
A Decomposition Method for Large-Scale Sparse Coding in Representation Learning

Yifeng Li
CMMT, Child and Family Research Institute

University of British Columbia
Vancouver, British Columbia, Canada

Email: yifeng@cmmt.ubc.ca

Richard J. Caron
Mathematics and Statistics

University of Windsor
Windsor, Ontario, Canada

Email: rcaron@uwindsor.ca

Alioune Ngom
School of Computer Science

University of Windsor
Windsor, Ontario, Canada

Email: angom@uwindsor.ca

Abstract—In representation learning, sparse representation
is a parsimonious principle that a sample can be approximated
by a sparse superposition of dictionary atoms. Sparse coding is
the core of this technique. Since the dictionary is often redun-
dant, the dictionary size can be very large. Many optimization
methods have been proposed in the literature for sparse coding.
However, the efficiency of the optimization for a tremendous
number of dictionary atoms is still a bottleneck. In this paper,
we propose to use decomposition method for large-scale sparse
coding models. Our experimental results show that our method
is very efficient.

I. INTRODUCTION

Sparse representation is an important topic in representa-
tion learning [1]. Sparse representation (SR) is a principle
that a multivariate sample can be approximated by a sparse
linear combination of dictionary atoms [2], [3]. It can be
formulated as 𝒃 = 𝑥1𝒂1 + ⋅ ⋅ ⋅ + 𝑥𝑘𝒂𝑘 + 𝝐 = 𝑨𝒙 + 𝝐,
where 𝑨 = [𝒂1, ⋅ ⋅ ⋅ ,𝒂𝑘] is called a dictionary, 𝒂𝑖 is called
a dictionary atom or basis vector, 𝒙 is a sparse coefficient
vector, and 𝝐 is an error term. Sparse representation involves
sparse coding and dictionary learning. Given a new signal
𝒃 and dictionary 𝑨, learning the sparse coefficient 𝒙 is
termed sparse coding. Given training data 𝑫, learning the
dictionary 𝑨 is called dictionary learning. In the last decade,
sparse representation has been successfully applied in signal
processing [2], computer vision [4], machine learning [5],
and bioinformatics [6].

The 𝑙1-norm is among the most popular sparsity-inducing
term in sparse coding. The 𝑙1-regularized sparse coding
model can be expressed as

min
𝒙
𝑓(𝒙) =

1

2
∥𝒃−𝑨𝒙∥22 + 𝜆∥𝒙∥1, (1)

where 𝜆 ≥ 0 is a pre-specified parameter to balance the
trade-off between reconstructive error and sparsity. This
model is called 𝑙1-least-squares (𝑙1LS) sparse coding. From
the Bayesian perspective, Equation (1) is a maximum a
posteriori (MAP) estimation where the error is Gaussian and
the prior of 𝒙 is Laplacian. As has been shown in [7], [8],
[5], non-negativity can also induce sparse coefficient. The

non-negative sparse coding model can be rewritten as

min
𝒙
𝑓(𝒙) =

1

2
∥𝒃−𝑨𝒙∥22 (2)

subject to 𝒙 ≥ 0.

This model is called non-negative least squares (NNLS)
sparse coding. It corresponds to the MAP estimation with
Gaussian error and Bernoulli prior. The combination of
the 𝑙1-regularization and the non-negativity leads to the
following 𝑙1NNLS model:

min
𝒙
𝑓(𝒙) =

1

2
∥𝒃−𝑨𝒙∥22 + 𝜆∥𝒙∥1 (3)

subject to 𝒙 ≥ 0.

Dictionary learning is an alternating sparse coding prob-
lem in essence. Therefore, the optimization of sparse coding
is the core task in sparse representation learning. Many
optimization methods have been proposed in the literature
for sparse coding. The 𝑙1LS model is convex but non-
smooth, it is thus challenging to optimize given a large-
scale dictionary. The interior-point method [9] and proximal
method [10] are two typical algorithms for 𝑙1LS sparse
coding. Active-set methods have also been proposed for
𝑙1LS, NNLS, and 𝑙1NNLS [11], [5], and other variants [12].
These methods are briefly reviewed in the next section. Most
of them are inefficient for a very big dictionary.

In this paper, we propose decomposition methods for the
𝑙1LS and NNLS sparse coding models. The contributions of
this paper include:

1) We investigate the idea of decomposition in sparse cod-
ing. The decomposition method has been successfully
applied in the optimization of support vector machine
(SVM).

2) We design sequential minimal optimization (SMO)
methods for 𝑙1LS, NNLS, and 𝑙1NNLS sparse coding
models. This idea can be easily generalized for many
other sparse models.

The rest of this paper is organized as follows. In Section
II, we reformulate the sparse coding models into quadratic
programmes, and reveal that the optimization of these
models are dimension-free. In the same section, we then
concisely survey the existing optimization algorithms. Our

2014 International Joint Conference on Neural Networks (IJCNN)
July 6-11, 2014, Beijing, China

978-1-4799-1484-5/14/$31.00 ©2014 IEEE 3732

methods are described in Section III. The computational
experiment is shown in Section IV. Finally, we draw our
conclusions and mention future works.

II. THE QUADRATIC PROGRAMMING FORMULATIONS

AND RELATED WORKS

A. The Optimizations Are Quadratic Programmes and
Dimension-Free

The least squares problems in Equations (1), (2), and (3)
are, in essence, quadratic programming (QP) problems. The
𝑙1LS problem in Equation (1) can be formulated into the
following 𝑙1QP problem:

min
𝒙
𝑓(𝒙) =

1

2
𝒙T𝑯𝒙+ 𝒈T𝒙+ 𝜆∥𝒙∥1, (4)

where 𝑯 = 𝑨T𝑨, and 𝒈 = −𝑨T𝒃. Hereafter, we call the
𝑙1LS model as 𝑙1QP model. This non-smooth 𝑙1QP problem
can be further converted to the following problem that is
smooth but constrained:

min
𝒙,𝒖

𝑓(𝒙,𝒖) =
1

2
𝒙T𝑯𝒙+ 𝒈T𝒙+ 𝝀T𝒖 (5)

subject to − 𝒖 ≤ 𝒙 ≤ 𝒖,

where 𝒖 is an auxiliary variable, and 𝝀 = {𝜆}𝑘. The NNLS
problem in Equation (2) and 𝑙1NNLS problem in Equation
(3) can be reformulated into the following NNQP problem:

min
𝒙
𝑓(𝒙) =

1

2
𝒙T𝑯𝒙+ 𝒈T𝒙 (6)

subject to 𝒙 ≥ 0,

where 𝑯 = 𝑨T𝑨, and 𝒈 = −𝑨T𝒃 for NNLS and
𝒈 = 𝜆 − 𝑨T𝒃 for 𝑙1NNLS. Hereafter, we call the NNLS
and 𝑙1NNLS models as NNQP models. The QP formulations
above have two important advantages which are given in the
following. First, we can clearly see that the optimization only
requires the inner products 𝑨T𝑨 and 𝑨T𝒃. Therefore, the
optimization is in fact dimension-free, that is the number
of dimensions of the dictionary atoms does not affect the
computation directly. Through replacing the inner products
by kernels 𝑘(𝑨,𝑨) and 𝑘(𝑨, 𝒃), we can easily obtain the
kernel sparse coding. Second, by adding the term 𝛼

2 ∥𝒙∥22
in the objectives of Equations (1) and (3), we can obtain
the elastic-net regularized sparse coding [13], which has
important application for correlated variable selection. The
Hessian in the QP formulations in Equations (4) and (6) now
simply becomes 𝑯 = 𝑨T𝑨 + 𝛼𝑰 where 𝑰 is an identity
matrix. Due to page limit, we do not discuss the second
strength in this paper.

In the following, we briefly review three important exist-
ing works which solve either the least squares formulations
or the QP formulations. If the original works solve least
squares problems, we reformulate them into QP problems,
so that we can discuss all the methods conveniently and
consistently.

B. Interior-Point Method

The log-barrier interior-point method for the 𝑙1LS problem
(Equation (1)) is proposed in [9]. The basic idea is to convert
a non-smooth problem into an unconstrained one. For the
convenience of discussion, we extend this method to solve
the 𝑙1QP and NNQP problems. The interior-point method
for 𝑙1QP is introduced in the following. Due to similarity
and page limit, we omit the interior-point method for NNQP
problem. The problem in Equation (4) can be transformed
into minimizing the unconstrained log-barrier function:

𝑓(𝒙,𝒖) = 𝑡(
1

2
𝒙T𝑯𝒙+ 𝒈T𝒙+ 𝝀T𝒖)−

𝑘∑

𝑖=1

log(𝑢2𝑖 − 𝑥2𝑖).
(7)

We can obtain its gradient as below

𝒅 =

[
(∂𝑓(𝒙,𝒖)

∂𝒙)𝑇

(∂𝑓(𝒙,𝒖)
∂𝒖)𝑇

]

=

[
𝑡(𝑯𝒙+ 𝒈) + 2[𝑥1

𝑢2
1−𝑥2

1
⋅ ⋅ ⋅ 𝑥𝑘

𝑢2
𝑘−𝑥2

𝑘
]T

𝑡𝝀− 2[𝑢1

𝑢2
1−𝑥2

1
⋅ ⋅ ⋅ 𝑢𝑘

𝑢2
𝑘−𝑥2

𝑘
]T

]

.

And its Hessian matrix is

𝑯 =

[
∂𝑓2(𝒙,𝒖)
∂𝒙2

∂𝑓2(𝒙,𝒖)
∂𝒖∂𝒙

∂𝑓2(𝒙,𝒖)
∂𝒙∂𝒖

∂𝑓2(𝒙,𝒖)
∂𝒖2

]

,

where

∂𝑓2(𝒙,𝒖)

∂𝒙2
= 𝑡𝑯 + 2diag(

𝑢21 + 𝑥21
(𝑢21 − 𝑥21)2

⋅ ⋅ ⋅ 𝑢2𝑘 + 𝑥2𝑘
(𝑢2𝑘 − 𝑥2𝑘)2

),

∂𝑓2(𝒙,𝒖)

∂𝒖2
= 2diag(

𝑢21 + 𝑥21
(𝑢21 − 𝑥21)2

⋅ ⋅ ⋅ 𝑢2𝑘 + 𝑥2𝑘
(𝑢2𝑘 − 𝑥2𝑘)2

),

and

∂𝑓2(𝒙,𝒖)

∂𝒙∂𝒖
= −4diag(

𝑥1𝑢1
(𝑢21 − 𝑥21)2

⋅ ⋅ ⋅ 𝑥𝑘𝑢𝑘
(𝑢2𝑘 − 𝑥2𝑘)2

).

Newton’s method (a well-known second-order algorithm)
can be applied to minimize the unconstrained log-barrier
function given positive 𝑡 [14]. As 𝑡 increases to positive
infinite, the solution converge to the optimal solution. Given
a value of 𝑡, the convergence rate of Newton’s method is
super-linear or quadratic with heavy steps.

C. Proximal Method

As one of fast first-order methods, proximal method was
proposed in [10] to solve the 𝑙1LS problem. Compared with
the (second-order) interior-point method as derived above,
it has two advantages. First, Hessian is not recomputed in
each step. Second, analytical solution can be obtained in
each step. As in the interior-point method, we extend the
proximal method for the 𝑙1QP problem for the convenience
of discussion. The main idea is in the following. The
proximal method works in an iterative procedure. In each
iteration, given the current estimate 𝒙̂, the new estimate

3733

is the solution to the following first-order Taylor series of
Equation (4):

min
𝒙
𝑓(𝒙̂) + ▽𝑞(𝒙̂)(𝒙− 𝒙̂) + 𝜆∥𝒙∥1 + 𝐿

2
∥𝒙− 𝒙̂∥22, (8)

where 𝑞(𝒙̂) = 1
2 𝒙̂

T𝑯𝒙̂+𝒈T𝒙̂ and 𝐿 > 0 is a parameter. This
is done iteratively until termination criteria are met. Equation
(8) is equivalent to the following proximal operator:

min
𝒙

1

2
∥𝒙− 𝒙̄∥22 + 𝜂∥𝒙∥1, (9)

where 𝒙̄ = 𝒙̂ − 1
𝐿▽𝑞(𝒙̂), and 𝜂 = 𝜆

𝐿 . Unlike interior-
point method with heavy Newton step in each itera-
tion, it has an element-wise analytical solution: 𝑥𝑖 ={

sign(𝑥̄𝑖)(∣𝑥̄𝑖∣ − 𝜂) if ∣𝑥̄𝑖∣ > 𝜂

0 otherwise
. The proximal method

for 𝑙1QP has linear convergence rate with swift steps.

D. Active-Set Method

Active-set algorithms have been used, in [11], to solve
the 𝑙1QP and NNQP problems. The basis idea of active-
set algorithms is in the following. A working set is first
initialized. Then variables are added to or deleted from the
working set in an iterative procedure until the optimality
conditions are satisfied. In each iteration, a system of linear
equations, corresponding to the working set, need to be
solved. When solving the sparse coding of multiple new
samples, one advantage of the active-set methods are that
their common system of linear equations can be solved once
only, and can be shared among the multiple sparse coding
procedures. It makes active-set methods very suitable to
solve multiple sparse coding as well as the corresponding
dictionary learning problems. Active-set methods are usually
very efficient for small and medium-scale problems, because
they usually have linear convergence rate, and solving the
system of linear equations of a small number of variables
is not expensive. The worst case of active-set algorithms is
exponential, however this case is very rare. For example, it
is known that the Simplex algorithm for linear programming
is an active-set method. Although the worst case of Simplex
is exponential, it is usually the fastest algorithm for small
and median-scale linear programming.

III. METHOD

In this section, we give our decomposition method for
𝑙1QP and NNQP respectively. Decomposition method [15]
is first devised in the optimization of large-scale SVM
which is a QP problem constrained by equality and bound
constraints. The basic idea of the decomposition method
is, in fact, an implementation of the block-coordinate-
descent scheme [16]. The decomposition method works in
an iterative procedure. In each iteration, a few number of
variables violating optimality conditions (e.g. Karush-Kuhn-
Tucker (KKT) conditions) are included in a working set,

while the rest are fixed. Only the variables in the working
set are updated by a solver. This procedure iterates until
no coefficient violates the KKT conditions. Because the
objective is decreased in each iteration, the convergence is
guaranteed. Sequential minimal optimization (SMO) [17] is
the extreme case of the decomposition method for SVM,
where only the minimal number of variables (two variables)
are updated. One of the features of the SMO method is
that the sub-problem with two only variables can be solved
analytically.

A. Decomposition Method for 𝑙1QP

Let 𝒜 be the set of a few working variables, and 𝒫 the set
of fixed variables. The decomposition of 𝑓(𝒙) in Equation
(4) can be decomposed as

𝑓(𝒙𝒜) =
1

2
[𝒙T
𝒜,𝒙

T
𝒫]
[
𝑯𝒜𝒜 𝑯𝒜𝒫
𝑯𝒫𝒜 𝑯𝒫𝒫

] [
𝒙𝒜
𝒙𝒫

]

+ [𝒈T
𝒜, 𝒈

T
𝒫]
[
𝒙𝒜
𝒙𝒫

]
+ 𝜆∥

[
𝒙𝒜
𝒙𝒫

]
∥1 (10)

=
1

2
𝒙T
𝒜𝑯𝒜𝒜𝒙𝒜 + (𝑯𝒜𝒫𝒙𝒫 + 𝒈𝒜)

T𝒙𝒜

+ 𝜆∥𝒙𝒜∥1 + constant. (11)

We can see that the sub-problem corresponding to the
working set is a 𝑙1QP problem as well. From this point,
a solver of 𝑙1QP is still required. In this paper, we focus
on the extreme case of Equation (11): the SMO method. It
can be easily seen that the minimal size of 𝒜 is one and
𝒫 contains the reminder 𝑘 − 1 variables. Without loss of
generality, we denote such variable by 𝑥1. This results in
the following sub-problem:

min
𝑥1

𝑓(𝑥1) =
1

2
ℎ11𝑥

2
1 + 𝑏1𝑥1 + 𝜆∣𝑥1∣, (12)

where 𝑏1 = 𝑯1𝒫𝒙𝒫+𝑔1. This SMO method is a coordinate
descent method [16] in essence.

1) Analytical Solution: The SMO problem in Equation
(12) can be solved analytically. Now let’s separate the
interval into 𝑥1 ≥ 0 and 𝑥1 ≤ 0. For 𝑥1 ≥ 0, the objective
𝑓(𝑥1) becomes

𝑓(𝑥1) =
1

2
ℎ11𝑥

2
1 + (𝑏1 + 𝜆)𝑥1. (13)

Taking its first-order derivative and setting it to zero, we
have

∂𝑓(𝑥1)

∂𝑥1
= ℎ11𝑥1 + (𝑏1 + 𝜆) = 0. (14)

We thus have 𝑥(+)
1 = −𝑏1−𝜆

ℎ11
. Therefore, for interval 𝑥1 ≥ 0,

we have the optimal solution:

𝑥
(+∗)
1 =

{
𝑥
(+)
1 if 𝑥(+)

1 ≥ 0

0 otherwise
. (15)

3734

Similarly, for 𝑥1 ≤ 0, the objective 𝑓(𝑥1) becomes

𝑓(𝑥1) =
1

2
ℎ11𝑥

2
1 + (𝑏1 − 𝜆)𝑥1. (16)

We thus have 𝑥(−)1 = −𝑏1+𝜆
ℎ11

. And for interval 𝑥1 ≤ 0, we
have the optimal solution:

𝑥
(−∗)
1 =

{
𝑥
(−)
1 if 𝑥(−)1 ≤ 0

0 otherwise
. (17)

By considering both positive and negative interval together,
the optimal solution to Equation (12) is the one, among
𝑥
(+∗)
1 and 𝑥

(−∗)
1 , which obtains the minimum objective

value, that is 𝑥∗1 = argmin{𝑥(+∗)
1 ,𝑥

(−∗)
1 } 𝑓(𝑥1).

We note that 𝑥(+)
1 ≥ 0 is equivalent to 𝑏1 ≤ −𝜆, and

𝑥
(−)
1 ≤ 0 is equivalent to 𝑏1 ≥ 𝜆. We can state that if 𝑏1 ≤
−𝜆 or 𝑏1 ≥ 𝜆 the solution to Equation (12) is 𝑥∗1 = −𝑏1−𝜆

ℎ11

or 𝑥∗1 = −𝑏1+𝜆
ℎ11

, respectively. Otherwise, 𝑥∗1 = 0. Therefore,
the solution to Equation (12) can be equivalently written as

𝑥∗1 =

{−sign(𝑏1)(∣𝑏1∣−𝜆)
ℎ11

if ∣𝑏1∣ ≥ 𝜆
0 otherwise

. (18)

From this, we can obtain a general proposition below which
is very useful:

Proposition 1. The solution to the following problem

min
𝑥
𝑓(𝑥) = 𝑥2 + 𝑏𝑥+ 𝜆∣𝑥∣ (19)

is analytically

𝑥∗ =

{
−sign(𝑏)(∣𝑏∣ − 𝜆) if ∣𝑏∣ ≥ 𝜆
0 otherwise

. (20)

2) Select 𝑥1 Which Violates The Optimality Condition:
The optimality condition of Equation (4) is

𝒙T𝑯 + 𝒈T +∇𝜆∥𝒙∥1 = 0. (21)

However because 𝜆∥𝒙∥1 is not differentiable, we need to
resort to the concept of subgradient. We hence have

𝑠𝑖 = 𝑯𝑖:𝒙+ 𝑔𝑖 =

⎧
⎨

⎩

𝜆 𝑥𝑖 < 0

−𝜆 𝑥𝑖 > 0

∈ [−𝜆, 𝜆] 𝑥𝑖 = 0

, (22)

where 𝑯𝑖: is the 𝑖-th row of 𝑯 , similarly 𝑯 :𝑖 is the 𝑖-
th column of 𝑯 . The algorithm is in the following. We
iteratively select a variable 𝑥1 which violates the optimality
condition in Equation (22). In an iteration, 𝑥1 is updated
analytically as in Equation (18). If all variables satisfy the
optimality condition, the algorithm terminates. In order to
maximize the effort of violating variable selection, the one
which violates the optimality condition the most should

be preferred. The extent of violation is measured by the
difference, as given below, between 𝑠𝑖 and its desired values:

𝑑𝑖 =

⎧
⎨

⎩

∣𝑠𝑖 − 𝜆∣ 𝑥𝑖 < 0

∣𝑠𝑖 + 𝜆∣ 𝑥𝑖 > 0

∣𝑠𝑖∣ − 𝜆 𝑥𝑖 = 0

. (23)

3) Update 𝒔 and Compute 𝑏1: In each iteration after
updating 𝑥1, the vector 𝒔 (defined in Equation 22) should
be updated in order to obtain the optimality condition and
select the new violating variable 𝑥1. Intuitively, 𝒔 can be
updated by its definition in Equation (22). However, it would
take linear time to update each element 𝑠𝑖. In fact, if we
keep a record of its previous value (denoted by 𝑠′𝑖), 𝑠𝑖
can be updated in constant time. We denote 𝒙′ be the
coefficients before updating 𝑥1, and 𝒙 be the coefficients
after updating 𝑥1. We know that 𝑠′𝑖 = ℎ𝑖1𝑥

′
1+𝑯𝑖𝒫𝒙′𝒫 +𝑔𝑖,

𝑠𝑖 = ℎ𝑖1𝑥1 + 𝑯𝑖𝒫𝒙𝒫 + 𝑔𝑖, and 𝑯𝑖𝒫𝒙′𝒫 = 𝑯𝑖𝒫𝒙𝒫 . We
thus can update 𝑠𝑖 by the following equation which takes
constant time:

𝑠𝑖 = ℎ𝑖1(𝑥1 − 𝑥′1) + 𝑠′𝑖. (24)

Similar idea also applies to the computation of 𝑏1 before
updating 𝑥1. According to the definition in Equation (12),
𝑏1 can be updated in linear time. However, it can actually
be updated in constant time as well. We know that 𝑠′1 =
ℎ11𝑥

′
1 +𝑯1𝒫𝒙′𝒫 + 𝑔1 = ℎ11𝑥

′+ 𝑏1. We thus can update 𝑏1
in constant time:

𝑏1 = 𝑠′1 − ℎ11𝑥′. (25)

4) Initialize 𝒙 and 𝒔: Before the iterative update of the
method, 𝒙 and 𝒔 have to be initialized. We can initialize
𝒙 and 𝒔 by zeros and 𝒈, respectively. This initialization
makes the following iterative update very efficient. This is
because 𝒙 is eventually sparse, which means that 𝒙 = 0 is a
very good approximate. This initialization strategy may also
apply to many other sparse coding methods, for example
active-set methods.

B. Decomposition Method for NNQP

Now we concisely derive the decomposition method for
NNQP. The decomposed objective of NNQP can be formu-
lated into

𝑓(𝒙𝒜) =
1

2
𝒙T
𝒜𝑯𝒜𝒜𝒙𝒜 + (𝑯𝒜𝒫𝒙𝒫 + 𝒈𝒜)

T𝒙𝒜 + constant.

(26)

Since this objective is constrained only by nonnegativity, its
SMO case also has only one variable in 𝒜. Without loss
of generality, we denote such variable as 𝑥1 as above. This
results in the following problem:

min
𝑥1

𝑓(𝑥1) =
1

2
ℎ11𝑥

2
1 + 𝑏1𝑥1 (27)

subject to 𝑥1 ≥ 0,

3735

where 𝑏1 = 𝑯1𝒫𝒙𝒫 + 𝑔1. It is easy to obtain the analytical
solution to Equation (27):

𝑥∗1 =

{
−𝑏1
ℎ11

if 𝑏1 ≤ 0

0 otherwise
. (28)

The Lagrangian function of Equation (6) is

𝐿(𝒙, 𝒔) =
1

2
𝒙T𝑯𝒙+ 𝒈T𝒙− 𝒔T𝒙, (29)

where 𝒔 is the vector of dual variables. Therefore, the
corresponding KKT conditions of Equation (6) are

⎧
⎨

⎩

𝒔 = 𝑯𝒙+ 𝒈

𝒔 ∗ 𝒙 = 0

𝒙 ≥ 0

𝒔 ≥ 0.

(30)

From the KKT conditions, we can find that 𝑠𝑖 = 𝑯𝑖:𝒙+𝑔𝑖 is
the Lagrangian multiplier of the 𝑖-th primal variable, 𝑥𝑖. For
the optimal 𝑥𝑖, the corresponding 𝑠𝑖 must fulfil the following
conditions:

{
𝑠𝑖 ∗ 𝑥𝑖 = 0

𝑠𝑖 ≥ 0
. (31)

The SMO-based NNQP works in an iterative procedure.
Before the iterative loop, 𝒙 can initialized by zeros, and 𝒔
is therefore initialized by 𝒈. After that, variables violating
the KKT conditions in Equation (31) are updated in an
iterative loop until all variables fulfil the KKT conditions. In
each iteration, we need to find one variable, which violates
the KKT condition, to update using Equation (28); before
updating 𝑥1, 𝑏1 can be computed by Equation (25); after
updating 𝑥1, 𝒔 can be updated as in Equation (24). In our
implementation, we select the variable which violates the
KKT conditions the most. The magnitude of violation is
measured by the following equation:

𝑑𝑖 =

⎧
⎨

⎩

0 if 𝑥𝑖 = 0 and 𝑠𝑖 ≥ 0

∣𝑠𝑖∣ if 𝑥𝑖 = 0 and 𝑠𝑖 < 0

∣𝑠𝑖∣ if 𝑥𝑖 > 0

. (32)

IV. COMPUTATIONAL EXPERIMENTS

We tested our SMO methods on the large-scale microarray
meta-analysis data given in [18]. This data set has 5456
samples including healthy tissue samples and cancer samples
from 13 different tissues (thus 26 classes in total). The
number of dimensions (genes) of each sample is 9471.
We randomly selected 100 samples as test set, and let
the rest 5356 samples as training set. In few cases where
the computation was very costly, we only used 10 test
samples. We put all the training samples in the dictionary
𝑨9471×5356. Therefore, the Hessian is of size 5356 by 5356.
We used linear kernel for all methods in our experiments
(other kernels can, of course, be used consistently for all

methods). We compared our SMO methods with proximal
method and active-set methods. Due to the large numbers of
dictionary size and dimensions (the implementation in [9]
is not dimension-free), the interior-point method proposed
in [9] crashed our computer. We recorded the wall-clock
computing time, in seconds, and the number of iterations of
the tests, as the value of 𝜆 increased. The average results
of each test sample are given in Tables I and II. The
corresponding sparsity is also given in the first table. The
sparsity is the percentage of zeros in a coefficient vector.
The result of sparsity in Table I was calculated based on the
result of SMO. It is defined as sum(𝒙<𝜀max(𝒙))

𝑘 , where we
set 𝜀 = 0.001 in our experiment.

From Table I, we have the following observations. First,
for all methods the computing time and numbers of iterations
decrease gradually as the value of 𝜆 increases. Second, for
the non-smooth 𝑙1QP model, our SMO method is much
faster than proximal and active-set methods. Third, for the
smooth NNQP model, SMO is also efficient, though the
active-set method keeps its efficiency. Fourth, the sparsity
increases as the value of 𝜆 rises. When 𝜆 = 0, only the
non-negativity induces the sparsity in the NNQP model. We
can see that very high sparsity can be obtained by using the
non-negativity solely.

Table I
MEAN COMPUTING TIME (IN SECONDS) OF EACH TEST SAMPLE WHEN

USING 5356 SAMPLES AS TRAINING SET

𝜆
𝑙1QP NNQP

SMO proximal active-set sparsity SMO active-set sparsity
0 - - - - 17.99 0.49 0.9954
0.0001273.78 554.37 - 0.9478 17.94 0.48 0.9954
0.001 22.30 557.20 - 0.9950 18.02 0.49 0.9954
0.01 20.75 558.47 - 0.9956 17.66 0.49 0.9956
0.1 16.20 550.69 - 0.9968 13.67 0.34 0.9968
0.2 12.93 635.15 - 0.9975 10.99 0.29 0.9975
0.3 10.02 615.11 1669.63 0.9980 8.48 0.22 0.9980
0.4 7.83 572.55 1426.41 0.9984 6.58 0.17 0.9984
0.5 6.39 513.75 1157.20 0.9987 5.42 0.14 0.9987
0.6 5.17 441.12 923.95 0.9989 4.40 0.12 0.9989
0.7 3.91 357.81 684.89 0.9992 3.31 0.10 0.9992
0.8 2.86 254.41 553.94 0.9994 2.42 0.07 0.9994
0.9 1.70 97.00 395.52 0.9996 1.44 0.05 0.9996

From Table II, the active-set algorithms converge to the
optimal solution in a few iterations, but the computational
cost of each iteration is expensive, and Hessian matrix is
involved in the computation. Our method and the proximal
method have a larger number of iterations, but the compu-
tational cost of each iteration is very low. Both methods
have closed-form update rules. The operation on Hessian is
avoided in our SMO methods. Finally, we have to mention
that our SMO methods can obtain identical solutions with
active-set methods, which corroborates that the decomposi-
tion methods converge well. However, the proximal method
can only obtain approximate results in many cases, because

3736

it is a first-order method that needs a large number of
iterations to converge.

Table II
MEAN NUMBER OF ITERATIONS OF EACH TEST SAMPLE WHEN USING

5356 SAMPLES AS TRAINING SET

𝜆
𝑙1QP NNQP

SMO proximal active-set SMO active-set
0 - - - 53033 29.37
0.0001 682153 29250 - 52994 29.36
0.001 55612 29427 - 52981 29.30
0.01 51438 29451 - 51439 28.23
0.1 40068 29302 - 40068 20.07
0.2 31962 34334 - 31962 15.43
0.3 24899 33212 13.30 24899 12.20
0.4 19348 30902 11.40 19348 9.80
0.5 15927 27752 9.40 15927 8.22
0.6 12853 23834 7.80 12853 6.88
0.7 9680 19236 6.00 9680 5.51
0.8 7092 13144 5.00 7092 4.30
0.9 4210 5152 3.80 4210 3.09

Additionally, we tested the prediction accuracies of our
𝑙1QP and NNQP models for classifying the microarray gene
profiles. We used our SMO methods in the optimizations.
The interior-point and proximal methods are assumed to
obtained the same solution as the SMO methods. The mean
accuracies of 10-fold cross-validation are given in Table III.
We can see that both models obtained very high accuracies.
The NNQP model with 𝜆 = 0 obtained the best result on
this data. This observation suggests that we need to try the
easier NNQP model first before resorting to 𝑙1QP model,
when applying sparse coding techniques in problems, for
example classification.

Table III
MEAN PREDICTION ACCURACIES OF THE 𝑙1QP AND NNQP MODELS

USING 10-FOLD CROSS-VALIDATION

𝜆 𝑙1QP NNQP
0 - 0.9762

0.5 0.9727 0.9727
0.9 0.9654 0.9654

V. CONCLUSION

The optimization of sparse coding models is the bottle-
neck of applying sparse representation to large-scale data.
In this paper, we propose decomposition method for the
optimization. We especially investigate its extreme case – the
sequential minimal optimization, where only one variable is
updated by a closed-form rule while the rest are fixed in
an iteration. Our experiments on a very large data show that
our SMO methods are very efficient, particularly in the non-
smooth 𝑙1QP model. Although our idea of decomposition is
applied for two typical sparse coding models, it could be
easily generalized to many other sparse models that may be
more complicated and deliberated. The implementation of

the SMO methods can be found in our sparse representa-
tion toolbox [19] (see functions l1QPSMO, NNQPSMO, and
KSRC therein). We hope more efficient algorithms for large-
scale data can be inspired by the idea of decomposition
(coordinate descent or block coordinate descent).

As future work, our methods will be tested on larger data.
The SMO methods will be used in dictionary learning as
well. The decomposition method will also be explored for
hierarchical sparse coding which is a non-smooth problem.
Furthermore, improvement could be made for the case of
sparse Hessian. Sparse Hessian can be obtained by some
kernels, for example radial basis function. It is also necessary
to investigate and realize decomposition method based on
block coordinate descent in order to improve the efficiency.
Finally, we have to mention that, since sparse coding models
belong to neural networks, parallel algorithms (as in deep
net learning) should be investigated.

ACKNOWLEDGMENT

This research has been supported by OGS 2011-2013, and
NSERC Grants #RGPIN228117-2011.

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation
learning: A review and new perspectives,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 35, no. 8,
pp. 1798–1828, 2013.

[2] A. M. Bruckstein, D. L. Donoho, and M. Elad, “From sparse
solutions of systems of equations to sparse modeling of
signals and images,” SIAM Review, vol. 51, no. 1, pp. 34–
81, 2009.

[3] M. Elad, Sparse and Redundant Representations: From The-
ory to Applications in Signal and Image Processing. New
York: Springer, 2010.

[4] J. Wright, A. Yang, A. Ganesh, S. S. Sastry, and Y. Ma,
“Robust face recognition via sparse representation,” IEEE
Transactions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 2, pp. 210–227, 2009.

[5] Y. Li and A. Ngom, “Classification approach based on non-
negative least squares,” Neurocomputing, vol. 118, pp. 41–57,
2013.

[6] ——, “Non-negative least squares for the classification of
high dimensional biological data,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 10, no. 2,
pp. 447–456, 2013.

[7] P. Hoyer, “Modeling receptive fields with non-negative sparse
coding,” Neurocomputing, vol. 52-54, pp. 547–552, 2003.

[8] D. D. Lee and S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, pp. 788–
791, 1999.

[9] S. J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky,
“An interior-point method for large-scale 𝑙1-regularized least
squares,” IEEE J. Selected Topics in Signal Processing, vol. 1,
no. 4, pp. 606–617, 2007.

3737

[10] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, “Proximal
methods for hierarchical sparse coding,” Journal of Machine
Learning Research, vol. 12, no. 2011, pp. 2297–2334, 2011.

[11] Y. Li and A. Ngom, “Sparse representation approaches for
the classification of high-dimensional biological data,” BMC
Systems Biology, vol. 7, no. Suppl 4, p. S6, 2013.

[12] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse
coding algorithms,” in NIPS. NIPS, December 2006, pp.
801–808.

[13] H. Zou and T. Hastie, “Regularization and variable selection
via the elastic net,” Journal of the Royal Statistical Society -
Series B: Statistical Methodology, vol. 67, no. 2, pp. 301–320,
2005.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-
bridge, UK: Cambridge University Press, 2004.

[15] T. Joachims, “Making large-scale support vector machine
learning practical,” in Advances in Kernel Methods: Support
Vector Learning, B. Scholkopf, C. Burges, and A. Somla, Eds.
MIT, 1998, ch. 11, pp. 169–184.

[16] D. Bertsekas, Nonlinear Programming, 2nd ed. Belmont,
MA: Athena Scientific, 2008.

[17] J. Platt, “Fast training of support vector machines using
sequential minimal optimization,” in Advances in Kernel
Methods: Support Vector Learning, B. Scholkopf, C. Burges,
and A. Somla, Eds. MIT, 1998, ch. 12, pp. 185–208.

[18] N. Dawany, W. Dampier, and A. Tozeren, “Large-scale in-
tegration of microarray data reveals genes and pathways
common to multiple cancer types,” International Journal of
Cancer, vol. 128, no. 12, pp. 2881–2891, 2011.

[19] Y. Li and A. Ngom, “The sparse representation toolbox in
MATLAB,” https://sites.google.com/site/sparsereptool.

3738

