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Abstract— This paper concerns time-delay systems with de-
layed impulses. “Average impulsive intervals” is used to replace
the lower and upper bounds of impulsive intervals, which
weakens the limitations to the impulsive sequences. Under
some modified conditions on the impulsive functions and the
Lyapunov-based function, the exponential stability of systems
is established. A specific impulsive delayed system with linear
input time-delays is investigated by virtue of the obtained
results. Finally, some numerical example is given to demonstrate
the applicability of our results.

I. INTRODUCTION

IMPULSIVE SYSTEMS have been widely applied to
model practical problems in various fields such as me-

chanical systems [1], control systems [2], complex networks
[3], [4], ect. Moreover, impulsive effects, as a non-continuous
control, provides an important method to modify dynamical
behaviors of impulsive systems. Therefore, during the past
decade, stabilities of impulsive systems have been extensive-
ly investigated by virtue of impulsive control(See [2], [5],
[6], [8]).

Since delays can not be avoided in the transmission of im-
pulsive information, it is necessary to investigate time-delay
impulsive systems and many significant results have been
obtained (See[7], [9], [11]). Note that in these results, the de-
lays of impulsive effects are not considered, which naturally
exist in realistic problems. Recently, [12]investigated delay-
free autonomous systems with delayed impulsive effects.
Using exponential estimates for delay-free systems, they
obtained system state estimates at impulse times and derived
a sufficient condition of asymptotic stability. This method
can not be applied to deal with time-delay systems. [13]
investigated time-delay neural networks with destabilizing
delayed impulses. Using the differential inequality method
they obtained the global exponential stability of systems. [14]
considered some nonlinear time-delay systems with more
general delayed impulses. By virtue of a class of Lyapunov-
based functions, they provided some sufficient conditions to
ensure the exponential stability of systems. We note that both
[13] and [14] imposed some restrictions on delays in relation
to impulsive intervals, which lead to the results in [13] and
[14] to be somewhat conservative.
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In this paper, we also concerns time-delay systems with
delayed impulses. Here we address weakening the limita-
tions to the impulsive sequences [13] and [14]. We use
the so-called “average impulsive interval” (see Definition 2)
recently developed by[15] to replace the lower and upper
bounds of impulsive intervals. For an impulsive sequence
{tk} with average impulsive interval Ta, there may exist
some intervals (ti−1, ti)(i ∈ N) satisfying |tk − tk−1| is
arbitrarily small or large enough(see the example in the end
for details). Therefore, the results obtained in this paper seem
to be less conservative than those in[13] and [14]. Under
some modified conditions on impulsive function gk and the
function V of class ν0, we first establish the exponential
stability of the system. Then we apply our results to study
a specific impulsive delayed system with linear input time-
delays and establish it’s exponential stability. Finally we give
some numerical example to demonstrate the applicability of
our results.

II. PRELIMINARIES

For ρ ≥ 0, let B(ρ) = {x ∈ Rn
∣∣|x| ≤ ρ}.

For r > 0, let PRC([−r, 0],Rn) = {ϕ : [−r, 0] →
Rn
∣∣ϕ is piecewise right continuous}, which is endowed with

norm ∥ · ∥ : ∥ϕ∥r = sup−r≤θ≤0 |ϕ(θ)|. For ϕ ∈ PRC([t0 −
r,+∞),Rn) and t ≥ t0, define ϕt ∈ PRC([−r, 0],Rn) by
ϕt(s) = ϕ(t+ s). Suppose that D ⊂ Rn is an open set, and
for some ρ ≥ 0, B(ρ) ⊂ D. f : R+ × PRC([−r, 0], D)→
Rn satisfies f(t, 0) = 0. gk : D ×D → Rn, k ∈ N.

We consider the following nonlinear time-delay system
with delayed impulses ẋ(t) = f(t, xt); t > t0, t ̸= tk

x(t) = gk(x(t
−), x(t− dk)−), t = tk, k ∈ N

x(t0 + θ) = ϕ(θ), θ ∈ [−τ, 0],
(1)

where x ∈ Rn is the state of the system. x(t+) and x(t−)
are the right and left derivatives of x at t, respectively.
Suppose any solution of (1) is right continuous, i.e., x(t+) =
x(t). {dk ≥ 0, k ∈ N} are impulsive delays satisfying
maxk{dk} = d < ∞. t0 ≥ 0 is the initial time. {tk} is
an impulsive sequence on [t0,+∞), t0 < t1 < · · · < tk <
· · · → +∞. ϕ ∈ PRC([−τ, 0],Rn) is the initial state, where
τ = max{r, d}.

Definition1: For a given impulsive sequence {tk}, the
trivial solution of (1) is said to be exponentially stability,
if there exists positive numbers ρ0,M and λ such that if
∥ϕ∥τ < ρ0,

|x(t, t0, ϕ)| ≤M∥ϕ∥τe−λ(t−t0), t ≥ t0.
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Moreover, if the trivial solution of (1) is exponentially stable,
and the number ρ0 can be an arbitrarily large finite number,
then the trivial solution is called to be globally exponentially
stable.

In order to guarantee the existence of solutions of (1), gen-
erally, one needs make the following assumptions(see[10])
(A01) f is composite PRC, that is for each t0 ∈ R+ and

α > 0, if x ∈ PRC([t0 − r, t0 +α], D) and x is continuous
at t ̸= tk, t ∈ (t0, t0 + α], then the composite function
f(t, xt) ∈ PRC([t0, t0 + α],Rn).
(A02) f is quasi-bounded on R+×PRC([−r, 0], D), that

is for each t0 ≥ 0, α > 0 and compact subset F of D, there
exists M > 0 such that for each (t, x) ∈ [t0, t0 + α] ×
PRC([−r, 0], F ), |f(t, x)| ≤M .
(A03) For each fixed t ∈ R+, f(t, x) is continuous with

respect to x ∈ PRC([−r, 0], D).
Definition2: (Average Impulsive Interval[15]) The aver-

age impulsive interval of ζ = {t1, t2, · · · } is Ta, if there exist
N0 ∈ Z+ and Ta > 0 such that

T − t
Ta

−N0 ≤ Nζ(T, t) ≤
T − t
Ta

+N0, ∀ T ≥ t ≥ 0,

where Nζ(T, t) is the impulsive times of ζ on (t, T ).
Remark1: The concept of average impulsive interval was

first introduced in [15] to investigate some systems with
nonunited distributive impulses, whose impulsive interval
length may be arbitrarily small or large. Specific examples
can be found in [15]. See also the numerical example in the
end.

III. EXPONENTIAL STABILITY

In this section we investigate exponential stability of
solutions of (1) with nonunited distributive impulses. We
make assumptions as follows
(A1) There exists L1 > 0 such that for each φ ∈

PRC([−r, 0],B(ρ)), |f(t, φ)| ≤ L1∥φ∥r.
(A2) There exists L2 and L3 > 0 such that for all k ∈

N and x, y1, y2 ∈ B(ρ), |gk(x, 0)| ≤ L2|x|, |gk(x, y1) −
gk(x, y2)| ≤ L3|y1 − y2|.
(A3) The average impulsive interval of ζ = {tk} is Ta >

0, that is there exist N0 ∈ N, Ta > 0 such that for all T ≥
t > t0,

T−t
Ta
− N0 ≤ Nζ(T, t) ≤ T−t

Ta
+ N0. Thus, there

exist at most l = ⌈ dTa
⌉+N0 impulses on (t0, t0 + d], where

⌈ dTa
⌉ means the upper integer of d

Ta
. Let ∇ = max{1, L2 +

L3}, ϱ = ∇leL1d.
Suppose that the impulsive instants on (t0, t0 + d] are
{ti}, i = 1, 2, · · · ,m, m ≤ l.

Lemma1: If the system (1) satisfies (A01) − (A03) and
(A1) − (A3), then for any ϕ ∈ PRC([−τ, 0],B(ρ/ϱ)),
|x(t, t0, ϕ)| ≤ ϱ∥ϕ∥τ , t ∈ [t0 − τ, t0 + d].

Proof: Obviously, |x(t0 + θ)| = |ϕ(θ)| ≤ ∥ϕ∥τ < ρ(θ ∈
[−τ, 0]). Then for t ∈ [t0 − τ, t0], |x(t)| < ρ. We show this
is also holds on [t0 − τ, t1). If not, there exists t∗ ∈ (t0, t1)
such that for t ∈ [t0 − τ, t∗), |x(t)| < ρ and |x(t∗)| = ρ.

For t ∈ [t0, t
∗], θ ∈ [−r, 0], without loss of generality, we

assume t+ θ > t0. Integrating the first formula of (1) from
t0 to t+ θ and using (A1) yields

|x(t+ θ)| = |x(t0) +
∫ t+θ

t0

f(s, xs)ds| ≤ |ϕ(θ)|

+

∫ t

t0

|f(s, xs)|ds ≤ ∥ϕ∥r + L1

∫ t

t0

∥xs∥rds.

Then,

∥xt∥r ≤ ∥ϕ∥r + L1

∫ t

t0

∥xs∥rds, t ∈ [t0, t
∗].

By the Gronwall’s inequality,

∥xt∥r ≤ ∥ϕ∥reL1(t−t0), t ∈ [t0, t
∗].

Therefore,
|x(t∗)| ≤ ρ

ϱ
eL1d < ρ,

a contradictionary.
From the above argument, we also obtain that

|x(t)| ≤ ∥xt∥r ≤ ∥ϕ∥reL1(t−t0)

≤ ∥ϕ∥τeL1(t−t0), t ∈ [t0 − τ, t1). (2)

By (A2), for k ∈ N and x, y ∈ B(ρ),

|gk(x, y)| ≤ L2|x|+ L3|y|.

Hence,

|x(t1)| = |gk(x(t−1 ), x((t1 − d1)−))|
≤ L2|x(t−1 )|+ L3|x((t1 − d1)−)|
≤ (L2 + L3)∥ϕ∥τeL1(t1−t0)

≤ ∇∥ϕ∥τeL1(t1−t0).

Thus, we have proved that

|x(t)| ≤ ∇∥ϕ∥τeL1(t−t0), t ∈ [t0, t1].

Repeatedly, we obtain

|x(t)| ≤ ∇m∥ϕ∥τeL1(t−t0) ≤ ∇l∥ϕ∥τeL1(t−t0), t ∈ [t0, tm].

Since there are not impulses on (tm, t0 + d]for t ∈ [t0 −
τ, t0 + d], we have

|x(t)| ≤ ∇l∥ϕ∥τeL1(t−t0) ≤ ∇l∥ϕ∥τeL1d = ϱ∥ϕ∥τ .

We will apply some functional related to system (1) to
investigate the stability of it’s solutions.

Definition3: A function V : [−τ,∞) × D → R+ is said
to belong to the class ν0 if
(1) V is continuous in each of the sets [tk−1, tk)×Dand

for each k ∈ N, lim(t,y)→(t−k ,x)
V (t, y) = V (t−k , x) exists

(2) V (t, x) is local Lipschitz with respect to x ∈ D, and
for all t ≥ t0, V (t, 0) ≡ 0.

Definition4: Let V ∈ ν0, for each (t, φ) ∈ [t0,∞) ×
PRC([−τ, 0],B(ρ)), the upper right-hand derivative of V
with respect to (1) is defined by

D+V (t, φ(0))

= lim sup
h→0

1

h
[V (t+ h, φ(0) + hf(t, φ))− V (t, φ(0))].
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Theorem1: Suppose (1) satisfies (A01)−(A03) and (A1)−
(A3), and there exists V ∈ ν0, a, b, c, p ≥ 1, κ > 1 satisfying
(S1) For all (t, x) ∈ [−τ,∞)×D, a|x|p ≤ V (t, x) ≤ b|x|p.
(S2) For t ∈ [t0,∞), t ̸= tk and φ ∈ PRC([−τ, 0],B(ρ)),
κV (t, φ(0)) ≥ V (t + θ, φ(θ)) (θ ∈ [−τ, 0]) leads to
D+V (t, φ(0)) ≤ −cV (t, φ(0)).
If there exist ν, k1, k2 > 0 satisfying
(S3) For all t = tk and x ∈ B(ρ/(∇ + L3)),
V (t, gk(x, x)) ≤ νV (t−, x).
(S4) For all t = tk and x, y ∈ B(ρ) with x + y ∈ B(ρ),
V (t, x + y) ≤ k1V (t, x) + k2V (t, y). There exists d ≥ 0
such that

k1ν + k2
b

a
Lp3[dL1 + l(1 + L2 + L3)]

p < 1, (3)

then if the time-delays dk satisfying dk ≤ d, k ∈ N, (1) is
exponentially stable.

Proof: It is easy to see that if (3) is true, there exists
λ ∈ (0,min{c, lnκr }) such that

k1ν + k2
b

a
Lp3[dL1e

λ(r+d)/p

+l(1 + L2 + L3)e
2λd/p]p < 1. (4)

Take δ ∈ (0, ( p

√
b
a (∇ + L3)ϱ)

−1ρ). Suppose that the so-
lution of (1) subject to (t0, ϕ) ∈ R+×PRC ([−τ, 0],B(δ))
is x(t) = x(t, t0, ϕ), with maximal existence interval [t0 −
τ, T̄ ), where T̄ > t0 is a positive number. We show that
T̄ =∞ and

V (t) = V (t, x(t)) ≤ bϱp∥ϕ∥pτe−λ(t−t0−d), t ∈ [t0 − τ, T̄ ). (5)

For simplicity, we also denote the sequence on (t0 + d, T̄ )
by {ti}, i = 1, 2, · · · . Let t∗k = min{tk, T̄}. For t ∈
[tk, t

∗
k+1), k ∈ N, define

W (s) = eλ(s−t0−d)V (s), s ∈ [t0 − τ, t]. (6)

We first show that, for s ∈ [t0 − τ, tk),

W (s) ≤ bϱp∥ϕ∥pτ . (7)

The method is mathematical induction. By Lemma 1,

|x(t)| ≤ ϱ∥ϕ∥τ , t ∈ [t0 − τ, t0 + d]. (8)

Combing (6), (8) and (S1), we see (7) holds.
We claim that for t ∈ [t0 − τ, t1), (7) also holds. If not,

there exists t∗ ∈ [t0 + d, t1) and 0 < ϵ < b[(∇+ 2L3)
p − 1]

such that

W (t∗) = (b+ ϵ)ϱp∥ϕ∥pτ , D+W (t∗) ≥ 0 (9)

and for s ∈ [t0 − τ, t∗),

W (s) < W (t∗). (10)

By (9), (10) and (S1), as s ∈ (t0, t
∗), we have

|x(s)| ≤ p

√
b+ ϵ

a
ϱ∥ϕ∥τ < ρ.

For s ∈ [t∗ − r, t∗), (10) implies

V (t∗) > e−λ(t
∗−s)V (s) ≥ e−λrV (s) ≥ 1

κ
V (s).

Thus from (S2), we obtain D+V (t∗) ≤ −cV (t∗), which
leads to

D+W (t∗) ≤ −(c− λ)eλ(t
∗−t0−d)V (t∗) < 0,

a contradiction with (9). Hence, for [t0− τ, t1), (7) holds on
[t0 − τ, t0 + d].

We now assume that for [t0 − τ, tm), (7) is true, Then

W (t−m) ≤ bϱp∥ϕ∥pτ . (11)

In the following we show that W (tm) ≤ bϱp∥ϕ∥pτ .
Since Nζ(tm, tm − dm) ≤ dm

Ta
+ N0 ≤ d

Ta
+ N0, there

exist at most l = ⌈ dTa
⌉ + N0 impulses on (tm − dm, tm),

which are assumed that tm1 , tm2 , · · · , tml0
, l0 ≤ l.

By (11) and (S1), for s ∈ [t0 − τ, tm),

|x(s)| ≤ p

√
b

a
ϱ∥ϕ∥τe−λ(s−t0−d)/p < ρ. (12)

From (12) and (A1), (A2),

| x(t−m)− x(tm − dm)−|

=
∣∣ ∫ t−m

tm−dm
ẋ(s)ds+

l0∑
i=1

∆x(tmi)
∣∣

≤
∣∣ ∫ t−m

tm−dm
|f(s, xs)|ds

∣∣
+

l0∑
i=1

|gmi(x(t
−
mi

), x((tmi − dmi)
−))− x(t−mi

)|

≤ L1

∣∣ ∫ t−m

tm−dm
∥xs∥rds

∣∣
+

l0∑
i=1

[(1 + L2)|x(t−mi
)|+ L3|x(tmi − dmi)

−|] (13)

≤ [L1de
λ(r+d)/p

+ l(1 + L2 + L3)e
2λd/p]

( b
a

)1/p
ϱ∥ϕ∥τe−λ(tm−t0−d)/p.

Let ∆gm = gm(x(t−m), x(tm − dm)−)− gm(x(t−m), x(t−m)).
Then by (12), (13), (A2) and the choice of δ, we obtain

|∆gm|p ≤ Lp3[L1de
λ(r+d)/p

+l(1 + L2 + L3)e
2λd/p]p

( b
a

)
ϱp∥ϕ∥pτe−λ(tm−t0−d).

It is also easy to check

|gm(x(t−m), x(t−m))| < ρ,

|gm(x(t−m), x((tm − dm)−))| < ρ, (14)
|∆gm| < ρ.
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Combing (11), (13), (15), (S1), (S3) and (S4) gives

V (tm) = V (tm, x(tm))

= V (tm, gm(x(t−m), x((tm − dm)−)))

= V (tm, gm(x(t−m), x(t−m)) + ∆gm)

≤ k1V (tm, gm(x(t−m), x(t−m))) + k2V (tm,∆gm)

≤ k1νV (t−m) + k2b|∆gm|p

≤ {k1ν +
b

a
k2L

p
3[dL1e

λ(r+d)/p

+ l(1 + L2 + L3)e
2λd/p]p}bϱp∥ϕ∥pτe−λ(tm−t0−d)

≤ bϱp∥ϕ∥pτe−λ(tm−t0−d).

Therefore, W (tm) ≤ bϱp∥ϕ∥pτ .
In summary, we have proved, for s ∈ [t0 − τ, tm],

W (s) ≤ bϱp∥ϕ∥pτ . (15)

We can establish by contradiction that (15) holds on
[tm, tm+1) as same as that on [t0 − τ, t1). By the math-
ematical induction method, for any k ∈ N, (15) holds on
[t0− τ, tk). Similar to the above argument, we can establish
W (tk) ≤ bϱp∥ϕ∥pτ . Again using the contradiction method,
we can see(15) is true on [tk, t

∗
k+1). By the theorem of con-

tinuity in[10], we obtain T̄ = +∞, and (1) is exponentially
stable.

Theorem 1 can be used to investigate the Robust stability
of some continuous time-delay systems with delayed impuls-
es, where the condition (S2) implies the continuous system
in (1) is stable. If the constant c in (S2) is negative, then the
continuous system is not stable. In this case, the Lyapunov
function associated with this system is not necessary to be
decreased along it’s orbits. Thus, the stability of the whole
system greatly depends on the effect of the input impulses.
The next theorem concerns this case.

Theorem2: Suppose (1) satisfies (A01)−(A03) and (A1)−
(A3). There exist V ∈ ν0, a, b, p ≥ 1, κ > 1 and c ≤ 0
such that (S1) − (S2) holds. Let

a
= N0Ta. If there exist

ν, k1, k2 > 0 such that (S3)−(S4) is true. Moreover, we can
find d ≥ 0 satisfying

e−c
a
< min{κ, [k1ν

+
b

a
k2L

p
3(dL1 + l(1 + L2 + L3))

p]−1}, (16)

then the system (1) is exponentially stable as long as the
input impulsive delays dk ≤ d, k ∈ N.

Proof: It is easy to see that, if (16) is true, there exist
λ, σ > 0 such that

e(−c+λ)
a
< σ

< min{κe−λr, {k1ν +
b

a
k2L

p
3(dL1e

λ(r+d)/p

+l(1 + L2 + L3)e
2λd/p)p}−1}. (17)

Take δ ∈ (0, ( p

√
bσ
a (∇ + L3)ϱ)

−1ρ). Suppose x(t) =

x(t, t0, ϕ) is the solution of (1) subject to (t0, ϕ) ∈ R+ ×
PRC ([−τ, 0],B(δ)), with maximal existence interval [t0−

τ, T̄ ), where T̄ > t0 is a positive number. We show T̄ =∞
and

V (t) ≤ bσϱp∥ϕ∥pτe−λ(t−t0−d), t ∈ [t0 − τ, T̄ ). (18)

We still denote the impulsive sequence on (t0 + d, T̄ ) by
{ti}, i = 1, 2, · · · . Let t∗k = min{tk, T̄}. For t ∈ [tk, t

∗
k+1),

define

W (s) = eλ(s−t0−d)V (s), s ∈ [t0 − τ, t]. (19)

Similar to the proof of Theorem 1, we will apply the
method of mathematical induction to establish that for k ≥
1, s ∈ [t0 − τ, tk),

W (s) ≤ bσϱp∥ϕ∥pτ . (20)

By (S1) and Lemma 1

W (s) ≤ bϱp∥ϕ∥pτ , s ∈ [t0 − τ, t0 + d].

Then (20) holds on [t0 − τ, t0 + d].
We claim that for t ∈ [t0 − τ, t1), (20) also is true.

Otherwise, there exists s ∈ [t0 + d, t1) such that

W (s) > bσϱp∥ϕ∥pτ .

Let t∗ = inf{t ∈ (t0 + d, t1);W (s) > bσϱp∥ϕ∥pτ}. Then
t∗ ∈ (t0 + d, t1) and W (t∗) = bσϱp∥ϕ∥pτ}. Let t̄ = sup{t ∈
(t0 − τ, t∗);W (s) ≤ bϱp∥ϕ∥pτ}. Then t̄ ∈ [t0 + d, t∗) and
W (t̄) = bϱp∥ϕ∥pτ .
For s ∈ [t̄, t∗),

W (s) ≥ bϱp∥ϕ∥pτ =
1

σ
·bσϱp∥ϕ∥pτ ≥

1

σ
W (s+θ), θ ∈ [−r, 0].

by which and (17), we have

V (s) ≥ 1

σ
eλθV (s+ θ) ≥ 1

σ
e−λrV (s+ θ)

≥ 1

κ
V (s+ θ), θ ∈ [−r, 0].

For s ∈ [t̄, t∗), using W (s) ≤ bσϱp∥ϕ∥pτ and (S1), we obtain

|x(s)| ≤ p

√
bσ

a
ϱ∥ϕ∥τ < ρ.

Then by (S2),

D+V (s) ≤ −cV (s), s ∈ [t̄, t∗).

Integrating the above formula from t̄ to t∗ yields

V (t∗) ≤ e−c(t
∗−t̄)V (t̄) = e−c(t

∗−t̄)e−λ(t̄−t0−d)bϱp∥ϕ∥pτ
= e(−c+λ)(t

∗−t̄)e−λ(t
∗−t0−d)bϱp∥ϕ∥pτ . (21)

Since there are not impulses on (t̄, t∗), Nζ(t∗, t̄) = 0. By the
definition of average impulsive interval, t∗− t̄ ≤ N0Ta =

a
.

By (21),

V (t∗) ≤ e(−c+λ)
a
e−λ(t

∗−t0−d)bϱp∥ϕ∥pτ
< σe−λ(t

∗−t0−d)bϱp∥ϕ∥pτ . (22)

Then W (t∗) < bσϱp∥ϕ∥pτ , a contradiction.
Now, assume for m ∈ N, 1 ≤ m ≤ k − 1,

W (s) ≤ bσϱp∥ϕ∥pτ , s ∈ [t0 − τ, tm). (23)
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we will show

W (s) ≤ bσϱp∥ϕ∥pτ , s ∈ [tm, tm+1). (24)

By(23) and (S1),

|x(s)| ≤ p

√
bσ

a
ϱ∥ϕ∥τe−λ(s−t0−d)/p < ρ, s ∈ [t0 − τ, tm).

Since Nζ(tm, tm− dm) ≤ dm
Ta

+N0 ≤ d
Ta

+N0, there are at
most l = [ dTa]

] +N0 impulses on (tm − dm, tm).
As the proof of Theorem 1, we can establish that

|x(t−m)− x(tm − dm)−|

≤ [L1de
λ(r+d)/p + l(1 + L2 + L3)e

2λd/p]
p

√
bσ

a

ϱ∥ϕ∥τe−λ(tm−t0−d)/p. (25)

Then

V (tm)

≤ {k1ν +
b

a
k2L

p
3[L1de

λ(r+d)/p

+ l(1 + L2 + L3)e
2λd/p]p}bσϱp∥ϕ∥pτe−λ(tm−t0−d)

≤ bσϱp∥ϕ∥pτe−λ(tm−t0−d).

That is
W (tm) ≤ bσϱp∥ϕ∥pτ .

We can establish by contradiction that (15) holds on
[tm, tm+1) as same as that on [t0 − τ, t1). By the math-
ematical induction method, for any k ∈ N, (15) holds
on [t0 − τ, tk). Similar to the above argument, we can
establish W (tk) ≤ bϱp∥ϕ∥pτ . Again using the contradiction
method, we can see(15) is true on [tk, t

∗
k+1). By the theorem

of continuity in [10], we obtain T̄ = +∞, and (1) is
exponentially stable.

IV. AN APPLICATION OF THE MAIN RESULTS

We now apply the above results to investigate the follow-
ing time-delay system with delayed impulses. ẋ(t) = Ax(t) + Φ(t, x(t− r)); t > t0, t ̸= ti

x(t+) = µx(t−) +Bi(x(t− di)−), t = ti, i ∈ N
x(t) = ϕ(t− t0), t0 − τ ≤ t ≤ t0,

(26)
where A is an n× n constant matrix, r ≥ 0 is a time-delay,
∆x(ti) = x(ti) − x(t−i ). Impulsive sequence {ti} satisfies
t0 < t1 < t2 < · · · < tn < · · · , limn→∞ tn = ∞. di is the
impulsive delay. d = maxi{di} ≥ 0. ϕ(t) ∈ C1([t0 − τ, 0]),
where τ = max{r, d}. Bi, i = 1, 2, · · · are n × n matrices.
For a matrix B, define it’s norm by ∥B∥ =

√
λmax(BTB),

where λmax(B
TB) is the most maximum eigenvalue of

BTB.
Recently, [12] investigated (26) without time-delays(i.e.,

r = 0). They established that the solution of (26) is
(uniformly) equi-attractive in large. Here we consider the
exponential stability of (26). Suppose

There exist M0,M1, L0 such that ∥Bi + µI∥ ≤
M0, ∥Bi∥ ≤ M1, i = 1, 2, · · · .|Φ(t, x)| ≤ L0|x|, (t, x) ∈
R+ × Rn.

This guarantees for each (t0, ϕ) ∈ R+ × C([−τ, 0],Rn),
the system (26) has a local solution x(t) = x(t, t0, ϕ) ([10]).
Here we assume this solution is right-hand continuous on it’s
existence interval.

For the impulsive sequence {ti}, we suppose it’s average
impulsive interval is Ta, i.e., there exist N0 ∈ N, Ta > 0
such that T−t

Ta
−N0 ≤ N (T, t) ≤ T−t

Ta
+N0.

Let f(t, xt) = Ax+ Φ(t, x(t− r)), gi(x, y) = µx+Biy.
Then for L1 = ∥A∥+L0, L2 = µ and L3 =M1, (A1), (A2)
are satisfied.

Choose V (ψ) = |ψ| for ψ ∈ PRC([−τ, 0],Rn). Obvious-
ly, V ∈ ν0 and V satisfies (S1) for a = b = p = 1. It is not
difficult to calculate that

D+V (x(t)) =
(x(t), Ax(t)) + (x(t),Φ(t, x(t− r)))

|x(t)|
≤ λmax(A)|x(t)|+ L0|x(t− r)|.

Then whenever κV (ψ(t)) ≥ V (ψ(t+ θ)), θ ∈ [−τ, 0], (S2)
holds for c = −(λmax(A) + κL0).

Since V (gi(x, x)) = |(Bi + µI)x| ≤ ∥Bi + µI∥|x| ≤
M0V (x), for ν =M0, (S3) holds. For k1 = k2 = 1, (S4) is
true.
If λ̄+ κL0 < 0 and there exists d ≥ 0 such that

M0 +M1[d(∥A∥+ L0)

+(⌈ d
Ta
⌉+N0)(1 + µ+M1)] < 1, (27)

then (3) holds;
If λ̄+ κL0 ≥ 0 and there exists d ≥ 0 such that

e(λ̄+κL0)N0Ta < [M0 +M1(d(∥A∥+ L0)

+ (⌈ d
Ta
⌉+N0)(1 + µ+M1)]

−1,(28)

then (16) is true.
By Theorem 1 and Theorem 2, for arbitrary input delays
dk ≤ d, the solution of (26) is exponentially stable.

V. NUMERICAL EXAMPLES

In this section, as a specific example of the above sub-
section, we consider the following time-delay system with
delayed impulses:

ẋ1(t) = ax1(t) + x1(t− r) sin(x2(t− r)) t ̸= tk
ẋ2(t) = ax2(t) + x2(t− r) cos(x1(t− r)) t ̸= tk
x1(t

+) = µx1(t
−) + bx1((t− dk)−) t = tk

x2(t
+) = µx2(t

−) + bx2((t− dk)−) t = tk
(29)

where a, b, µ are constants, r, dk ≥ 0, k ∈ N. Here the
impulsive sequence is taken by ζ = {ϵ, 2ϵ, · · · , (N0 −
1)ϵ,N0Ta, N0Ta + ϵ,N0Ta + 2ϵ, · · · , N0Ta + (N0 −
1)ϵ, 2N0Ta, · · · }, which was first constructed in [15]. Ob-
viously, infk∈N+{tk − tk−1} = ϵ, supk∈N+{tk − tk−1} =
N0(Ta− ϵ)+ ϵ. When ϵ is small enough, the smallest length
of impulsive intervals can be arbitrarily small. While if N0

is large enough, the supremum of impulsive intervals can
be very large. Assume the average impulsive interval is Ta.
Here we take Ta = 0.5, N0 = 5, r = 1.
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Let A =

[
a 0
0 a

]
, Bi = B =

[
b 0
0 b

]
,Φ(t, x) =[

x1 sinx2
x2 cosx1

]
. Then ∥A∥ = |a|,M0 = |b + µ|,M1 =

b, L0 = 1, λmax(A) + κL0 = a+ κ.
In (29), for κ = 3

2 , if we choose a = −2, b = µ = 1
14 , d =

1, then λmax(A) + κL0 = −1
2 < 0 and (27) holds; If we

choose a = 1, b = 1
3×103 , µ = 1

6×102 , d = 1. Thenλmax(A)+

κL0 = 5
2 > 0 and (28) holds. In both cases, for any dk

satisfying 0 ≤ dk ≤ 1, the system is exponentially stable by
virtue of the results in the above subsection.
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