sample patterns of closed shapes and
the response map of two neurons. The two neurons were
selectively tuned for two kinds of shapes. They were sensitive
to the angular position of the shapes.

(a) Patterns (b) Response map (c) Response map

Fig. 10. RBM output neurons responding to closed shapes.

This experiment demonstrates that our model can learn to
distinguish the stimuli which V4 neurons are selectively tuned
for.

C. Classifying Handwritten Digits

In the following experiment, we evaluated our model on the
MINST database of handwritten digits [26]. We added another
layer of artificial neurons over the RBM output to classify
handwritten digits.

The images of digits are 28× 28 pixels in size. We fitted
the images into a single V4 receptive field thus the saliency
filters were also bypassed in this experiment.

Since the images are black and white, we used complex
cells with 4 preferred orientations, from 0◦ to 135◦ in steps
of 45◦. Thus the input layer of the RBM encoder consisted of
4×9 units. The output layer consisted of 128 units. We added
another layer of 10 units to be the binary classifiers of the digits
(from 0 to 9). These layers formed a 36×128×10 feed-forward
network. We trained the RBM encoder with the training set of
data. The weight matrix of the RBM encoder was then used to
initialize the weight between the first two layers of the network.
The network was then fine-tuned with back-propagation (BP)
algorithm [27]. We also trained the network directly with
back-propagation algorithm for a comparison. Fig. 11 shows
the training error. When the network was initialized with the
RBM encoder of our model, the BP training began with a
significantly smaller training error.
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Fig. 11. Training error is smaller when using the RBM encoder to initialize
the BP network.

The test error of our model is also competitive compared
with other algorithms. A comparison is shown in Table III.
The benchmark is provided in [26].

TABLE III. COMPARISON OF PERFORMANCE ON MINST DATABASE

Methods Test error rate (%)

Our model 2.9
K-nearest neighbors 5.0

40 PCA + quadratic classifier 3.3
2-layer neural network 4.7
SVM, Gaussian kernel 1.4

D. Feature Detection

In the above experiments, the images contain very limited
information. They are small enough to fit into the receptive
field of V4 computation unit. When we deal with larger
images, especially natural images, we have to find some
regions of interest and focus the computation units over a
limited number of interesting regions. A full scan over the
whole image is not computationally economic. It also com-
plicates succeeding processing for high-level tasks such as
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object recognition and scene understanding. The visual neural
system takes a similar approach. As we have reviewed in
previous sections, V4 is closely related with selective visual
attention [9]. Research shows that V4 receptive field shrinks
and shifts towards saccade target [28]. We simulated such
visual attention with the saliency filters in our model. In the
following experiment, we evaluated the saliency filters with
feature detection experiment.

(a) Car image (b) Activity map (c) Entropy map

(d) Face image (e) Activity map (f) Entropy map

(g) Salient points (h) Salient points

Fig. 12. Feature detection. (a) and (d) show the original images. (b) and
(e) are the complex cell activity. Red color indicates strong activity and blue
color indicates inhibition. (c) and (f) are the entropy map. Red color indicates
high entropy value and blue color indicates low entropy value. (g) and (h) are
the selected salient points at the scale of 4, 8, and 16 in terms of simple cell
radius.

Fig. 12 shows the process of feature detection with the
saliency filters in our model. Fig. 12b and Fig. 12e show the
activity map of complex cells. The activities are high in the
region of the trees behind the car (Fig. 12a) and the handwrit-
ing on the white board (Fig. 12c). Saliency filters filter out
these regions because these regions have a comparatively high
entropy. These areas consist of a large amount of disordered
edges which result in a near uniform distribution of complex
cell activity over preferred orientations and thus high entropy
values. The saliency filters can find salient points at each given
scale. Fig. 12g and Fig. 12h show the salient points at the scale
of 4, 8, and 16 in terms of the simple cell radius (The size of
the other units can be inferred with the relationship shown in
Table I).

E. Feature Matching

Previous work on feature matching emphasizes on match-
ing physical points on the same object under different views
(e.g. [29]). The human vision has better generalization ability
at feature matching in that we can match the same part of
different objects of some certain category despite the minor
differences in details. This ability is important for learning

the semantic of objects. The following feature matching ex-
periment demonstrates that our model exhibits this kind of
generalization ability.

In this experiment, we trained our model with images
randomly selected from the Caltech data set [30]. We took
the output of the RBM encoders as the feature descriptors of
the salient points. A match between points from two images
was then established by finding pairs of features with minimal
Euclidean distance. The matches with feature distances greater
than a threshold value (1.25 in this experiment) were filtered
out as non-matches. The feature matching result between
face images is demonstrated in Fig. 13. Correct matches
were established between different images of the same face.
Different faces were also matched because they were visually
similar.

(a) The same face

(b) Different faces

Fig. 13. Feature matching result between face images.

The comparison in Fig. 14 demonstrates the advantage
of our model. We used SIFT feature [31] for comparison.
Fig. 14a shows that our model produced correct matches
between the model van in the left and the two real vans in
the right. However, SIFT feature failed to produce correct
matches (Fig. 14b). SIFT feature utilizes the direction of image
gradient. It fails to capture the shape feature of an object when
the object’s color changes dramatically because the direction of
image gradient changes with the color. Our model focuses on
the shape feature and thus achieves a stable matching despite
the change in color.

V. CONCLUSION

In this paper, we propose a model for the visual area V4. It
is based on the neural mechanism of the ventral visual pathway.
We focus on visual attention and shape selectivity in V4. V4
in our model is implemented as a multilayer neural network
which selects salient points and encodes the shape feature
in the neighborhood of the salient points. We demonstrate
a variety of experiments in which the model was evaluated.
The results show that the proposed model is consistent with
the shape selectivity of area V4. It can find salient points in
images and encode local shape feature into a discriminative
representation.

Future work should involve further quantitative evaluations
of our model. We will also investigate the application of our
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(a) Our matches

(b) SIFT matches

Fig. 14. Comparison of feature matching between van images.

model in computer vision tasks such as object recognition and
scene understanding.
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