
 
 

 

  

Abstract—We present a nearest nonlinear subspace classifier 
that extends ridge regression classification method to kernel 
version which is called Kernel Ridge Regression Classification 
(KRRC). Kernel method is usually considered effective in 
discovering the nonlinear structure of the data manifold. The 
basic idea of KRRC is to implicitly map the observed data into 
potentially much higher dimensional feature space by using 
kernel trick and perform ridge regression classification in 
feature space. In this new feature space, samples from a 
single-object class may lie on a linear subspace, such that a new 
test sample can be represented as a linear combination of 
class-specific galleries, then the minimum distance between the 
new test sample and class specific subspace is used for 
classification. Our experimental studies on synthetic data sets 
and some UCI benchmark datasets confirm the effectiveness of 
the proposed method. 
 

I. INTRODUCTION 
ANY applications of machine learning, ranging from 
text categorization to computer vision, require the 

classification of large volumes of complex data sets. Among 
the algorithms, the K nearest neighbor (KNN) method is one 
of the most successful and robust methods for many 
classification problems at the same time being simple and 
intuitive [1]. In this naive approach, a test sample is assigned 
to the class which contains the nearest sample. Despite its 
advantages, the KNN algorithm suffers from poor 
generalization ability and becomes less effective when the 
samples having different class labels are comparable in the 
neighborhood of a test sample [2]. To overcome the 
drawbacks of KNN, various methods have been proposed in 
the literature [3][4][5][6]. 

Subspace learning [7][8] is a traditional method for pattern 
classification, which always assumes that data is sampled 
from a linear subspace. Other than KNN method, nearest 
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subspace classification methods [9][10] classify a new test 
sample into the class whose subspace is the closest. CLASS 
featuring information compression (CLAFIC) is one of the 
earliest and well-known subspace methods [11] and its 
extension into the nonlinear subspace is the Kernel CLAFIC 
(KCLAFIC). This method employs the principal component 
analysis to compute the basis vectors spanning subspace of 
each class. Linear Regression Classification (LRC) [12] 
method is another popular subspace method. In LRC, 
classification is taken as a class specific linear regression 
problem and the regression coefficients are estimated by 
using the least square estimation method, and then the 
classification is made by the minimum distance between the 
original sample and the projected sample. However, the least 
square estimation is very sensitive to outliers [13]. Therefore, 
the performance of LRC decreases sharply as the sample 
contaminated by outliers. Due to L2,1-norm based loss 
function can reduce the effect of outliers, Ren Chuan-Xian 
[14] proposed rotational invariant norm based regression  
classification method. In 2012, Naseem et al. proposed a 
robust linear regression classification algorithm (RLRC) [15] 
to estimate regression parameters by using the robust Huber 
estimation. Compared with least square estimation, the 
Huber’s M-estimator weighs the large residuals more lightly. 
As a result, the outliers have less significant affection on the 
estimated coefficients. Moreover, to overcome the problem of 
multicollinearity in LRC, Huang and Yang [16] proposed an 
improved principal component regression classification 
(IPCRC) method which removes the mean of each sample 
before performing principal component analysis and drops 
the first principal components. The projected coefficients are 
then executed by the linear regression classification algorithm. 
However, when the axes of linear regression of class-specific 
samples have an intersection, LRC could not well classify the 
samples that distribute around the intersection. To improve 
the performance of LRC in this situation, Yuwu Lu et al. 
proposed a kernel linear regression classification (KLRC) 
algorithm [17], by integrating the kernel trick and LRC. 

Although many regression-based approaches have been 
proposed to achieve successful classification tasks, LRC 
method fails when the number of sample in the class specific 
training set is smaller than their dimension. The ridge 
regression method [18] is a regularized least square method 
for classification and regression. It is suitable only for 
datasets with few training examples. Kernel methods [19] are 
effective framework to enhance the modeling capability by 
nonlinearly mapping the data from the original space to a high 
dimensional feature space which is called reproducing kernel 
Hilbert space (RKHS). 
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In order to detect nonlinear structure of samples and 
improve the robustness of LRC algorithm, we propose a 
Kernel Ridge Regression Classification (KRRC) method to 
boost the effectiveness of the LRC. KRRC is a nonlinear 
extension of ridge regression classification method based on 
kernel trick, which implicitly maps the data into a 
high-dimensional kernel space by using a nonlinear mapping 
determined by a kernel function. KRRC method falls in the 
category of nearest subspace classification that shares similar 
idea with LRC. 

In the remainder of the paper, we will first describe the 
ridge regression classification method, and then the proposed 
KRRC method is presented in Section II. It is followed by 
extensive experiments using synthetic data sets and UCI data 
sets in Section III. The paper concludes in Section IV.  
 

II. KERNEL RIDGE REGRESSION CLASSIFICATION 

A. Ridge Regression Classification (RRC) 
Ridge regression [20] is a classical data modeling method 

to solve multicollinearity problem of covariates in samples. 
Here, multicollinearity refers to a situation in which more 
than one predictor variables in a multiple regression model 
are highly correlated. If multicollinearity is perfect, the 
regression coefficients are indeterminate and their standard 
errors are infinite. If it is less than perfect, the regression 
coefficients although determinate but possess large standard 
errors, which means that the coefficients cannot be estimated 
with great accuracy [21].  

Using a fundamental concept that samples from a specific 
class lie on a linear subspace, a new test sample from any 
class can be represented as a linear combination of 
class-specific training samples. This assumption can be 
formulated as a linear model in terms of ridge regression. 

 Assume that we have C classes and each class has ni 
samples in the d-dimensional space. Let Xi be the training set 
of the ith class whose data matrix is 

1 2, , , i

i

d ni i i
i nX x x x R ×⎡ ⎤= ∈⎣ ⎦  

According to subspace assumption, the new test sample x 
belongs to the ith class can be represented by the linear 
combinations of these samples with an error ε  according to 
LRC method. Hence 

i ix X α ε= +                                      (1) 
Where iα  is 1in ×  dimensional regression coefficients 
vector.  

Similar to LRC, we formulated ridge regression 
classification method as follows. 

For any new test sample x, the goal of the ridge regression 
is to find iα  to minimize the residual error as: 

2 2

2 2
arg min

i
ii i i ix X

α
α α λ α= − +                  (2) 

Here, λ  is regularization parameter. Ridge regression can 
reduce the variance by penalizing the norm of the linear 
transform and balance the bias and variance by adjusting the 
regularization parameter. 

If we take the derivative of Equation (2) with respect to iα  
and set it to zero, we get 

0T T
i i i i iX X X xα λα− + =                      (3) 

Then the estimate of the regression parameter vectors can 
be computed by 

( ) 1T T
i i i iX X I X xα λ

−
= +                      (4) 

Thus the projection of x onto the subspace of the ith class 
can be computed as 

( ) 1i T T
i i i i i i i ix X X X X I X x H xα λ

−
= = +       (5) 

Where iH  is the class specific projection matrix which is 
defined as follows: 

( ) 1T T
i i i i iH X X X I Xλ

−
= +                        (6) 

Note that the projection matrix is a symmetric matrix and 
also idempotent, i.e., T

i iH H= , 2
i i i iH H H H= ⋅ = . 

After projecting new test sample onto every class-specific 
subspace, the minimum distance between the new test sample 
and class specific subspace is used for classification. If the 
original sample belongs to the subspace of class i, the 
projected sample ix  onto the class specific subspace Xi  will 
be the closet sample to the original sample. 

2*

2
arg min i

i
i x x= −                           (7) 

Figure 1 shows geometric interpretation of LRC and RRC 
method. Ridge regression classification is a regularized least 
square method to model the linear dependency between class 
specific samples and the new test sample which can deal with 
multicollinearity problem. 

1
ix

2
ix

ix

3
ix

1
ix

2
ix

ix

3
ix

(a) LRC (b) RRC 
Fig.1. Geometric Interpretation of LRC and RRC methods 

  

B. Kernel Ridge Regression Classification 
The main idea of Kernel Ridge Regression Classification 

(KRRC) is to map the original samples into a higher 
dimensional Hilbert space F and apply RRC method on this 
Hilbert space F. Kernel trick my increase the linearity of 
samples, i.e., a nonlinear curve can be taken as lying on a 
plane. The nonlinear mapping function can be denoted as 

:X Fφ → . For any new test sample x, the goal of kernel ridge 
regression is to find iα  to minimize the residual error as: 

2 2

2 2
arg min ( ) ( )

i
ii i i ix X

α
α φ φ α λ α= − +               (8) 

Similar to Equation (4), the estimate of the regression 
parameter vectors can be computed by 

( ) 1
( ) ( ) ( ) ( )T T

i i i iX X I X xα φ φ λ φ φ
−

= +              (9) 

Then we can predict the response vector ( )i xφ  for the ith 
class as 
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( ) 1

( ) ( )

( ) ( ) ( ) ( ) ( )

( )

i
i i

T T
i i i i

i

x X

X X X I X x

H xφ

φ φ α

φ φ φ λ φ φ

φ

−

=

= +      (10) 

Where ( )i xφ  is the projection of ( )xφ  onto the subspace of 
the ith class by the class specific projection matrix which is 
defined as follows: 

( ) 1
( ) ( ) ( ) ( )T T

i i i i iH X X X I Xφ φ φ φ λ φ
−

= +           (11) 
If the original sample belongs to the subspace of class i, the 

predicted sample ( )i xφ  in kernel space F will be the closet 
sample to the original sample. 

2
*

2
arg min ( ) ( )

( ) ( ) 2 * ( ) ( ) ( ) ( )

i

i
T T

i i i T

i x x

x x x x x x

φ φ

φ φ φ φ φ φ

= −

= − +

     (12) 

According to Mercer’s theorem [19], the form of nonlinear 
function ( )xφ  is not necessarily known explicitly and could 
be determined by a kernel function :k X X R× →  which has 
the following property: 

( , ) ( ) ( )T
i j i jk x x x xφ φ=                          (13) 

There are numerous types of kernel functions [19]. In our 
experiments, we adopt most popular Gaussian kernel that is 
given by 

2

2( , ) exp i j
i j

x x
k x x

t

⎛ ⎞−⎜ ⎟= −
⎜ ⎟
⎝ ⎠

                   (14) 

The parameter t is empirically set as the average Euclidean 
distance of all training samples. 
 Obviously, the classification process (12) can be expressed 
in terms of inner products between mapped training samples 
in F. Let us define kernel matrix K whose elements is 

1 1 1 2 1

2 1 2 2 2

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )
( , )

( , ) ( , ) ( , )

j

j

i i i j

i j i j i j
n

i j i j i j
n

i j

i j i j i j
n n n n

k x x k x x k x x

k x x k x x k x x
K X X

k x x k x x k x x

⎛ ⎞
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

     (15) 

 Following some simple algebraic steps, we see that the first 
term in Equation (12) can be reformulated as 

( )
( )

( )
( )

1

1

1

1

( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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λ
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−

−

−

−
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         (16) 

Similarly, the second term in Equation (12) can be 
reformulated as 

( )
( )

1

1

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( , ) ( , ) ( , )
( , )

T
i

T T T
i i i i

i i i i

i

x x

x X X X I X x

K x X K X X I K X x
K x X A

φ φ

φ φ φ φ λ φ φ

λ

−

−

= +

= +
=

        (17) 

Here 
( ) 1( , ) ( , )i i iA K X X I K X xλ −= +                    (18) 

Since ( , )i iK X X Iλ+  is positive definite, and its Cholsky 
decomposition can be written as 

( , ) T
i iK X X I L Lλ+ =                            (19) 

Then the matrix A in Equation (18) can be efficiently 
computed by solving the following linear equation 

( , )T
iL LA K X x=                                 (20) 

 Note that the third term in Equation (12) has no effect on 
classification results, since it has nothing to do with the class 
information. Therefore, after neglecting the third term, we 
have 

( )( )
( )

( ) ( ) 2* ( ) ( )
( , ) 2 * ( , )

( , ) 2 * ( , )

( , ) 2

T T
i i i

T
i i i

T
i i i i

T
i i

x x x x
A K X X A K x X A

A K X X K X X I A

A K X X I A

φ φ φ φ

λ

λ

−
= −

= − +

= − +

            (21) 

Equivalently, the classification process (12) can be 
reformulated as 

( ){ }* argmax ( , ) 2T
i i

i
i A K X X I Aλ= +                (22) 

The KRRC algorithm is given in Algorithm 1. 
 
Algorithm 1 Kernel Ridge Regression Classification 
Input: training data matrix X_train, Label vector for training 
data  L_train and testing data matrix X_test. 
Procedure: 
For each testing data sample x, predict its label as follows: 
Step 1. Compute the kernel matrix  K(Xi,Xi) and K(Xi,x) with 
Gaussian kernel (14). 
Step 2. Compute matrix A with (20). 
Step 3. Decision is made in favor of the class with the 
minimum distance in (22). 
Output: Label vector for testing data L_test. 
 

III. EXPERIMENTAL RESULTS 
In this section, we conduct experiments on synthetic data 

sets and UCI data sets to evaluate results of our proposed 
method for classification task and compare its results with 
those of the related classification methods.  

A. Experimental Setup 
The proposed KRRC method is compared with the related 

algorithms, such as KNN, LRC and KLRC. We use Gaussian 
kernel in Equation (14) for KRRC and KLRC. In our 
experiments, the regularization parameter λ  was set as 0.005. 
For each data set, we use 5-fold cross-validation to evaluate 
the performance of proposed method, i.e., 4 folds are used for 
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training and the last fold is used for testing. This process is 
repeated 5 times, leaving one different fold for testing each 
time. The average accuracy and corresponding standard 
deviation over the five runs of cross validation is reported for 
evaluation. 

B. Experiments on Synthetic Data Sets 
We first conduct experiments on two synthetic data sets 

displayed in Fig. 2 and Fig.3. In these figure, the data points 
that belong to the same class are shown with the same color 
and style. Obviously, they can’t be classified linearly. The 
performance is shown in Tables I – II.  
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Fig.2. The Synthetic Data Set 1 
 

TABLE I 
CLASSIFICATION RESULTS (%) COMPARISONS ON SYNTHETIC DATA SET 1 

method KNN LRC KLRC KRRC 
Accuracy 88.50 74.00 87.00 89.00 

Standard deviation 5.61 8.46 2.92 3.74 
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Fig.3. The Synthetic Data Set 2 
 
 

TABLE II 
CLASSIFICATION RESULTS (%) COMPARISONS ON SYNTHETIC DATA SET 2 

method KNN LRC KLRC KRRC 
Accuracy 95.50 75.70 96.80 97.00 

Standard deviation 0.84 8.90 0.87 1.05 
According to Table I and II, LRC performed not well on 

these two synthetic data sets, while KNN, KLRC and KRRC 
give better results.  Since these synthetic data sets has 
nonlinear structure and the assumption underlying LRC 
method is not satisfy.  

 

C. Experiments on UCI Data Sets 
In the experiments, we choose 14 real world data sets with 

varying dimensions and number of data points from UCI data 
repository to test our algorithm. The data sets are named as 
wine, Soybean2, Soybean1, liver, heart, glass, breast, yeast, 
vowel, diabetes, seeds, dermatology, hepatitis and balance 
[22]. The detail of the data description is shown in Table III. 
Table IV shows the classification results of different methods. 
The numbers in the brackets are the corresponding standard 
deviation. According to Table IV, our method generally 
shows higher performance than the other methods.  

 
 

 
 
However, we cannot conclude which classification method 

will certainly beat the others. In this experiment, we see that 
KRRC performs little better in more of the selected data sets. 

 

TABLE III 
UCI DATA DESCRIPTIONS AND EXPERIMENTAL SETTINGS 

Data Set #Dimension #Number #Class 

wine 13 178 3 
Soybean2 35 136 4
Soybean1 35 266 15 

liver 6 345 2 
heart 13 297 2 
glass 9 214 4 
breast 9 683 2 
yeast 8 1484 10 
vowel 10 528 11 

diabetes 8 768 2 
seeds 7 210 3 

dermatology 34 366 6 
hepatitis 19 155 2 
balance 4 625 3 

TABLE IV 
ACCURACY (%) COMPARISONS ON UCI DATA SET 

Data Set/Method KNN LRC KLRC KRRC 

wine 78.05(2.96) 52.92(7.67) 84.87(6.79) 87.14(3.53) 
Soybean2 86.75(6.05) 80.16(6.83) 86.75(6.05) 87.49(6.04) 

Soybean1 86.46(2.51) 85.72(4.36) 89.11(3.63) 89.48(3.49) 
liver 62.03(5.14) 60.29(5.23) 58.55(4.90) 68.12(3.78) 
heart 57.93(2.90) 67.65(4.38) 71.06(2.53) 73.40(4.04) 
glass 71.99(6.96) 50.96(5.25) 63.62(7.75) 72.43(7.24) 
breast 96.19(1.41) 35.43(0.67) 96.93(1.81) 97.36(1.83) 
yeast 51.75(1.00) 35.92(2.33) 53.10(3.85) 59.84(1.68) 
vowel 98.67(0.97) 59.47(2.74) 98.86(0.71) 99.24(0.71) 

diabetes 67.71(2.69) 62.10(3.90) 69.01(1.98) 73.18(4.34) 
seeds 90.48(2.61) 62.38(4.86) 91.43(2.43) 93.81(3.23) 

dermatology 88.80(1.57) 91.25(2.55) 93.99(2.22) 94.26(1.03) 
hepatitis 54.19(8.75) 60.65(7.74) 55.48(3.76) 61.29(5.40) 
balance 80.15(3.70) 90.72(0.83) 89.92(1.71) 92.79(1.70) 
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IV. CONCLUSION 
In this paper, we presented a kernel ridge regression 

classification (KRRC) algorithm based on ridge regression 
for classification. KRRC algorithm firstly makes a nonlinear 
mapping of the data to a feature space,  and then perform 
ridge regression classification method on this feature space, 
so KRRC is good at enhancing the linearity of distribution 
structure underlying samples and able to obtain higher 
accuracy than LRC. We showed the effective performance of 
our method by comparing its results on the synthetic and UCI 
data sets with related subspace based classification methods. 
However, KRRC require matrix inversion computation which 
can be computationally intensive for high dimensional and 
large datasets, including text documents, face images, and 
gene expression data. Therefore, developing efficient 
algorithms yet with theoretical guarantees will be interesting 
in future research.  
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