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Abstract—This paper presents a one-layer discrete-time pro-
jection neural network described by difference equations for
real-time support vector classification (SVC). The SVC is first
formulated as a convex quadratic programming problem, and
then a recurrent neural network with one-layer structure is
designed for training the support vector machine. Furthermore,
simulation results on two illustrative examples are given to
demonstrate the effectiveness and performance of the proposed
neural network.

I. INTRODUCTION

Support vector machines (SVMs) are powerful tools for
data classification and regression. Their foundation has been
developed by Vapnik and obtained popularity in the literature
[1][2]. The main feature of SVMs is that they use the structural
risk minimization rather than the empirical risk minimization.
Recently, many fast algorithms for SVMs have been devel-
oped [3]. Among them, Mangasarian [4] proposed the finite
Newton algorithm for SVMs learning. Keerthi and DeCoste
[5] introduced the modified finite Newton algorithm to speed
up the finite Newton algorithm for fast solution of large scale
linear SVMs.

As a software and hardware implementable approach for
real-time optimization, recurrent neural networks for solv-
ing linear and nonlinear optimization problems with their
engineering applications have been widely investigated [6]
[7][8][9][10]. Compared with traditional numerical optimiza-
tion algorithms, the recurrent neural networks have fast con-
vergence rate for real-time solutions. In 1986, Tank and
Hopfield [9] proposed a recurrent neural network for solving
linear programming problems which inspired the research
on neurodynamic optimization and its applications. Kennedy
and Chua [6] proposed the dynamical canonical nonlinear
programming circuit (NPC) for nonlinear programming to
generate the approximate optimal solutions based on penalty
function method. From then on, the NPC for constrained opti-
mization were widely developed and a variety of optimization
neural network models were designed and investigated (e.g.,
see [11][12][13][14][15], and references therein). Later on, the
projection method was introduced to construct recurrent neural
networks for constrained optimization, such as the models
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in [16][17][18][19], which are globally convergent to exact
optimal solutions of convex optimization and related problems.
Forti et al. [20] proposed and investigated the generalized
NPC (G-NPC) for getting the optimal solutions of non-smooth
optimization problems. Recently, a one-layer recurrent neural
network with a discontinuous hard-limiting activation function
is proposed for quadratic programming [21], in which results
on numerical examples and support vector machine (SVM)
learning show the effectiveness and performance of the neural
network. Another one-layer projection neural network has
been proposed for solving non-smooth optimization problems
subject to linear equalities and bound constraints [22]. It is
proved that the output variables of the proposed neural network
are globally convergent to the optimal solutions provided that
the objective function is convex on a defined set. In this
paper, a discrete-time neural network is presented based on the
models in [22] and applied to SVM learning for classification.

The remainder of this paper is organized as follows. In
Section II, the problem formulation of support vector classifi-
cation and the recurrent neural network model are described.
The theoretical analysis of the proposed neural network is
presented in Section III. Next, in Section IV, simulation results
on two benchmark problems are presented to illustrate the
performance of the proposed neural network. Finally, Section
V concludes this paper.

II. SUPPORT VECTOR CLASSIFICATION AND MODEL
DESCRIPTION

In this section, the SVC is first converted into a con-
strained quadratic programming problem, then a corresponding
discrete-time recurrent neural network is proposed.

Consider a set of training examples

D = {(x1, y1), (x2, y2), ..., (xN , yN )},
where the ith sample xi ∈ R

n (n is the dimension of the input
space) belongs to two separate classes labeled by yi ∈ {−1, 1}.
The classification problem is to find a hyperplane in a high
dimensional feature space, denoted as Z, which divides the
set of examples in the feature space such that all the points
with the same label are on the same side of the hyperplane
[1][2]. SVC is to construct a map z = Φ(x) from the input
space R

n to a high m-dimensional feature space Z and to
find an optimal hyperplane wT z+b = 0 in Z to maximize the
separation margin between the positive and negative examples,
where w ∈ R

m and b ∈ R are decision parameters.
The decision function of the classifier is described as

fw,b = sgn[wT z + b],
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where w is a weight vector and b is a threshold. In this
paper, we consider the case when the samples are not linearly
separable. Then, the SVC is to find w and b satisfying

minimize
1

2
wTw + c

N
∑

i=1

ξi,

subject to yi[w
TΦ(xi) + b] ≥ 1− ξi, i = 1, 2, . . . , N,

ξi ≥ 0, i = 1, 2, . . . , N,

(1)

where c > 0 is a regularization parameter for the tradeoff
between model complexity and training error, and ξi measures
the (absolute) difference between wT z + b and yi. Due to a
number of variables and the unknown Φ(x), it is difficult to
solve problem (1) directly. Generally, solving (1) is converted
into solving a dual problem

maximize − 1

2

N
∑

i=1

N
∑

j=1

yiyj(Φ(xi)
TΦ(yj))αiαj +

N
∑

i=1

αi,

subject to
N
∑

i=1

αiyi = 0,

0 ≤ αi ≤ c, i = 1, 2, . . . , N.
(2)

We define a kernel function K(x, y) satisfying K(xi, xj) =
Φ(xi)

TΦ(xj). The above dual problem is equivalently written
as

maximize − 1

2

N
∑

i=1

N
∑

j=1

yiyjK(xi, xj)αiαj +

N
∑

i=1

αi,

subject to
N
∑

i=1

αiyi = 0,

0 ≤ αi ≤ c, i = 1, 2, . . . , N.

(3)

Moreover, the decision function of the classifier can be
represented as

f(x) = sgn

[

N
∑

i=1

αiyiK(xi, x) + b

]

.

For convenient computation here, let ai = αiyi, then (3) is
rewritten as

minimize
1

2

N
∑

i=1

N
∑

j=1

aiajK(xi, xj)−
N
∑

i=1

aiyi,

subject to
N
∑

i=1

ai = 0,

− c1i ≤ ai ≤ c2i , i = 1, 2, . . . , N,

(4)

where c1i = −c · max{0, 1 − yi}/2 and c2i = c · max{0, 1 +
yi}/2, for i = 1, 2, . . . , N .

Furthermore, problem (4) can be written as the following
compact form

minimize
1

2
aTQa− yT a,

subjuct to eTa = 0,

d ≤ a ≤ h,

(5)

where a = (a1, a2, ...., aN )T , y = (y1, y2, ...yN )T , e =
(1, 1, ...1)T ∈ R

N , the ij-th entry of matrix Q equals to
K(xi, xj), d = −c1, h = c2, with c1 = (c11, c

1
2, ..., c

1
N )T and

c2 = (c21, c
2
2, ..., c

2
N )T .

To solve problem (5), the discrete-time neural network
proposed in this paper is described as the following difference
equations

uk+1 = P (uk − g(uk))

−(I − P )(−g(uk) + β(Qg(uk)− y)), (6)

and its output equations are

ak = g(uk), (7)

where β is a positive constant, I is the identity matrix, P =
eeT /N , g : Rn → Ω is a projection operator defined by

g(u) = argmin
v∈Ω

‖u− v‖,

in which ‖ · ‖ is the Euclidean norm.
Remark 1: Compared with the recurrent neural network

proposed in [23] for SVM learning which has N +1 neorons,
the proposed neural network in (6) and (7) has lower model
complexity with N neurons. Moreover, compared with the
one-layer recurrent neural network with a discontinuous hard-
limiting activation function for SVM learning proposed in
[21], here the activation function described by a piecewise-
linear function is more convenient for implementation by the
discrete-time model.

In problem (5), the Ω is a box set, then the calculation of
the projection operator is straightforward and

g(ui) =

⎧

⎪

⎨

⎪

⎩

hi, ui > hi,

ui, di ≤ ui ≤ hi,

di, ui < di.

Lemma 1: [24] For the projection operator g(x), the fol-
lowing inequality holds

(u− g(u))T (g(u)− v) ≥ 0, ∀u ∈ R
n, v ∈ Ω.

Furthermore, according to Lemma 1, we have the following
result.

Lemma 2: For the projection operator g(x), the following
inequality holds

(u− v)T (g(u)− g(v)) ≥‖ g(u)− g(v) ‖2, ∀u, v ∈ R
n.

III. THEORETICAL ANALYSIS

In this section, to show the performance of the proposed
neural network for SVC, its optimality and convergence are
investigated in detail.

Definition 1: ū ∈ R
n is said to be an equilibrium point of

system (6) if

Pg(ū) + (I − P )(ū− g(ū) + β(Qg(ū)− y)) = 0.

From the definitions of P , it is easily to obtain the following
lemma.
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Lemma 3: For any a ∈ R
N , eTa = 0 if and only if Pa = 0,

where P is defined in (6).
Now, the optimality of the proposed neural network is

described as the following theorem.
Theorem 1: a∗ ∈ R

N is an optimal solution of problem (5)
if and only if there exists an equilibrium point u∗ ∈ R

N for
system (6) such that a∗ = g(u∗).

Proof: Assume ū to be an equilibrium point of system
(6), we have

P ā+ (I − P )(ū− ā+ β(Qā− y)) = 0, (8)

where ā = g(ū).
Multiplying the both sides of (8) with P , we have P ā = 0

and
(I − P )(ū− ā+ β(Qā− y)) = 0.

From Lemma 3, ā = g(ū) is a feasible solution of problem
(5).

For any feasible point a of problem (5), we have

(a− ā)T (I − P )(ū− ā+ β(Qā− y)) = 0.

Due to P ā = Pa = 0, it follows that

(a− ā)T (ū− ā+ β(Qā− y)) = 0.

According to Lemma 1, (a − ā)T (ā − ū) = (a −
g(ū))T (g(ū)− ū) ≥ 0. Then, it follows that β(a− ā)T (Qā−
y) = (a − ā)T (ā − ū) ≥ 0. Let f(a) = aTQa/2 − yTa,
which is convex. Then f(a) − f(ā) ≥ (a − ā)T∇f(ā) =
(a − ā)T (Qā − y) ≥ 0. Thus ā is an optimal solution of
problem (5).

Next, we prove that the opposite side of the theorem
is true. Assume a∗ to be an optimal solution of problem
(5). According to Karush-Kuhn-Tucker conditions [25] for
problem (5), there exist v∗ ∈ R and w∗ ∈ R

N such that

Qa∗ − y + ev∗ + w∗ = 0, (9)

eT a∗ = 0, (10)

a∗ = g(a∗ + βw∗), (11)

where β is a positive constant.
Let u∗ = a∗ + βw∗, then a∗ = g(u∗). It follows that

u∗ = g(u∗) + βw∗. (12)

From (9), w∗ = −(Qa∗ − y) − ev∗ and substituting it into
(12), we have

u∗ = g(u∗)− β(Qa∗ − y + ev∗). (13)

Multiplying the both sides of (13) with eT follows that

βv∗ = eT (g(u∗)− u∗ − β(Qa∗ − y))/n. (14)

Substituting (14) into (13) results that

(I − P )(u∗ − g(u∗) + β(Qa∗ − y)) = 0. (15)

According to (10) and Lemma 3, we have Pa∗ = 0;
i.e., Pg(u∗) = 0. Combining with (15), one gets that

Pg(u∗) + (I − P )(u∗ − g(u∗) + β(Qa∗ − y) = 0.

Thus u∗ is an equilibrium point of system (6).
Definition 2: The output vector of the neural network in (6)

and (7) is said to be globally convergent to the unique optimal
solution a∗ of problem (5) if, for any initial value u0 ∈ R

N ,

lim
k→∞

ak = a∗.

Now, we present the convergence of the proposed neural
network.

Theorem 2: For any initial value u0 ∈ R
N , the output

vector ak of the neural network in (6) and (7) is globally
convergent to the unique optimal solution if β < 2/‖Q‖.

Proof: According to Theorem 1, ā = g(ū) is an optimal
solution of problem (5), where ū is an equilibrium point of
system (6) which satisfies

ū = P (ū− ā)− (I − P )(−ā+ β(Qā− y)). (16)

By subtracting from the both sides of (6) and (16), it follows
that

uk+1 − ū = P (uk − ak − ū+ ā)

−(I − P )(−ak + βQak + ā− βQā),

where ak = g(uk).
Then, since P (I − P ) = 0, we have

‖uk+1 − ū‖2
= ‖P (uk − ak − ū+ ā)‖2

+‖(I − P )(−ak + βQak + ā− βQā)‖2.
Assume

J1 = ‖P (uk − ak − ū+ ā)‖2
and

J2 = ‖(I − P )(−ak + βQak + ā− βQā)‖2
≤ ‖ − ak + βQak + ā− βQā‖2.

On one hand, we have

J1 = ‖P (uk − ū)‖2 + ‖P (ak − ā)‖2
−2(uk − ū)TP (ak − ā)

= (uk − ū)T (P − I)(uk − ū)

+‖uk − ū‖2 + ‖P (ak − ā)‖2
−2(uk − ū)T (P − I)(ak − ā)

−2(uk − ū)T (ak − ā)

According to Lemma 2, (uk − ū)T (ak − ā) ≥ ‖ak − ā‖2,
then

J1 ≤ (uk − ū)T (P − I)(uk − ū) + ‖uk − ū‖2
+‖P (ak − ā)‖2 − 2(uk − ū)T (P − I)(ak − ā)

−2‖ak − ā‖2
= (uk − ū)T (P − I)(uk − ū) + ‖uk − ū‖2

+(ak − ā)T (P − I)(ak − ā)

−2(uk − ū)T (P − I)(ak − ā)− ‖ak − ā‖2.
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On the other hand, we have

‖(I − P )(uk − ū− ak + ā)‖2
= ‖(I − P )(uk − ū)‖2 + ‖(I − P )(ak − ā)‖2

−2(uk − ū)T (I − P )(ak − ā)

= −(uk − ū)T (P − I)(uk − ū)

−(ak − ā)T (P − I)(ak − ā)

+2(uk − ū)T (P − I)(ak − ā),

where the last equality holds due to (I − P )2 = I − P .
Then,

J1 ≤ ‖uk − ū‖2 − ‖(I − P )(uk − ū− ak + ā)‖2
−‖ak − ā‖2

≤ ‖uk − ū‖2 − ‖ak − ā‖2.
Moreover, it is easy to get that

J2 ≤ ‖βQak − ak − (βQā− ā)‖
≤ ‖βQ− I‖‖ak − ā‖.

Next, since Q is symmetric, we have

‖βQ− I‖ = max
λ

|βλ− 1|,
where λ is the eigenvalue of matrix Q. Since Q is positive
definite, we get that λ > 0. From β < 2/‖Q‖, it follows that

−1 < βλ− 1 ≤ β‖Q‖ − 1 < 1.

Then
max
λ

|βλ− 1| < 1.

From above analysis, we have

‖uk+1 − ū‖2 = J1 + J2

≤ ‖uk − ū‖2 − ‖ak − ā‖2
+max

λ
(βλ− 1)2‖ak − ā‖2.

Then,

‖uk+1−ū‖2 ≤ ‖uk−ū‖2−(1−max
λ

(βλ−1)2)‖ak−ā‖2. (17)

Consider the following Lyapunov function

V (u) = ‖u− ū‖2.
From (17), we get that

V (uk+1)− V (uk) ≤ −(1−max
λ

(βλ− 1)2)‖ak − ā‖2
≤ 0. (18)

For any initial point u0 ∈ R
N , if β < 2/‖Q‖, V (uk) is

non-increasing as k → ∞ and {uk} is bounded. Then there
exists an increasing sequence {km} with limm→∞ km = ∞
and a limit point ũ such that limm→∞ ukm = ũ. Thus ũ is a
ω-limit point of uk.

According to the LaSalle invariance principle for discrete-
time system [26] , uk will converge to M, the largest invariant
subset of the following set

E = {uk ∈ R
N : V (uk+1)− V (uk) = 0}.

Note that, from (18), if V (uk+1) − V (uk) = 0 and β <
2/‖Q‖, we have ak = ā; i.e., the output vector ak is globally
convergent to the unique optimal solution ā for any initial
value u0 ∈ R

N .

IV. SIMULATION RESULTS

In the section, to illustrate the performance of the proposed
neural network in (6) and (7) for SVC, we present the
simulation results on two benchmark problems.

Example 1: Consider the iris benchmark problem. The data
of the iris problem are characterized with four attributes (i.e.,
the petal length and width, setal length and width). The goal is
to classify the class of iris based on these four attributes. The
data set consist of 150 samples belonging to three classes, each
class has 50 samples. We choose the following polynomial
function

K(u, v) = (uT v + 1)p

as the kernel of the SVM. We set p = 2. Fig. 1 depicts
the transient behaviors of the proposed neural network with
random initial values for classes 1 and 2, from which we
can observe that the state variables are convergent to an
equilibrium point of system (5). The classification results
are shown in Fig. 2 to illustrate the good performance of
the proposed neural network with respect to the petal length
and petal width. Fig. 3 depicts the transient behaviors of the
proposed neural network with random initial values for classes
1 and 3, from which we can see that the state variables are
convergent to an equilibrium point. The classification results
are shown in Fig. 4 to illustrate the good performance of the
proposed neural network for the setal length and setal width.

0 500 1000 1500 2000
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Iterations (k)

u

Fig. 1. Transient behaviors of the neural network for classes 1 and 2 in
Example 1.

Example 2: Consider the ionosphere data set as the bench-
mark problem. The data is characterized with 34 attributes.
The data set consists of 351 samples belonging to two classes.
We choose the RBF function

K(u, v) = exp(−r‖u− v‖2), r > 0
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Fig. 2. Support vector classification results for classes 1 and 2 in Example
1.
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Fig. 3. Transient behaviors of the neural network for classes 1 and 3 in
Example 1.
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Fig. 4. Support vector classification results for classes 1 and 3 in Example
1.

as the kernel of the SVM. We set r = 0.1. Fig. 5 depicts
the transient behaviors of the proposed neural network with
random initial values. The classification results are shown in
Fig. 6 for the 1st and 2nd characters and Fig. 7 for the 10th
and 12th characters.

0 2000 4000 6000 8000 10000
−25

−20

−15
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0

5

10

15

20

25

Iterations (k)

u
Fig. 5. Transient behaviors of the neural network in Example 2.
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Fig. 6. Support vector classification results for the 1th and 2th characters in
Example 2.

V. CONCLUSIONS

This paper presents a discrete-time one-layer recurrent neu-
ral network for support vector classification learning. Com-
pared with the existing recurrent neural networks for SVC,
the proposed neural network has lower model complexity.
Moreover, the feasibility and optimality of the proposed neural
network are guaranteed by theoretical results. By using the
Lyapunov method, the neural network is proved to be efficient
for solving the SVC problems. Furthermore, simulation results
on two benchmark problems are given to illustrate the effec-
tiveness and characteristics of the proposed neural network.
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Fig. 7. Support vector classification results for the 10th and 12th characters
in Example 2.
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