
 
 

 

  

Abstract—Freshness and safety of muscle foods are generally 
considered as the most important parameters for the food 
industry. To address the rapid determination of meat spoilage, 
Fourier transform infrared (FTIR) spectroscopy technique, with 
the help of advanced learning-based methods, was attempted in 
this work. FTIR spectra were obtained from the surface of beef 
samples during aerobic storage at various temperatures, while a 
microbiological analysis had identified the population of Total 
viable counts. A fuzzy principal component algorithm has been 
also developed to reduce the dimensionality of the spectral data. 
The results confirmed the superiority of the adopted scheme 
compared to the partial least squares technique, currently used 
in food microbiology. 

I. INTRODUCTION 
HE resolution of the Uruguay Round of the General 
Agreement on Tariffs and Trade (GATT) in 1995, 
recognized public health risk as the only basis for 

restrictions of international trade in food. Beef is one of the 
commercially viable and widely consumed muscle foods 
throughout the world. Although it is a good food source for 
proteins and other essential nutrients, it is also an ideal 
substrate for the growth of both spoilage and pathogenic 
microorganisms. The current practice to assure the safety of 
meat still relies on regulatory inspection and sampling 
regimes. This approach, however, seems inadequate because 
it cannot sufficiently guarantee consumer protection, since 
100% inspection and sampling is technically, financially and 
logistically impossible. 

Meat industry however needs rapid analytical methods for 
quantification of these indicators in order to determine 
suitable processing procedures for their raw material and to 
predict the remaining shelf life of their products [1]. During 
previous years, relevant analysis and screening methods had 
been carried out on meat utilizing high-performance liquid 
chromatography (HPLC) [2], gas chromatography-mass 
spectrometry [3] and ion mobility spectrometry [4]. The 
majority of these methods are however invasive, meaning that 
either a sample has to be taken or that they are difficult to be 
implemented on-line. Thus, the introduction of accurate and 
non-destructive sensing technologies to detect the spoilage 
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bacteria as well as pathogenic bacteria with a high degree of 
dependency in food products is highly desirable. Various 
rapid, non-invasive methods based on analytical instrumental 
techniques, such as Fourier transform infrared spectroscopy 
(FTIR) [5], Raman spectroscopy [6], and electronic nose 
technology [7] have been researched for their potential as 
reliable “meat quality” sensors.  

Over the last few years, FTIR has been considered as a very 
important tool in food analysis including authenticity and 
adulteration. Nutrient determination is time consuming and 
not appropriate for routine application in the food industries. 
FTIR was able to determine omega-6 and omega-3 fatty acids 
in pork adipose tissue [8]. It has been used to investigate the 
influence of heating rates and different heating temperatures 
on protein denaturation in beef [9], as well as to study the 
influence of ageing and salting on uncooked and cooked pork 
[10].  

The application of chemometric techniques to associate 
FTIR spectral data with meat spoilage is not new and it has 
been tackled in the past [11]. However, emphasis was 
considered only with the detection of bacterial spoilage, in 
terms of microbiological analysis, whereas no attempt was 
made to associate spectral data with quality classes defined by 
sensory assessment of the samples. FTIR spectral data 
collected directly from the surface of meat were verified that 
they could be used as biochemical interpretable “signatures”, 
in an attempt to obtain information on early detection of 
microbial spoilage of chicken breast and rump steaks [12]. A 
series of partial least squares (PLS) models and simple 
multilayer neural networks (MLP) have been investigated, to 
correlate spectral data from FTIR spectroscopy analysis with 
beef spoilage and its associated total viable bacteria 
counts-TVC [13].  

The main objective of this paper is to associate FTIR 
spectral data with beef spoilage during aerobic storage at 
various temperatures (0, 5, 10, 15, 20 °C) utilizing an 
advanced learning-based decision support system. 
Information related to FTIR spectra, as well as the correlated 
microbiological analysis (i.e. total viable counts - TVC) from 
beef fillets, was made accessible from Agricultural University 
of Athens in the framework of the Symbiosis-EU European 
research project. Due to the nature of FTIR spectral data, it is 
necessary to consider the use of a dimensionality reduction 
algorithm to reduce the problem of dimensionality with the 
minimum information lost. Principal components analysis 
(PCA) is an unsupervised method that transforms a large 
number of potentially correlated factors into a small number 
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of orthogonal (uncorrelated) factors, reducing thus the size of 
the initial dataset and optimizing the feature vector [14]. 
However, it is well-known that PCA is vulnerable with respect 
to outliers, missing data, and poor linear correlation between 
variables due to poorly distributed variables [15]. As a result, 
it is important to make PCA more robust. In this research 
study, an improvement of PCA is proposed by the 
fuzzification of the matrix data, in order to reduce the 
influence of the outliers. In the current study, a novel neural 
network scheme based on the Extended Normalized Radial 
Basis Function network (ENRBF) has been developed to 
classify beef samples to one of three quality classes (i.e. fresh, 
semi-fresh, and spoiled) based on the biochemical profile 
provided by the FTIR spectra dataset. The same model 
simultaneously is able to predict the microbial load on meat 
surface. The Bayesian Ying-Yang (BYY) Expectation 
Maximization (EM) algorithm has been used together with 
novel splitting operations to determine network’s size and 
parameter set. Results from ENRBF are compared against 
models based on partial least squares (PLS). Such comparison 
is considered as an essential practice, as we have to emphasize 
the need of induction to the area of food microbiology, 
advanced learning-based modeling schemes, which may have 
a significant potential for the rapid and accurate assessment of 
meat spoilage. Such an accurate assessment prediction could 
allow a more efficient management of products in the food 
chain. 

I. FTIR SAMPLING AND ANALYSIS 
The FTIR experimental case was performed at the 

Laboratory of Microbiology and Biotechnology of Foods, of 
the Agricultural University of Athens, Greece. A detailed 
description of the experimental methodology as well as the 
related microbiological analysis of the meat samples is 
described in [16]. Briefly, the samples were prepared by 
cutting fresh pieces of beef into small portions ( 40mm wide 
× 50mm long × 10mm thick) and then portions placed onto 
Petri dishes and stored at (0,5,10,15 and 20 )oC in 
high-precision 0( 0.5 )C± incubation chambers for a total 
period of 350h , taking into consideration the storage 
temperature, until spoilage was apparent. For the purposes of 
FTIR spectral measurements, a thin slice of the aerobic upper 
surface of the beef fillet was isolated and used for additional 
analysis. In total, 74 FTIR spectra were produced through the 
use of a using a ZnSe o45 ATR (Attenuated Total 
Reflectance) crystal on a Nicolet 6700 FTIR Spectrometer. 
These spectra were collected over the wave-number 
range 4000 to 1400cm− , whilst the scans per measurement were 
100 with a resolution of 14cm− , resulting in a total integration 
time of 2min [13].  

In parallel, microbiological analysis was performed, and 
resulting growth data from plate counts were log10 
transformed and fitted to the primary model of Baranyi & 
Roberts [17] in order to verify the kinetic parameters of 
microbial growth (maximum specific growth rate and lag 
phase duration). The population dynamics of total viable 

counts (TVC) for beef fillet storage at different temperatures, 
under aerobic conditions, is illustrated in Fig. 1. Analysis 
specified that the total microflora ranged from 

2
102.9 3.3log cfu cm−− at the beginning of storage (fresh 

samples), to 2
108.7 9.4 log cfu cm−− for samples characterized 

as spoiled. 

 
Fig. 1.   Growth Curves of TVC at different temperatures for beef samples 

 
This finding is consistent with an indication that the 
population threshold that depicts the shift of a sample from 
fresh to semi-fresh and then from semi-fresh to spoiled is 
temperature dependant. Sensory evaluation of meat samples 
was performed during storage, based on the perception of 
color and smell before and after cooking. Each sensory 
attribute was assigned to a three-point scale corresponding to: 
1=fresh; 2=semi-fresh; and 3= spoiled. In total, 74 meat 
samples were evaluated by a sensory panel and classified into 
the selected three groups as fresh (n = 24), semi-fresh (n = 16), 
and spoiled (n = 34) for the case of TVC [13]. Dataset 
consisted of the TVC values as well as the sensory 
categorization was utilized for the development of the 
proposed prediction and classification intelligent-based 
model. 

II. EXTENDED NORMALISED RADIAL BASIS FUNCTION 
NETWORKS 

An alternative formulation of the Radial Basis Function 
(RBF) network is used in this study. The Extended 
Normalized RBF (ENRBF) network replaces the linear 
combiner of the RBF with a series of local linear models [18] 
as shown in Fig. 2. We propose a supervised training method 
for this scheme that is fully supervised as it incorporates the 
Bayesian Ying-Yang (BYY) [19] method for parameter 
updating and uses a heuristic to determine the starting 
parameters of the network [20].  

The BYY Expectation Maximization (EM) method treats 
the problem of optimization as one of maximizing the entropy 
between the original non-parametric data distribution based 
on Kernel estimates or user specified values and the 
parametric distributions represented by the network. This is 
achieved through the derivation of a series of EM update 
equations using a series of entropy functions as the Q function 
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or log-likelihood function. The ENRBF network can be 
represented by the following set of equations.  
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where z is the output of the network z Z∈ , x is an input 
vector x X∈ , [ ], ,W c θΘ = are the network parameters and 

[ ],mθ = Σ are the parameters of the Gaussian activation 
functions given by. 
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The BYY method attempts to maximize the degree of 
agreement between the expected value of z from the network 
and the true value of z from the training data. It is guaranteed 
to lead to a local optimum and unlike the original EM 
algorithm for learning the parameters of Gaussian functions 
this method encourages coordination between the input and 
output domains [19]. 

 
Fig. 2. ENRBF scheme 

 
Like the EM algorithm, this method is very fast in terms of the 
number of iterations needed for the parameters to converge. It 
is this speed of convergence that makes the proposed 
technique feasible. However, as BYY is an EM based 
technique it is still susceptible to locally maximal values. The 
Split and Merge EM (SMEM) concept for Gaussian Mixture 
Models (GMM) proposed initially by Ueda, has been applied 
to the ENRBF scheme [18]. The original SMEM algorithm is 
able to move neurons from over populated areas of the 
problem domain to underrepresented areas by merging the 
over populated neurons and splitting the under-populated. The 
use of Eigenvectors to split along the axis of maximum 
divergence instead of randomly as in original SMEM has been 
proposed recently [21]. The SMEM algorithm suffers from 
the fact that before terminating all possible combinations of 
Split and Merge operations must be examined. Although many 
options can be discounted, the training still increases 
exponentially with network size and again suffers from the 
problems inherent with k-means and basic EM. A splitting 
technique that overcomes these problems has been proposed 
by one of the authors [22]. 
 

A. The Bayesian Ying-Yang training 
This is a supervised training method for ENRBF models it was 
originally proposed by Ueda [23] and has been used in other 
studies by the authors [22]. For a network of a given number 
of normalised Gaussian neurons and their corresponding 
linear models the following update equations are performed 
until convergence for each neuron  j<=K [19].  
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III. MODIFIED ENRBF WITH SPLIT OPERATION 
The BYY training method described above is guaranteed to 
lead to a locally optimum set of network parameters, in terms 
of the Q function, from a given initial parameter set [19]. This 
means that the accuracy of the network is dependent on the 
initial parameter guesses entered by the system designer often 
these are random values. In this paper, an alternative 
methodology is proposed by starting with a single Gaussian 
neuron and then gradually increasing the size of the network 
until an optimum network size is selected by a model order 
selection criteria [21]. After the BYY EM algorithm has 
converged for each network the neuron with the worst fit of 
the data it covers is selected and then the following operations 
are performed increasing the size of the network before 
re-training and testing against the model order selection 
criteria. The split operation is performed in such a way as the 

1646



 
 

 

location of the data in both the input and output domains is 
taken into account when calculating the new starting 
parameters for the BYY EM training algorithm. The split 
operation attempts to first establish a greater accuracy in the 
output domain Z before attempting to gain a more intricate 
model of the input domain.  

A. Selecting the neuron to split 
The selection of the neuron to be split is done by assuming that 
the output of the network is actually a probability of the power 
plant needing to perform at full capacity. As a result the local 
Kullback-Leiber divergence can be used to calculate the 
difference between the output of the neuron given by the local 
linear model and the actual desired output Z.  
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The maximum value of splitJ corresponds to the neuron with 
the worst fit of the data covered by its Gaussian activation 
function.  

B. The split operation 
The first set of operations attempts to discover a desired 
output for each of the new neurons. This is done by creating 
two new expected mean output values Ez along the main axis 
of deviation in the output distribution using the Eigenvalues 
and Eigenvectors of the distribution.  
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It is then possible to compute new output deviations based on 
the distance of each mean from the training samples and the 
relevance of that training sample to the original neuron that is 
being split. Here, { }, 1j ind K= +  
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This provides information relating to the locations of each of 
the two new neurons in the output space. If these are similar or 
identical then the two neurons are simply attempting to get a 
better resolution of the input data. In this case the split can be 
done simply based on the distribution of the input domain. If 
they are different then a new feature space in the data has been 
discovered and the split should be performed in order to take 
into account the distribution in the input domain of those data 
points that are closest to the new output mean. Taking a 
Euclidean distance measure between the two output means 
represents this distinction. The closer the distance is to 1, the 
more likely the two new neurons represent distinct data areas 
in the input domain. The closer to 0 the distance is then the 
higher the likelihood that the split has been performed in order 
to gain better representation of the input domain within a 
single area. In this case, then a split is performed along the 
largest axis of the neuron being split again using the 
Eigenvalues and Eigenvectors of the Gaussian activation 
function of the neuron [21]. 
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With this information it is possible to compute the new 
parameters of the neurons. Here, { }, 1j ind K= +  
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At this point 1K K= + and BYY EM training can 
recommence.  

IV. DATA ANALYSIS 
In this work, FTIR spectral information was utilized to obtain 
metabolic “signatures” of beef fillet samples during storage in 
aerobic conditions at five different storage temperatures (0, 5, 
10, 15, and 20 o C ). Typical FTIR spectral data in the range of 

11800 1000cm−− collected from fresh and spoiled beef fillet 
samples stored at o10 C for 6 days are shown in Fig. 3.  

 
Fig. 3. FTIR spectra collected from beef samples stored at 10°C  

Information from these spectra can be extracted in order to 
acquire metabolic fingerprints of beef fillets during storage at 
various temperatures. A principal component analysis (PCA) 
was then performed on this mean-centered spectral data. In 
this particular experimental case study, although the total 
variance (100%) of the dataset was explained by 37 principal 
components (PCs), only the first five PCs were associated 
with the 97.85% of the total variance, as shown in Table I. 

 
TABLE I 

RESULTS FOR PCA AND FPCA SCHEMES 

 
 
An alternative solution to improve PCA appears to be the 
fuzzification of the matrix data [24]. One approach toward the 
fuzzification of the matrix data is to consider the points that 
are isolated with respect to the first principal component. 
Fuzzy membership degrees can be introduced according to the 
distance to the first principal component. As such, fuzzy 

clustering schemes could be used to determine the first fuzzy 
principal component and the corresponding fuzzy 
membership degrees. The algorithm could be considered as an 
extension of the fuzzy regression algorithm. The fuzzy set in 
this case may be characterized by a linear support, 
denoted ( ),L u υ , where υ  is the centre of the class and u , 

with 1u = , is the main direction. This line is named the first 
principal component for the set, and its direction is given by 
the unit eigenvector u  associated with the largest eigenvalue 

maxλ  of the following fuzzy covariance matrix which is a 
slight generalization for fuzzy sets of the classical covariance 
matrix 
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The fuzzy objective function is then defined as 
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where { },A A  is the fuzzy partition ( A  is the complementary 

fuzzy set), and α  is a real constant from the interval ( )0,1  
which represents the membership degree of the farthest point 
(the largest outlier) from the first principal component. The 
support ( ),L u υ that minimizes the function ( )J •  is given by 
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Where the fuzzy membership degree ( )jA x  is defined as   
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Sinceα  is an input parameter, a heuristics for determining the 
best suitable value of it is desirable. The main interest is to 
find fuzzy membership degrees which contribute to producing 
a better fitted first principal component along the data set. But, 
since the eigenvalue associated to a principal component 
describes the scatter of data along that component, we are also 
interested in producing a first principal component 
characterized by an eigenvalue that is as large as possible. 
Consequently, the optimal solution is that particular value of α 
which maximizes the eigenvalue associated to the first 
principal component.  

Concerning the FPCA, of the same data set we have to 
remark that the results obtained are quite different. We can see 
that, for example, the first principal component explains 
57.4% of the total variance and the second one 39.66; a two 
component model thus accounts for 97.07% of the total 
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variance (as compared to 67.84% for PCA) and a three 
components model accounts for 98.42% (as compared to 
82.25% for PCA) (Table I). Clearly, the first FPCA-derived 
components account for significantly more of the variance 
than the PCA counterparts. Thus, the first three principal 
components from the FPCA were extracted and utilized as 
inputs to the various simulation models applied on this 
particular dataset. 

V. RESULTS AND DISCUSSIONS 
A machine learning approach based on the proposed ENRBF 
model has been adopted in order to create a dual model acting 
as an efficient classifier, in an effort to classify meat samples 
in three quality classes (fresh, semi-fresh, spoiled) and 
simultaneously as a predictor.  

ENRBF has been implemented through MATLAB and its 
structure, as shown from Fig. 2, consists of an input layer 
which in this current research study contains five input nodes 
(i.e. storage temperature, sampling time, and the values of the 
first three principal components). The output layer consists of 
two nodes, corresponding to the predicted quality class (fresh, 
semi-fresh, spoiled) of meat samples and the related 
microbiological attribute, respectively. The initial FTIR 
dataset was divided into a training subset with approx. 80% of 
the data, and a testing subset with the remaining 20% (i.e. 14 
samples).  

 
Fig. 4. ENRBF prediction model for TVC 

As both output parameters are not independent, in the sense 
that quality class is related to microbiological counts and vice 
versa, a model that combines both these measurements have 
been considered to be desirable. In order to accommodate 
both classification and modeling tasks in the same 
model-structure, the classification task has been modified 
accordingly. Rather than trying to create a distinct classifier, 
an effort has been made to “model” the classes [25]. Initially, 
values of 10, 20 and 30, have been used respectively, to 
associate the three classes with a cluster centre. During the 
identification process, the output values of [ ]5.....15 were 
associated to “fresh” class with cluster centre 10, values of 
[ ]15.01.....25  were associated to “semi-fresh” class with 
cluster centre 20, and finally values of [ ]25.01.....35  were 
associated to “spoiled” class with cluster centre 30. The 

second output node has been assigned to the individual 
microbiological feature. The classification accuracy of the 
ENRBF network was determined by the number of correctly 
classified samples in each sensory class divided by the total 
number of samples in the class. The performance of the model 
for the prediction of each microbiological feature for each 
meat sample was determined by the bias (Bf) and accuracy 
(Af) factors, the mean absolute percentage error (MAPE), and 
finally by the root mean squared error (RMSE) and the 
standard error of prediction (SEP) [26].  
 

TABLE II 
PERFORMANCE OF ENRBF AND PLS MODELS FOR TVC 

 
 
In addition to ENRBF model, PLS regression models have 
been developed for TVCs, utilizing the same training/testing 
dataset, as well as the same input variables set. PLS models 
were implemented also in MATLAB, with the aid of PLS 
Toolbox. The nonlinear iterative partial least squares 
algorithm (NIPALS) has been chosen as the appropriate 
learning scheme. A critical aspect in PLS model development 
was the determination of the optimal number of Latent 
Variables (LVs). Using too few LVs results in an insufficient 
model, but using too many variables an unnecessary 
over-fitting may occurs. A number of 3 LVs was finally 
selected presenting the highest percentage of accuracy during 
model development for TVCs. 

 
Fig. 5. ENRBF’s Residual Error performance  

The plot of predicted (via ENRBF) versus observed total 
viable counts is illustrated in Fig. 4, and shows a very good 
distribution around the line of equity (y=x), with all the data 
included within the ±1 log unit area. The performance of the 
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ENRBF model is also presented in Fig. 5, where the % relative 
error of prediction is illustrated against the observed microbial 
population. Based on this plot, data was almost equally 
distributed above and below 0, with all (expect one) predicted 
TVC counts included within the ±20% RE zone.  

A close inspection in both illustrations, reveal some 
interesting conclusions. Two samples, as shown from Fig. 4, 
are in the border line of the ±1 log unit area and they are 
associated to the semi-fresh “10F7” and the spoiled “5F9” 
samples. “10F7” corresponds to a beef fillet, stored at 10oC 
and collected after 52h of storage, while “5F9” was stored at 
5oC and collected after 192h of storage.  

 
Fig. 6. PLS prediction model for TVC 

Two fresh samples (i.e. “0F5” and “5F3”) are close to the 
border line at Fig. 4, and the same samples appear to be in the 
vicinity of the border of the ±20% RE zone at Fig. 5. “0F5” 
corresponds to a beef fillet, stored at 0oC and collected after 
96h of storage, while “5F3” was stored at 5oC and collected 
after 48h of storage. It seems that all these “suspicious” cases 
occur at low temperatures. TVC illustrations at Fig. 1, reveals 
that both 0oC and 5oC curves have an initial flat response, 
which could justify such “suspicious” behavior. A possible 
way to overcome this problem could be to broaden the training 
dataset, especially for low temperatures. The performance of 
the ENRBF model in predicting TVCs in beef samples in 
terms of statistical indices is presented in Table II.  
 

 
Fig. 7. PLS prediction model for TVC (leave-1-out case) 

Two PLS models have been implemented utilizing the same 
FTIR information. The first model was trained exactly on the 
same, as in the ENRBF case, dataset, while the second one 
was trained through a leave-1-out validation method. Their 
performance for predicting TVCs is shown at Figs. 6 and 7, 
while the related statistical information is illustrated at Table 
II. 

Results also revealed that the classification accuracy of the 
ENRBF model was very satisfactory in the characterization of 
meat samples, indicating the advantage of a “Gaussian-based” 
approach in tackling complex, nonlinear problems, such as 
meat spoilage. The classification accuracy obtained from 
ENRBF, is presented in the form of a confusion matrix in 
Table III. The model overall achieved a 92.85% correct 
classification, and 100%, 80% and 100% for fresh, semi-fresh 
and spoiled meat samples, respectively. 

 
TABLE III 

CONFUSION MATRIX FOR ENRBF ACTING AS CLASSIFIER 

 
 
The sensitivities (i.e. how good the network is at correctly 
identifying the positive samples) for fresh and spoiled meat 
samples reveal a perfect matching. In the case of semi-fresh 
samples, one sample was marginally classified as semi-fresh, 
while another one was clearly classified as spoiled. The 
specificity index (i.e. how good the network is at correctly 
identifying the negative samples) was also high, indicating 
satisfactory discrimination between these three classes (Table 
III). It is characteristic that no fresh samples were 
misclassified as spoiled and vice versa, indicating that the 
biochemical information provided by FTIR data could 
discriminate these two classes accurately. Lower percentages 
were obtained for spoiled samples (ca. 80%) with incorrect 
classifications in the semi-fresh class.  The lower accuracies 
obtained in the semi-fresh class could be also attributed to the 
performance of the sensory evaluation process, as the 
difference between “fresh” and “semi-fresh” class is not very 
obvious sometimes. 

VI. CONCLUSIONS 
In conclusion, this simulation study demonstrated the 
effectiveness of the detection approach based on FTIR 
spectroscopy which in combination with an appropriate 
machine learning strategy could become an effective tool for 
monitoring meat spoilage during aerobic storage at various 
temperatures. The collected spectra could be considered as 
biochemical “signatures” containing information for the 
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discrimination of meat samples in quality classes 
corresponding to different spoilage levels, whereas in the 
same time could be used to predict satisfactorily the microbial 
load directly from the sample surface. The current research 
however revealed two open problems. The use of any machine 
learning method cannot be considered as panacea to problems 
that include sensorial devices. It is well known that PLS 
regression models do have problems in modeling high 
nonlinear dynamics problems [27]. There is need to explore 
further the use of advanced intelligent systems, and this paper 
has attempted for the first time to associate FTIR spectra with 
such systems. The ENRBF performance although very 
convincing, discloses however a second open problem, that is 
the need to have or “create” large training datasets, even with 
the presence of small amount of real experimental data. 
Research work is in progress to develop algorithms based on 
fuzzy logic that will generate “virtual” spectral data from 
limited experimental spectral meat samples. 
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