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Abstract— Artificial Neural Networks (ANN) is a major ma-
chine learning technique inspired by biological neural networks.
However, the process of its parameter tuning is usually tedious
and time consuming, and thus it becomes a major bottleneck for
it being efficiently applied and used by nonexperts. In this paper,
a novel ANN algorithm, termed as Automatic Regularized
Extreme Learning Machine (AR-ELM), based on a Regularized
Extreme Learning Machine (RELM) using ridge regression is
proposed. It is a true automatic ANN learning algorithm in the
sense that it can automatically identify the appropriate essential
system parameter according to the input data without the need
of user intervention. Since this method is based on a relatively
straightforward formula, it can achieve very fast learning
speed. The simulation results shows that the proposed AR-
ELM algorithm can achieve comparable results to tedious cross-
validation tuned RELM. Furthermore, we also systematically
investigate one of the biggest concerns of ELM, its randomness
nature, caused by randomly generated parameters.

I. INTRODUCTION

Artificial Neural Network (ANN) is a machine learning
paradigm that mimics the function of a human brain. The data
explosion in the modern world provides great opportunities
for algorithms like ANN that can uncover sophisticated
nonlinear relationships in various applications. Although it
has been successfully applied to numerous applications, its
performance subjects to various conditions. Among those,
arguably the network topology, i.e., the number of hidden
neurons L, plays the most critical role. This is because
other conditions, such as different activations functions and
learning rules, have smaller impacts on the performance since
the available options are limited. On the other hand, the
choices of L typically ranges from tens to hundreds, and the
performance of ANN is greatly influenced by this choice and
the problems of underfitting and overfitting are commonly
associated with it [1].

As a result, for decades researchers carried out various
methods to systematically determine the structure and other
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parameters of ANN. Notable approaches include Genetic Al-
gorithm (GA) [2], where the parameters are incorporated into
artificial genes and after mutations and crossover procedures,
the optimal set of parameters is selected in a similar way
as natural evolution [3]; Particle Swarm Optimization (PSO)
[4], where the parameters are optimized in a social psychol-
ogy fashion [5]; Constructive ANN, where the structure of
ANN grows and is pruned according to various criteria [6].

However, these systematical approaches are not truly au-
tomatic in a sense that users have to define some parameters
for algorithms to proceed. For GA, specific instructions on
crossover, mutation and fitness function have to be given; for
PSO, a measure of quality has to be defined; for constructive
ANN, growing and pruning criteria also have to be known.
These automatic tuning methods in a way just transfer the
determination of one set of parameters to another, and users
still have to make tough choices that may have big impacts to
the final algorithm performance. Therefore we argue that the
criteria of a true automatic ANN learning algorithm should
have the following properties:
• No or very small user intervention
• The limited choices made by the user should have

limited impact on the final performance of ANN.
For approaches that failed to meet the above criteria, we
believe they are not true automatic algorithms.

The importance of true automatic ANNs seems incon-
spicuous for scenarios where data is rarely altered, like
disease identification or housing price prediction. While for
applications such as weather forecast, where the data is
rapidly and constantly changing and the prediction has to
be made over and over again, it is impractical to refine user
choices to adapt to data with different properties. Therefore
in order to make ANN more suitable for automatic processes
and more user friendly, we aim to design an algorithm that
is truly automatic and meets the proposed criteria.

Extreme Learning Machine (ELM) is a variant of feed-
forward ANN with a single hidden layer. It has attracted
a large amount of research attentions since it has been
shown to outperform back-propagation (BP) algorithm and
Support Vector Machines (SVM), in terms of learning speed,
reliability and generalization [7]. In ELM, the input weights
and biases of hidden nodes are randomly generated instead
of exhaustive tuned, and therefore it can achieve much faster
learning speed than other ANN algorithms [8]. However, one
of the biggest concerns towards ELM is also the reason of
its popularity: randomness nature, which results in fluctuating
ELM performances, caused by different initialization of the
hidden nodes input parameters.
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This deficiency of ELM is widely recognized in the ELM
community and one common approach to tackle this problem
is to use network ensemble techniques [9]: Some base
approximators are first trained on the whole or partial data
using the ELM algorithm, and various ensemble methods
are used in the model fusion. The easiest one is the usage
of a simple averaging operator, where the final output is the
average result of all the base approximators [10], [11]. Others
may favor more complicated approaches such as GA [12],
[13] and creating variable learning sets using adaboost or
cross-validation [14], [15].

However, comparing with the basic ELM, the ensemble
ELM appears to be redundant in structure, since it requires
much more base ELMs to create the approximator. Fur-
thermore, the computational time in some ensemble ELM
algorithms increases dramatically because of the usage of GA
and cross-validation methods, which require a great deal of
tuning effort. For example, the topology of each base ELMs
in the ensemble has to be defined by the user, and potentially
more parameters have to be tuned for algorithms such as GA,
adaboost, and cross-validation.

Recently, a new trend in ELM emerges to combine ELM
with regularization, specifically, the ridge regression [16]. It
was introduced to improve the generalization ability of ELM
[7], and has been found that the generalization ability of
this Regularized ELM (RELM) is less sensitive to the choice
of ridge parameter C and the neuron topology L compared
to traditional ELM [17]. And for some activation function,
sigmoid for instance, it appears that its generalization perfor-
mance reaches a plateau rather than deteriorating, when the
number of neurons exceeds some value [17]. The benefit of
doing so is to transform the selection of ELM structure into
the selection of ridge parameter, which is easier to define.
Generally speaking, only the ridge parameter needs to be
specified by the user, which is now tuned manually through
a trial and error manner. As mentioned before, doing so is
impractical for automated learning algorithms and human
errors might also be involved in the tuning procedure.

In this paper, we first investigate the randomness reduction
(improved stability) effect of RELM and demonstrate that
RELM can produce consistent results with same topology
but different initial input parameters. And thus we argue that
RELM is a better alternative compared to ELM ensemble
methods in terms of producing stable results. Furthermore, a
novel algorithm termed as Automatic Regularized Extreme
Learning Machine (AR-ELM) that meets the two criteria to
be a true automatic ANN algorithm is proposed. It is based
on an analytical way of calculating the ridge parameter C
instead of cross-validation, and therefore can achieve very
fast learning speed. The remaining of this paper is organized
as follows: The preliminaries of ELM, ELM ensemble and
RELM are given in Section 2, and the fluctuating perfor-
mances of respective algorithms are compared in Section 3,
and an attempt to explain this randomness reduction effect
brought by RELM is also given. The AR-ELM algorithm is
introduced in Section 4. Performance evaluation benchmark

datasets including 11 regression are done in Section 5.
Conclusions are drawn in Section 6.

II. PRELIMINARIES

ELM is a novel feedforward neural networks algorithm
with a single hidden layer [7]. Its salient feature is that the
input weights and hidden biases are randomly chosen instead
of exhaustively tuned, and the output weights are analytically
determined using Moore-Penrose generalized pseudoinverse
[17]. ELM aims to reach smallest training error as well as the
smallest norm of output weights. Consequently, it has been
reported to provide better generalization performance with
much faster learning speed and avoid traditional ANN issues
such as learning rate, stopping criterion, number of training
epochs and local minima [8], [18], [19]. In this section, the
preliminaries of ELM and its variant ELM ensemble and
RELM are introduced.

A. Original ELM

The structure of the original ELM is shown in Figure 1.

Fig. 1. ELM network structure

The output y with L hidden nodes can be represented by:

y =
L∑
i=1

βigi(x) =
L∑
i=1

βiG(ωi, bi,x) = Hβ (1)

where x,ωi ∈ Rd and gi denotes the ith hidden node output
function G(ωi, bi,x); H and β are the hidden layer output
matrix and output weight matrix respectively. In this paper,
the Radial Basis Function (RBF) is used as the activation
function. For N distinct samples (xj , tj), j = 1, . . . N ,
Eq.(1) can be written as:

Hβ = T (2)

where

H =

 G(ω1, b1,x1) · · · G(ωL, bL,x1)
...

...
...

G(ω1, b1,xN ) · · · G(ωL, bL,xN )

 (3)

β =

 β1
...
βL


L×1

and T =

 t1
...
tN


N×1

(4)

where T is the target matrix.
Since the input weights of its hidden neurons (ωi, bi)

can be randomly generated instead of tuned [17], the only
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parameters that need to be calculated in ELM is the output
weight matrix β, which can be easily done through Least
Squares Estimate (LSE):

β = H†T (5)

where H† is the Moore-Penrose generalized inverse of matrix
H, which can be calculated through orthogonal projection,
where H† = (HTH)−1HT .

The procedure of ELM goes as follows:
1) Randomly generate hidden neuron parameters (ω,β).
2) Calculate hidden layer matrix H through Eq.(3).
3) Calculate the output weight β using Eq.(5).

B. ELM ensemble

The idea of neural network ensembles was first introduced
by [9]. By combining the results of an ensemble of neu-
ral networks, it has been shown that the overall network
performance can be expected to improve. Because of the
ease of implementation and relatively low computational
requirement, ensemble method has been applied to ELM to
reduce its fluctuating performance [10], [14], [20].

The ELM ensemble structure consists of P individual
ELMs, where the input parameters (ωj , bj), j ∈ [1, P ] for
each one are randomly generated and their output weights
βj are analytically determined based on the training data.
Although numerous ways exist in generating the final output,
the common one is the average of each individual ELM’s
result [10], for being the easiest and, most of the time,
effective approach. Other methods include bootstrap [28] and
boosting [21], [22], and even GA [12], [13]. But they may
significantly slow down the learning speed of ELM, its most
salient feature.

C. Regularized ELM (RELM)

According to ridge regression theory [16], more stable and
better generalization performance can be achieved by adding
a positive value 1

C to the diagonal elements of HTH when
calculating the output weight β [17], [23]. Therefore, the
corresponding RELM becomes:

H† = (HTH+
I

C
)−1HT (6)

According to [24], the following matrix inversion property
holds:

(A+BCD)−1BC = A−1B(C−1 +DA−1B)−1 (7)

Let

A =
I

C
, B = HT , C = I, D = H (8)

By substituting Eq.(7,8) into Eq.(6), one can obtain

H† = (HTH+
I

C
)−1HT = HT (HHT +

I

C
)−1 (9)

Since the inversion of a matrix with higher dimension
requires more computational power, Eq.(6) and Eq.(9) can
be selected based on either HTH or HHT has smaller
dimension.

It has been shown that Eq.(6) and Eq.(9) actually aim
at minimizing ∥Hβ −T∥2 + 1

C ∥β∥
2 [17]. Comparing to

LSE, where the target is to minimize ∥Hβ −T∥2, an extra
penalty term 1

C ∥β∥
2 is added to the target of RELM. This is

consistent to the theory that smaller output weights β play
an important role for ELM in achieving better generalization
ability [36], [25].

ELM is a very efficient and effective batch learning ANN
algorithm and has been implemented in numerous methods
and applications. As mentioned before, the salient feature
of ELM is its fast learning speed, which is achieved by
randomly generating the parameters of its hidden neurons.
However, this randomness nature is also one of its biggest
problems.

In most ANN learning algorithms, the goal is to minimize
the mean square error. We may estimate a model of T̂ of T,
with the expected squared prediction error as follows:

Err = E[(T̂−T)2] (10)

The error usually comprises of three elements:

Err = [E(T̂)−T]2 + E[T̂− E(T̂)]2 + σ2
e

= Bias2 + V ariance+ Irreducible Error(11)

Eq.(11) is also known as the bias variance decomposition,
where the irreducible error is the noise term in the true
relationship and basically cannot be reduced by any model.

ELM and other ANN algorithms that use LSE are unbi-
ased, and do not attempt to reduce the variance term. This is
problematic especially for ELM, since the variance is quite
high because of its randomness nature. In this case, ridge
regression is quite beneficial to ELM, because it forces output
weights to smaller values with lower variance, and hence
leads to a decrease in prediction error.

The procedure of RELM goes as follows:
1) Randomly generate hidden neuron parameters (ω,β).
2) Calculate hidden layer matrix H through Eq.( 3).
3) Calculate the output weight β using Eq.( 5) with H†

derived from Eq.(6) or Eq.(9).

III. AN INVESTIGATION OF THE INCONSISTENT
PERFORMANCE OF ELM, ELM ENSEMBLE AND RELM

As mentioned before, the most salient feature of ELM
is its extremely fast learning speed, which is primarily
obtained by random generalization of input parameters of
its hidden nodes. However, this also causes ELM to produce
inconsistent results for the same task with different initial
parameters, which makes ELM less robust. Arguably, it can
be considered as one of the biggest issues exists in the
ELM algorithm. In this section, we will probe deeply into
the ELM structure and explain what causes the inconsistent
performance of ELM. Furthermore, a real world example
is given to illustrate the randomness nature of ELM, as
well as the performance stabilization effect brought by ELM
ensemble and RELM. We will demonstrate that RELM can
produce much more consistent results than the ELM and
ELM ensemble.
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A. A vector view of ELM

From Eq.(3), the H matrix can be rewritten as:

H = [G(Xω1 + b1) · · · G(XωL + bL)] (12)

where X = [x1, . . .xN ]T . Then the target estimation matrix
in Eq.(2) can be rewritten as:

Hβ =[G(Xω1 + b1) · · · G(XωL + bL)]β

=β1G(Xω1 + b1) + · · ·+ βLG(XωL + bL)

=β1G1 + · · ·+ βLGL = T (13)

The learning process, or the output weights calculation
can be considered as finding the best linear combination
of [G1,G2, . . . ,GL] to approximate the target vector T.
To solve Eq.(13) for any T with zero error, the linear
combination of Gi, i = 1, 2, . . . L, should be able to cover
the whole space of RN [17]. This means L should be equal
or bigger than N , therefore H can have at least N linearly
independent Gi. Given the fact that when L ≥ N , serious
overfitting problem can appear in ELM, L is usually much
smaller than N for the ELM optimal structure. Consequently,
Hβ can only approximate T to a certain degree. With each
initialization of ELM, different sets of ω and b (ω ∈ [−1, 1]
and b ∈ [0, 1]) are randomly generated. Even when the same
problem is presented, where X and T are hold constant,
each Gi will oscillate in the range of [−G(−X), G(X+1)]
(considering monotonous activation function such as sigmoid
is used). Since L is usually set much smaller than N in ELM,
the approximation ability to the same T with different sets
of Gi, i = 1, 2, . . . L, (L < N ) may vary greatly, and this
is where the problem of inconsistent performance of ELM
stems from.

B. Randomness effects comparison of ELM, ELM ensemble
and RELM

To better explain the fluctuating performance of ELM
caused by randomly generated hidden layer parameters,
Auto MPG dataset is selected for demonstration. Since this
comparison is only meaningful for practical structures, the
number of hidden neurons L in ELM and the ridge parameter
C in RELM are chosen using cross-validation procedure
to ensure that optimal models are used (L in RELM is
uniformly selected as 1000, same as previous work done
by [17]) . Since ELM is a linear-in-the-parameter model,
the Leave-One-Out cross-validation procedure can be directly
and exactly calculated using the PREdiction Sum of Squares
(PRESS) statistics formula [26], [27]:

ELOO =
N∑
i=1

(
yi − ŷi
1− hatii

)2

(14)

where yi and ŷi are the ith sample target value and its
corresponding estimation, and hatii is the ith value of the
diagonal of the HAT matrix, which transfomrs Y into Ŷ :

Ŷ = Hβ = H(HTH)−1HTY = HAT ·Y (15)

Using the LOO formula, the computational time of the
cross-validation procedure can be greatly reduced. The spe-
cific data configuration is shown in Table. I.

TABLE I
AUTO MPG DATASET

Dataset Type L C #Attribute #Train #Test
Auto MPG Reg 28 210 8 261 131

Different from the approaches adopted by most algorithm
evaluation methods, where random permutation is used for
each run, we keep the training and testing data unchanged in
order to solely evaluate the inconsistent performance caused
by different initial input parameters. Totally 10 trials are
carried out with training and testing data randomly picked
from the dataset. Within each trial, 50 runs are done to
study the randomness effect with data unchanged, therefore
it eliminates the performance fluctuation caused by different
data partitions. The ELM ensemble consists of 10 base ELMs
and the final output is the average of results from all base
ELMs. The simulation results are shown in Figure 2.

Fig. 2. Randomness effect comparison of original ELM and ELM ensemble
with Auto MPG dataset

From Figure 2, it can be seen that although the gener-
alization performance of ELM may not seem to improve
by using an ensemble structure , the Standard Deviation
(STD) or the randomness, caused by different initial ELM
parameters is reduced to about 1/3 to the original level.
Therefore ELM ensemble can indeed achieve more stable
performance than using a single ELM. For the case of
RELM, It can be seen that not only the testing results are
generally improved, the randomness has also been reduced
to about half of ELM ensemble and 1/6 of original ELM.
In this Auto MPG problem, the STD is only around half
a thousandth of the whole data range, which is a pretty
insignificant number. To thoroughly study the randomness
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reduction effect of RELM, more comparisons of randomness
effect of ELM, ELM ensemble and RELM will be carried
out in the performance evaluation section.

C. An Attempt to Explain the Randomness Reduction Effect
of RELM

Although the simulation results strongly demonstrate the
randomness reduction effect of RELM, it is preferred that this
phenomenon can be explained theoretically. We attempt to do
this by examining the ELM and RELM from a dimensional
perspective.

The output regularization of RELM can suppress the
overfitting problem and therefore much more neurons can
be used in the network structure than the original ELM. In
the previous work done by [17], L is uniformly selected as
1000 for all tasks, which results in L > N for most cases.
Intuitively, since more neurons are presented, the linear com-
bination of Gi should be able to approximate

∥∥∥Hβ − T̃
∥∥∥,

with
∥∥∥T− T̃

∥∥∥ = ε, much easier than ELM, and yields
more consistent training performance. And with properly
selected ridge parameter C, the inconsistent generalization
performance can also be reduced.

To better analyze the randomness reduction effect with
varying C and L, the testing performance comparison of
ELM and RELM across a wide range of C and L are shown
in Figure 3. Since normally 1

C takes the value in [0, 1] [29],
the C axis in the plots is drawn in a log2 scale, so that more
intensive search can be done in that region.

An interesting phenomenon can be observed in Figure 3a.
Generally speaking, by using a small amount of 1

C , the
ELM generalization ability can be improved (same L is used
in ELM and RELM), except when L is small (probably
before the overfitting effect appears in ELM, and adding
C can suppress the overfitting problem). With increasing
number of hidden neurons used, RELM can achieve better
generalization performance with bigger amount of 1

C . This
demonstrates that RELM is more resistant to the overfit-
ting problem. Although whether optimal RELM performs
better than optimal ELM still remains to be determined,
the results in Table 3 seem to give an affirmative answer.
From Figure 3b, given the same L, RELM has more stable
performance, and only a very small region in the plot shows
otherwise. In this specific Auto MPG task, RELM already
has lower randomness than ELM when L = 28, C = 210.
Since more neurons tends to offer better approximation
ability and smaller randomness effect, and the C is selected
so that overfitting effect is limited in RELM, we can almost
be certain to say that RELM offers more stable results
with carefully chosen parameters, and experiments in the
performance evaluation section also show similar results.
Therefore we propose the following remark:

Remark 1. Given the same approximation task, optimal L
in ELM and C in RELM (L is large enough) are selected,
RELM can generally achieve more stable performance. In
summary, we believe RELM is a better choice compared

Fig. 3. Testing error and Randomness comparison between ELM and
RELM for Auto MPG task

to ELM and ELM ensemble because it offers the following
benefits (first two are suggested in previous works done by
[17]):
• Better generalization performance may be achieved.
• Only one ridge parameter C needs to be defined by the

user.
• The inconsistent performance of ELM caused by ran-

dom generation of input parameters can be greatly
reduced, and even omitted because of its insignificant
value.

IV. AUTOMATIC REGULARIZED EXTREME LEARNING
MACHINE (AR-ELM)

ANN, as one of the most popular machine learning tool,
has been successfully applied to numerous applications be-
cause of its non-linear approximation capability. However,
to maximize its generalization ability, exhaustive tuning is
usually involved. It can be the direct choice of the number
of hidden neurons, or the selection of parameters that au-
tomatically determine the topology and other parameters of
ANN. Whichever way, this process can be time consuming
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and it may need certain kind of expertise of the ANN and
the specific problem to obtain the optimal set of parameters.
Furthermore, it prevents ANN to be widely adopted by fully
automatic processes and non-expert users. Therefore it is
extremely beneficial to develop an ANN algorithm that meets
the criteria of a true automatic algorithm proposed previously.
In this section, we propose a novel true automatic ANN
algorithm based on ELM and an analytically way of deriving
the ridge parameter [30].

Although the cross-validation method provides robust so-
lutions in finding the optimal ridge parameter, it has very high
computational requirement, and is not ideal for applications
where data is constantly changing and ANN has to be applied
iteratively. Even with the convenient LOO formula, the cross-
validation process can still be somewhat tedious. Thus it
would be very beneficial to preserve the fast learning speed
of ELM if the C value can be calculated based on a single
RELM structure.

In fact, the research in finding the optimal ridge parameter
in ridge regression has already been going on for decades.
Besides the computational intensive cross-validation method
[31], two main approaches exist, namely graphical driven
and data driven methods. As the name implies, the graphical
driven methods are based on the plot of some properties of
the ridge parameter, including the ridge trace [16], p−trace
, and Variance Inaction Factor Plot [32]. These graphical
driven methods have two main problems. First of all, it
requires the users to observe the plot and determine subjec-
tively which C parameter is optimal, thus can be unreliable
and time-consuming. Secondly, the plots tend to become
messy when the number of hidden nodes is large (one line
for each one), which makes them more difficult for users
to observe. Furthermore, the computational expensive to
generate the plots.

Data driven methods derive the ridge parameter C through
a mathematical formula, which analyze the statistical infor-
mation of the data. The benefit of doing so is quite evident.
First of all, they are objective approaches without user
intervention, which limit the potential subjective errors and
saves human effort. Secondly, they usually can be executed
much faster than the cross-validation methods since only one
RELM needs to be computed.

Quite a number of algorithms in this category has been
proposed, Lawless and Wang formula [30] is chosen AR-
ELM because of its superior performance and it is computed
as follows:

C =
Lσ̂2

L∑
i=1

λiα̂2
LSE,i

, (16)

Recall that β̂LSE = (HTH)−1HTT. Define W =
XQ, where Q is matrix such that (HQ)T (HQ) = Λ =
diag(λ1, . . . λL) and QTQ = I. λ1, . . . λL are the eigenval-
ues of HTH. Then the LSE estimator in the canonical form
is calculated as follows:

α̂LSE = (WTW)−1WTT = Λ−1WTT = QT β̂LSE
(17)

and σ̂2 is the estimated variance of regression error, given
by:

σ̂2 =
(Y −Hβ̂LSE)

T
(Y −Hβ̂LSE)

ν
(18)

where ν = N −L, the residual effective degrees of freedom
[33].

However, a problem rises when L > N , since usually a
large value is chosen for L so that the fluctuating perfor-
mance of ELM can be suppressed, and this can result in the
negativity of ν = N − L, which in turn makes Eq.(18) to
be negative, an infeasible solution. Cule et. al [34] suggest
to use the definition of residual effective degrees of freedom
[35]:

ν = n− tr(2H̃ − H̃H̃
T
) (19)

where H̃ = HH† = H(HTH+ I
C )
−1HT . Unfortunately,

Eq.(19) cannot be efficiently implemented to find the optimal
ridge parameter, since C is also in the formula.

To tackle the negativity problem, we propose to constraint
L to be only a proportion of N (e.g., 2/3) or 1000 (whichever
is smaller). L should be selected to be a relatively large value,
or else the advantage of regularization effort would be limited
(L = 2N/3 will make ELM overfit for most of the cases),
and the randomness reduction effect brought by a large L
can be reduced. The AR-ELM is illustrated in Algorithm 1.

Algorithm 1: Process of AR-ELM
1: Default setting: sigmoid activation function;
L = 2/3N . If L > 1000, then L = 1000. Change if
required, otherwise continue.

2: Normalize the H matrix to zero mean and variance
one (apply to every hidden node).

3: Decompose Hnorm: [U,S,V] = SV D(Hnorm)
4: W = U · S
5: α̂LSE = (WTW)−1WTT
6: Find the eigenvalues λ1, . . . λL of STS
7: σ̂2 = (T−Wα̂LSE)

T (T−Wα̂LSE)/(N − L)

8: C = Lσ̂2/
L∑
i=1

λiα̂
2
LSE,i

9: Derive the RELM model using the C and H
calculated above.

As seen from the algorithm illustration, except for the
default settings which has limited impact on the final per-
formance, the calculation of the ridge parameter is done
through analyzing the statistical information of the training
data, without user intervention. Therefore only one RELM
model needs to be derived and AR-ELM can run much faster
than the cross-validation method.

V. PERFORMANCE EVALUATION

To thoroughly evaluate the performance of AR-ELM,
benchmark datasets taken from UCI Machine Learning
Repository [37], Statlib [38], and LIBSVM [39] are used,
shown in Table II. All simulations are run using Matlab
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R2010b on a windows 7 PC with an Intel Core i5 CPU
760 @ 2.80GHz and 8GB RAM. Three variants of the
ELM algorithm are selected for comparison, namely original
ELM, RELM with C selected using LOO cross-validation,
and AR-ELM. Different from other performance evaluation
procedure, we also intend to analyze the random effect
caused by the different initial parameters of hidden nodes,
therefore each test consists of two cycles. In the inner cycle,
the training and testing data are randomly selected from the
datasets, but hold unchanged for the rest of 30 runs. The L
in ELM is chosen using LOO cross-validation, while the C
and L in RELM are selected automatically. The outer cycle
also consists of 30 runs, but within each one, training and
testing data are selected with random permutation. In this
way, the error variance of all tests caused by different initial
parameters and random permutation of datasets can be both
analyzed. Totally 900 runs are done for each dataset. The
evaluation results are presented in Table III1.

TABLE II
SPECIFICATION OF REGRESSION DATASETS

Dataset Type L C #Attribute #Train #Test
Basketball Reg 5 20 5 64 32

Bodyfat Reg 24 20 15 168 84
Auto MPG Reg 28 210 8 261 131

Housing Reg 30 25 14 337 169
Forest Fire Reg 1 20 13 345 172

Strike Reg 19 2−5 7 416 209
Concrete Reg 139 213 9 687 343
Balloon Reg 16 220 3 1334 667
Quake Reg 18 24 4 1452 726

Space-ga Reg 69 24 7 2071 1036
Abalone Reg 30 20 9 2784 1393

From the results in Table III, it can be seen that AR-ELM
offers very competitive results comparing to the original
ELM. This is very impressive because it automatically selects
the model based on statistical data of RELM and free of
user intervention, and there is no need to further divide the
training data to evaluate the constructed model. As a result, it
also runs much faster than the RELM(F). Although AR-ELM
may not be able to offer generalization performance as robust
as RELM(F), their results are actually quite close in our tests,
which demonstrates that AR-ELM is a reliable approach.
Furthermore, this also further strengthen the argument that
the number of hidden nodes used by RELM has limited
impact on the final performance, as long as it is large enough
2 [17].

It may appear that the training time of ELM is much faster
than AR-ELM, and this is because L in the original ELM is
usually much smaller than the ones used in AR-ELM. More

1The training time of RELM includes the cross-validation procedure;
STD is the error variance in the outer cycle, mainly caused by different
training/testing data partition; Random is the error variance in the inner
cycle, mainly caused by different initial input parameters. RELM(F) denotes
the RELM with full LOO cross-validation procedure.

2RELM and AR-ELM employs different L in most cases in our simulation

TABLE III
PERFORMANCE EVALUATION ON REGRESSION DATASETS

Datasets Algorithm L RMSE STD Random Time

Basketball
ELM 7 0.1771 0.0202 0.0175 7.53e-4

RELM(F) 1000 0.1631 0.0229 6.58e-4 4.1162
AR-ELM 32 0.1612 0.0209 9.00e-4 0.0115

Bodyfat
ELM 15 0.0401 0.0096 0.0085 0.0011

RELM(F) 1000 0.0281 0.0124 3.77e-4 3.2747
AR-ELM 112 0.0282 0.0127 0.0010 0.0291

Auto MPG
ELM 24 0.0757 0.0051 0.0085 0.0023

RELM(F) 1000 0.0736 0.0064 6.48e-4 4.9914
AR-ELMs 174 0.0759 0.0058 6.55e-4 0.0718

Housing
ELM 40 0.0754 0.0168 0.0026 0.0071

RELM(F) 1000 0.0699 0.0176 8.51e-4 7.5773
AR-ELM 225 0.0751 0.0209 2.96e-4 0.1456

Forest Fire
ELM 2 0.0585 0.0249 1.74e-4 7.63e-4

RELM(F) 1000 0.0584 0.0247 2.37e-5 6.2064
AR-ELM 230 0.0588 0.0238 7.47e-5 0.1250

Strike
ELM 18 0.2981 0.0168 0.0026 0.0071

RELM(F) 1000 0.2937 0.0176 8.51e-4 7.5773
AR-ELM 278 0.2946 0.0209 2.96e-4 0.1456

Concrete
ELM 83 0.0923 0.0038 0.0038 0.0230

RELM(F) 1000 0.0765 0.0061 0.0017 12.1988
AR-ELM 458 0.1039 0.0048 8.61e-4 0.6405

Balloon
ELM 20 0.4616 0.8973 0.3420 0.0193

RELM(F) 1000 0.0578 0.0017 1.56e-4 15.0942
AR-ELM 890 0.1045 0.0035 0.0049 1.8568

Quake
ELM 38 0.1772 0.0090 9.49e-4 0.0490

RELM(F) 1000 0.1767 0.0093 3.34e-5 24.5020
AR-ELM 968 0.1770 0.0097 4.21e-5 3.9821

Space-ga
ELM 92 0.0360 0.0027 0.0023 0.0686

RELM(F) 1000 0.0340 0.0011 2.49e-4 38.3497
AR-ELM 1000 0.0356 0.0010 3.79e-5 6.3322

Abalone
ELM 54 0.0792 0.0049 0.0054 0.0259

RELM(F) 1000 0.0759 0.0023 4.91e-4 34.8229
AR-ELM 1000 0.0762 0.0019 5.67e-5 5.3725

importantly, the training time does not include the parameter
selection procedure. Since there is no upper bound of the
optimal L (in the contrary, the bound of C is much easier
to define), usually the hidden nodes upper bound is set as
100. Therefore the training time of ELM should at least be
multiplied by 100, which results in longer training time than
AR-ELM. In the case of manual selection, it could take much
longer.

The original ELM also suffers greatly from the fluctuating
performance caused by the different initialization of its input
parameters. As shown in Table III, the random effect of ELM
is usually more than 10 times higher than the rest of the
algorithms presented.

VI. CONCLUSION

In this paper, we analyze one of the biggest concerns
of ELM algorithm, its fluctuating performance caused by
randomly generated parameters of hidden nodes. According
to the comparison results, RELM can greatly reduce the
randomness effect to a level that can nearly be neglected.
Furthermore, RELM can produce even more stable results
than an ensemble of 10 base ELMs, which demonstrates
that RELM is a better alternative compared to the ELM
ensemble in terms of controlling the randomness effect. A
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systematic analysis on the reason why RELM can achieve
more consistent results than the original ELM is also given.
Since basically only the ridge parameter in RELM has a
significant influence on its performance, an algorithm named
AR-ELM that can automatically select this parameter is
proposed.

Instead of further dividing the training data into training
and validation sets to evaluate potential model candidates,
AR-ELM directly computes the optimal ridge parameter
based on the statistical information of the training data,
therefore it can achieve much faster speed than the cross-
validation methods. Although in theory this approach is not
as robust as using the cross-validation procedure, it actually
performs quite close in our tests, even better in some cases.
This demonstrates that AR-ELM is an effective approach
with very fast learning speed.

According to our performance evaluation results, AR-
ELM outperform the original ELM (tuned using tedious
cross-validation procedure) in almost all tests in terms of
generalization performance, and they are much more stable
with respect to different initialization parameters. Although
the training time of ELM appears to be much faster than
the other listed algorithms, the model selection time is not
included. By using cross-validation selection procedure, the
computational time is usually more than 100 times than the
presented results, which is longer than the training time of
AR-ELM.

In this paper, we also discuss a very important common
problem possessed by almost all ANN algorithms, the need
of parameter tuning, which is usually tedious and time
consuming. We then suggest two criteria for a true automatic
ANN algorithm, and they are met by the proposed algorithm.
All the results of the AR-ELM in this paper are produced
using the default settings (generally no need to change),
meaning nearly zero intervention is needed from users. This
makes it much easier to be implemented in the automatic
processes and by non-expert users.
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