
 
 

 

  

Abstract—This paper proposes a new locally adaptive 
boundary evolution algorithm for level set methods 
(LSM)-based novelty detection. The proposed approach consists 
of level set function construction, boundary evolution, and 
evolution termination. It utilises the exterior data points lying 
outside the decision boundary to effect the segments of the 
boundary that need to be locally evolved in order to make the 
boundary better fit the data distribution, so it can evolve 
boundary locally without requiring knowing explicitly the 
decision boundary. The experimental results demonstrate that 
the proposed approach can effectively detect novel events as 
compared to the reported LSM-based novelty detection method 
with global boundary evolution scheme and four representative 
novelty detection methods when there is an exacting error 
requirement on normal events. 

I. INTRODUCTION 
OVELTY detection refers to identifying unforeseen 
anomalies that deviate from normal behaviours. It can be 
described by a decision boundary around an expected 

fraction of the given normal data. Any unseen data point lying 
outside the boundary is considered abnormal. 

Novelty detection is especially important for safety-critical 
environments such as jet engines [1] where anomalies are rare 
and knowledge about novel conditions is unavailable. A 
number of commonly used novelty detection techniques have 
been reported such as those based on support vector machines 
(SVM), nearest neighbours (NN), clustering, and statistics. 
Recently, Ding et al. [2] proposed a LSM-based novelty 
detection approach in order to address some of the challenges 
experienced by the commonly used techniques. The authors’ 
approach uses some inherent features such as: 1) It can 
construct a nonlinear decision boundary directly in the input 
space using an implicit level set function (LSF); 2) The 
boundary can be evolved (shrunk/expanded) in order to 
tightly enclose the given data; 3) It can smooth and manage 
the boundary shape, e.g. boundary merging and splitting; and 
4) It does not need any assumptions on the given data 
distribution, hence a nonparametric approach. However, the 
approach has the following limitations: 1) The data points on 
the boundary and their associated normal vectors are required 
in order to identify the location of a given data point relative 
to the boundary, this involves an isosurface reconstruction 
which is still a challenging and ongoing research topic for 
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high dimensional data; and 2) The boundary evolution is 
global, i.e. all segments of the boundary have the same 
evolution direction and the same speed at each evolution 
iteration. As a result some segments of the boundary closely 
fit the nearby data points, whereas other segments may not. 

To remedy the above two limitations, this paper extends 
this work and proposes a novel algorithm that can identify the 
location of a given data point relative to the boundary using 
the sign of the LSF at that point rather than involving the 
isosurface reconstruction and can locally evolve the boundary 
according to the distribution of the exterior points lying 
outside the boundary in order to make the boundary shape 
better fit the given data distributions especially when there is 
an exacting error requirement on normal data. 

The remainder of the paper is organised as follows: Section 
II briefly reviews the recent related works. Section III 
presents the proposed locally adaptive LSM-based novelty 
detection approach. Section IV evaluates the proposed 
approach. Section V concludes the paper and discusses the 
potential extensions.  

II. RELATED WORK 
There have been a number of reviews of novelty detection 

methods from differing theoretical perspectives, e.g. statistics 
and neural networks, data mining, machine learning, and 
from different application domains such as intrusion 
detection for cyber-security, fraud detection for credit cards, 
image processing, health care, fault detection in 
safety-critical systems etc. [3,4,5,6,7]. Before presenting the 
proposed approach, we provide a brief review of the 
commonly used unsupervised novelty detection techniques 
that use normal data only, much like the learning process used 
in this paper. 

One technique is based on SVM which utilises a ‘kernel 
trick’ of mapping a nonlinear problem in the input space into 
a linear problem in a feature space. For example, one-class 
SVM (OCSVM) proposed by Schölkopf et al. constructs a 
hyper-plane to separate the normal data from the origin with 
maximum margin in a feature space [8]. Some researchers 
explored pre-processing methods before applying the 
OCSVM in order to improve the learning performance for big 
datasets, e.g. a data selection strategy in [9] , a dimension 
reduction tool in [10]. Additionally, Tax and Duin [11] 
proposed a support vector data description (SVDD) by 
finding a minimum volume hyper-sphere surrounding the 
normal data points in a feature space. Some improvements on 
SVDD have been developed to address such issues like 
over-fitting, computational time and memory requirements, 
e.g. [12,13]. SVM-based techniques have been applied in 
many domains, e.g. OCSVM applied to identifying 
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deterioration in emergency department patients [14], and 
SVDD applied to loudness scaling in hearing aid devices [15]. 
The weakness of the techniques is that, after the inverse 
mapping from the feature space, the decision boundary may 
not enclose the data points tightly in the input space [16]. 

The second technique is based on NN in which normal data 
are assumed to be lying near to their neighbours, whereas 
potential anomalies are far away from their neighbours. It is a 
very simple and effective method and it does not make any 
assumptions on the data distribution. However, it needs an 
appropriate distance threshold to measure a potential novelty 
and also it needs to store all the training data in order to 
further measure the dissimilarity with new unseen data. 
Recent work on NN-based novelty detection centres around: 
devising a more effective detection strategy [17], and 
reducing the size of stored data required while maintaining 
detection accuracy[18]. 

The third technique is based on clustering, which refers to 
the gathering of training data into some clusters. If a new 
unseen data point belongs to any of the clusters, then it is 
considered normal, otherwise it is considered abnormal. As 
this technique treats a complex type of data by simply 
plugging in a clustering algorithm, the performance of the 
technique is determined by the chosen method for capturing 
the clustered structure of the given data. Therefore, the 
distance or density measurement used by the clustering 
algorithm needs to be optimised and remains a challenge for 
this type of technique. Recent related works were reported 
such as [19,20]. 

The fourth technique models the data distributions of a 
given class using their statistical properties. The established 
model is then used to estimate whether the probability of test 
data belongs to such distributions or not. Gaussian mixture 
(GM) probabilistic distribution is often used in this category 
for some applications such as acoustic surveillance [21]. 
Additionally, Filippone and Sanguinetti [22] proposed an 
information theoretic approach for novelty detection. 
Benezeth et al. [23] estimated a statistical model from a 
normal behaviour video sequence, the abnormal behaviour 
can then be detected using low-level features whenever the 
observed pattern is unlikely under the normal activity model 
following a likelihood ratio test. In this category, parametric 
approaches assume a particular distribution of data and 
estimate parameters of the distribution from the normal data. 
However, these assumptions are not often true in real world 
applications and they need extensive a priori knowledge of 
the problem. While nonparametric approaches are more 
flexible and they do not require any assumptions, the 
performance is yet decided by the selection of the free 
parameters (e.g. smoothing bandwidth). 

Ding et al. [2] recently applied LSM to novelty detection in 
order to address some of the above challenges. Their level set 
boundary description (LSBD) method aims to construct a 
decision boundary that tightly encloses an expected fraction 
of the given normal data. The inherent strengths are that the 
boundary can be constructed directly in the input space and 
can be evolved to fit the data distribution; and the method 
does not need any assumptions on the given data. However, 
the weaknesses are that its implementation involves an 

isosurface reconstruction, and the boundary is evolved in 
terms of a global scheme rather than a locally adaptive 
scheme. To address those weaknesses, a new locally adaptive 
boundary evolution algorithm without the burden of 
isosurfacing is developed for novelty detection using LSM. 

III. LSM-BASED NOVELTY DETECTION WITH LOCAL 
BOUNDARY EVOLUTION 

The proposed approach consists of three components: LSF 
construction, boundary evolution, and evolution termination. 

A. LSF Construction 
LSM employ an implicit function, LSF, to represent a 

complicated boundary of co-dimension one with the zero 
level set (ZLS) of the function. The boundary can then be 
evolved using time-dependent partial differential equations 
that govern the dynamics of the boundary motion. Therefore, 
the first step of the approach is to construct a LSF. The 
Laplacian of kernel density estimations (KDE) on the given 
data is employed as [24] such that the KDE is 

Ԧሻݔሺܧܦܭ  ൌ ଵே௛೏ ෍ ܭ ቀ௫ԦିxiሬሬԦఙ ቁே
௜ୀଵ  (1) 

where ݔԦ ൌ ሼݔଵሬሬሬԦ, ,ଶሬሬሬሬԦݔ … , ,iሬሬԦݔ … ,  ேሬሬሬሬԦሽ is a dataset with N points inݔ
d-dimension, ݔiሬሬԦ  is the ith data vector  ሾݔ௜ଵ, ,௜ଶݔ … , ௜ௗሿԢݔ , K 
represents the kernel function, σ is the kernel bandwidth. The 
Gaussian kernel is commonly used because of its smooth 
density estimation and only σ needs to be optimised. So 

ܭ  ቀ௫Ԧି௫iሬሬሬԦఙ ቁ ൌ ଵሺଶగሻ೏/మୣ୶୮ቆିฮሬೣሬԦషxiሬሬሬԦฮమమ഑మ ቇ (2) 

The Laplacian operation, which is an isotropic operation of 
the second spatial derivative, is then employed to obtain the 
ZLS of the implicit LSF (φ) as the initial boundary. Hence for 
the Gaussian kernel, 

 ߮ ൌ ෍ ԡ௫ԦିxiሬሬԦԡమ ିఙమேఙరశ೏ሺଶగሻ೏/మ
ே

௜ୀଵ expሺെԡ௫ԦିxiሬሬԦԡమଶఙమ ሻ (3) 

Fig. 1 illustrates a LSF constructed using (3) on a 2-D 
Banana shaped dataset. The blue dots mark the given data 
points. The meshed surface is the LSF built on a grid in the 
given space occupied by the given data. The black boundary

 
Fig. 1. The LSF on a 2-D Banana shaped dataset. 
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(two closed curves) is composed of the ZLS of φ. From the 
projected contours in the x-y plane and the right colour bar, φ 
satisfies: φ = 0 defines the boundary; φ < 0 at the points lying 
inside the boundary (i.e. interior points); and φ > 0 at the 
points outside the boundary (i.e. exterior points). Therefore, 
for any given data point, its location relative to the boundary 
can be identified according to the sign of the value of φ at that 
point. This identification method is employed in this paper. It 
differs from the approach in [2] where the boundary points 
and the corresponding normal vectors were required. 

B. Boundary Evolution 
The boundary evolution is represented with the following 

level set equation (LSE) [25] 

ݐ߲߲߮  ൅ ܽሺݔԦ, ,Ԧݔሺ߮׏|ሻݐ |ሻݐ ൌ 0 (4) 

where ߲߮/߲ݐ denotes the partial derivative of φ with respect 
to the time t. |߮׏ሺݔԦ,  .׏ ሻ| is the magnitude of the gradientݐ
The evolution speed term a is a function of the space ݔԦ and 
the time t, and it can be of either sign. The surface normal 
vectors point outwards, hence, a > 0 indicates the boundary 
expands in the outward normal direction; a < 0 indicates the 
boundary shrinks in the opposite direction; a = 0 makes (4) be 
a trivial ߲߮/߲ݐ ൌ 0, i.e. ϕ is constant for all time. The bigger 
the absolute value of a the faster the boundary evolution and 
vice versa. 

The numerical solution of (4) can be obtained by a 
Hamilton-Jacobi equation. It is computed on a uniform 
Cartesian grid. Considering a uniform grid (i1Δ, i2Δ, …, idΔ) 
for d dimensional problems, where i1, i2, …,id are integers, Δ 
is the spatial subinterval (spatial step size). The time variable t 
is discretized to kΔt, where k is an integer and Δt is the time 
interval (the temporal step size). Denoting (i1, i2, …,id) by i, 
the data sample of ߮ሺݔԦ,  ሻ at the grid point (i1Δ, i2Δ, …, idΔ)ݐ
at time kΔt is denoted by ߮௜௞. Let nj=(0, …, 0, 1, 0, …0) is the 
d elements vector whose jth element is 1, while the other 
elements are 0. Consequently, the forward difference operator 
in the jth spatial dimension, ܦ௝ା, is defined by 

௝ା߮௜௞ܦ  ൌ ߮௜ା௡ೕ௞ െ ߮௜௞∆  (5) 

and the backward difference operator in the jth spatial 
dimension, ܦ௝ି , is defined by 

௝ିܦ  ߮௜௞ ൌ ߮௜௞ െ ߮௜ି௡ೕ௞∆  (6) 

For LSE (4), a first order accurate upwind scheme is given by ߮௜௞ାଵ െ ߮௜௞∆ݐ ൌ max൫ܽ௜௞, 0൯׏ା ൅  min൫ܽ௜௞, 0൯(7) ି׏ 

where ׏ାൌ ሾmaxሺܦଵି , 0ሻ ൅ minሺܦଵା, 0ሻ ൅ ڮ ൅ maxሺܦௗି , 0ሻ൅ minሺܦௗା, 0ሻሿଵ ଶൗ ൌି׏  ሾmaxሺܦଵା, 0ሻ ൅ minሺܦଵି , 0ሻ ൅ ڮ ൅ maxሺܦௗା, 0ሻ൅ minሺܦௗି , 0ሻሿଵ ଶൗ  

(8) 

More detailed discussion of the Hamilton-Jacobi equation 
and numerical discretization for motion in the normal 
direction are provided by Osher and Fedkiw [25]. According 
to the above analyses on LSE, the boundary evolution 
direction and speed depend on the evolution term a. Ding et 
al. [2] set a to a scalar at each evolution iteration, i.e. the 
boundary is globally expanded or shrunk at a speed a no 
matter which boundary segment it is. By contrast, we propose 
a locally adaptive boundary evolution scheme where the 
evolution direction and speed vary from different boundary 
segments at each evolution iteration. 

C. Exterior Points-Based Local Evolution Speed Adaptation 
This section graphically illustrates the proposed exterior 

points-based locally adaptive boundary description 
(EP-LABD) algorithm. 

The ‘banana’ dataset including 1462 data points, shown in 
Fig. 1, is used again to illustrate the EP-LABD with a 2-D plot 
as shown in Fig. 2. The exterior points can be singled out as 
the sign of ϕ at those points is positive, and they are marked 
with small red circles. The resulting 45 exterior points means 
the current false negative rate (FNr, the fraction of normal 
data wrongly considered abnormal) is 0.0308. Suppose the 
expected FNr (denoted by λ) is set to 0.01, i.e. 1% of the 
normal data is tolerated to be left outside the boundary, 
therefore, λ1=0.0308 and λ1>λ indicate that the boundary 
needs to be expanded in order to enclose more data points. 

 
Fig. 2. The initial boundary with FNr=0.0308. 

 
Fig. 3. An illustration for the EP-LABD algorithm. 

♣ 
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Observing Fig. 2, it is not appropriate to expand the whole 
boundary. The boundary needs to be locally evolved, i.e. the 
segments, delimited by the three pairs of curly braces, that 
have nearby exterior points need to be expanded, while the 
remaining segments may be shrunk. As the LSF is maintained 
on a grid, the local boundary evolution can then be indirectly 
realised via local evolving the grid areas that cover those 
nearby exterior points. A zoomed part of Fig. 2 is shown in 
Fig. 3 where the grid interval is set to 0.2 for clarity but maybe 
much smaller in practice. The curve is a section of the 
boundary. The circled point is an exterior point, and its 
nearest grid point is marked with a red ‘♣’ which is covered 
by an area defined by eight black ‘×’. Without loss of 
generality, a k-range nearest neighbours description is 
defined to cover an exterior data point using (2×k+1)2 grid 
points, e.g. k = 1 in Fig. 3. 

Thus, the signs of evolution speed term a at those k-range 
nearest grid points are set to be positive (which means an 
expanding evolution), while the signs of a at the remaining 
grid points are negative (which means a shrinking evolution). 
Consequently, the expansion at those nine grid points will 
result in the expansion of the nearest segment of the boundary 
towards that circled exterior point. While the remaining 
segments of the boundary are also shrunk because of the 
shrinking evolution at the remaining grid points. A small 
offset can attach on the initial a setting for a quick evolution, 
e.g. when different exterior points have the same nearby gird 
point, a positive offset can make the corresponding boundary 
segment quickly expand, approaching to those exterior 
points. Also, a negative offset causes segment shrinking 
quickly. Therefore, the EP-LABD can locally evolve a 
boundary segment via identifying its nearby exterior data 
points without knowing all the boundary points. 

D. Evolution Termination Condition 
The boundary evolution termination is determined by λ, 

e.g., for a given application if 99% of the normal data points 
are expected to be classified as normal, then λ is set to 0.01. If 
the FNr on training data in current step is λi, and λi <λ, then the 
boundary will be shrunk in the next step. Otherwise, if λi >λ, 
the boundary will be expanded in the next step. Hence, the 
ideal termination condition will be λi=λ. However, it may 
never be met in practice due to the finite data size and 
computational error. For this reason, the evolution process 
can be terminated when λi is close to λ. Therefore, a practical 
termination condition will be λi∈[λ-ε, λ+ε], where ε is a small 
positive scalar. 

In practice, the absolute value of a is initialised to 0.25 and 
ε=0.001 respectively. Suppose the current boundary is 
shrinking with a=-0.25, and if λi < λ-ε and λi+1 > λ+ε, then a 
will be adjusted to 0.125 (i.e. a = a/(-2)) which means the 
boundary will expand at a slower speed a=0.125 in the next 
evolution step in order to make λi+2 fall into the interval [λ-ε, 
λ+ε]. If the final adjusted a does not terminate the evolution, 
then ε will be slightly increased in order to enlarge the 
termination interval, e.g., ε=ε×1.1. Similarly, assuming that 
the current boundary is expanding with a=0.25, and if λi > λ+ε 
and λi+1 < λ-ε, then the surface will shrink at a slower speed in 
the next step (still applying a=a/(-2)), and again the ε value 

may also change in order to enlarge the interval range if the 
termination condition is not met. Additionally, when λi+1 = λi, 
the boundary will evolve with a quicker speed a=a×2 in the 
next evolution step. Therefore the values of ε and a are 
dynamically changed based on the data distribution during the 
boundary evolution stage. 

E. The Algorithm Description 
The proposed ‘Algorithm 1: EP-LABD’ includes the 

training and testing processes. Three modules are used in the 
training process. Module 1 constructs a LSF according to 
Section III (A). Module 2 calculates the current FNr using the 
sign of LSF at each data point. The decision boundary is 
locally evolved in Module 3 where it includes an evolution 
speed term initialisation and a loop for evolution. Within the 
loop, the evolution direction and speed for different segments 
of the boundary are first defined by invoking an ‘Algorithm 2: 
Speed-Adaptation’ that consists of the following four steps: 
1) Finding the exterior points (otps) according to the sign of 
the LSF at those points being positive; 2) Finding the nearest 
grid points to otps, i.e. grid_otps. Each point of grid_otps is 
the centre of an area covering the corresponding exterior 
point; 3) Identifying the areas centred by grid_otps. It finds 
the k-range nearest neighbour grid points to each point of 
grid_otps, i.e. k_grid_otps; and 4) Local adjustment for the 
direction and the speed of a. For those grid points of 
k_grid_otps, the corresponding sign of a is set to be positive, 
and the speed might be attached with a positive increment 
(offset) in order to quickly expand such a segment that has 
different nearby grid points (i.e. the boundary segments 
evolve quicker at a dense area than at a sparse area of the 
nearby exterior points). For the remaining grid points except 
k_grid_otps, the sign of a is set to be negative, and the 
evolution speed might also be attached with a negative 
increment (-offset) in order to make the remaining segments 
of the boundary quickly shrink towards those interior points. 

As a is locally adaptive depending on the specific grid 
points that further depend on the exterior data points, this 
local boundary adaptation is fully data-driven, which is a 
distinct feature of the proposed approach. After the 
adjustment of a, the decision boundary is then evolved using 
the adjusted a by applying the LSE (4). As the evolution 
direction and speed may be different from different grid 
points, the proposed EP-LABD applies both (either) 
expanding and (or) shrinking locally in each evolution 
iteration according to the nearest exterior points to the 
evolved segments. Thirdly, due to the local evolution, the 
evolved boundary may be very rough. Therefore, the 
boundary needs to be smoothed to avoid noise-sensitivity. 
The convolution operation Gσ∗φ is used as in [26], where Gσ 
is a Gaussian kernel with a standard deviation σ. Finally, 
Module 2 is applied again to the training data using the 
smoothed φ in order to calculate the current FNr and check if 
the evolution termination is satisfied. The inherent 
computation of the testing process uses the sign of the LSF at 
the test data to calculate the FNr and FPr (the fraction of 
abnormal data incorrectly considered as normal) for 
performance evaluation. 
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Applying EP-LABD to the ‘banana’ dataset, one randomly 

selected intermediate status (λj=0.0226) and the final status 
(λi=0.0109, as λ=0.01) of the evolved boundary are shown in 
Fig. 4 (a) and (b), where the dotted and solid boundaries 
illustrate the initial and the evolved boundaries, respectively. 

Clearly, relative to the initial boundary, some segments of the 
evolved boundary were expanded and some were shrunk. 
Using the final evolved boundary, the results on test data 
(1462 unseen normal and 2376 abnormal points) are also 
shown in Fig. 5, with (a) FNr=0.0150 because of 22 exterior 
points, and (b) FPr=0.3864, i.e. 61.36% of the abnormal data 
(marked with ‘+’) successfully detected. 

IV. EXPERIMENT SETUP 
Preliminary experiments have been carried out to evaluate 

the proposed EP-LABD approach comparing with the LSBD 
proposed in [2] and four representative novelty detection 
methods including OCSVM, k-NN, k-means, and GM. One 
synthetic dataset (2-D ‘banana’) as in [2] and two real datasets 
(3-D ‘vowel’ and 10-D ‘abalone’) are derived from the UCI 
machine learning repository. The datasets detailed in Table I 
are randomly partitioned into 10 folds for cross validation and 
parameter tuning such as the bandwidth within OCSVM, the 
number of nearest neighbours with k-NN, the number of 
clusters within k-means, the number of Gaussian components 
within GM, and the kernel width within LSBD and 
EP-LABD.  

From the illustration in Fig. 4, locally adaptive boundary 
evolution is needed when there is an exacting error 
requirement on normal data. We hence set five lowering 
values of λ as 0.05, 0.04, 0.03, 0.02, and 0.01 to investigate 
the ROC curves of all the six detectors on the selected 
datasets. The experimental results are averaged over 10 folds 
for each parameter tuning. Therefore, the combination of 
these settings requires the training of about 18,000 novelty 
detectors (i.e. 6 novelty detection methods, 3 datasets, 10 
partitions of each dataset, about 20 grid search values for each 
model parameter, and 5 training thresholds). The resulting 
ROC curves are shown in Fig. 6 from which the following 
observations can be made: 

Results of the LSBD method in [2] are available only on 
2-D ‘banana’ and 3-D ‘vowel’ datasets, and are not available 
on the higher dimensional ‘abalone’ dataset as an effective 
isosurface reconstruction for data with higher than three 
dimensions is currently not available. The EP-LABD 
approach clearly produced a higher ROC curve than the other 
five methods on each dataset. It indicates that, for a given TPr 
(1-FNr), the EP-LABD obtained a lower FPr than the LSBD 
and other four representative methods. Therefore, the 
proposed locally adaptive boundary evolution scheme 
obtained a better performance in terms of the ROC metric as 
compared to the global boundary evolution scheme and four 
representative novelty detection methods when a very high 
classification accuracy is required for normal events. 

TABLE I 
THE SELECTED DATASETS 

Datasets Each Fold 
Name Points Dim Training(normal) Test (normal + novelty) 
banana 5300 2 1462 3838 (1462+2376) 
vowel 871 3 246 625 (246+379) 
abalone 4177 10 1266 2911 (141+2770) 

Algorithm 2: Speed-Adaptation 
 Input: φ, training, aValue, g 
 a = aValue 
 Step 1: Find the exterior points, otps 
ݏ݌ݐ݋  ൌ ሼݔiሬሬԦ|߮ሺݔiሬሬԦሻ ൐ 0ሽ 
 Step 2: Find the nearest grid points to otps 
 for each ݔiሬሬԦ ∊ otps 
ݏ݌ݐ݋_݀݅ݎ݃  ൌ ሼݕiሬሬሬԦ א ݃|minሺԡݔiሬሬԦ െ  iሬሬሬԦԡሻሽݕ
 end for 
 Step 3: Find k-range nearest grid points to grid_otps 
 for each ݕiሬሬሬԦ א  ݏ݌ݐ݋_݀݅ݎ݃
ݏ݌ݐ݋_݀݅ݎ݃_݇  ൌ ሼ ݕiሬሬሬԦ ט  ݆ ൈ ,݀݅ݎ݃_ݐ݅݊ݑ ݆ ൌ 0,1, … , ݇ ሽ
 end for 
 Step 4: Locally adjust evolution direction and speed 
 for each ݕiሬሬሬԦ א ݃ 
 if ݕiሬሬሬԦ א ܽ then ݏ݌ݐ݋_݀݅ݎ݃_݇ ൌ ܽሺݕiሬሬሬԦሻ ൅  ݐ݁ݏ݂݂݋
                                else ܽ ൌ െܽሺݕiሬሬሬԦሻ െ  ݐ݁ݏ݂݂݋
 end for 
 Output: a 

Algorithm 1: EP-LABD 
Training Process 

 Input: given normal data training 
Ntr – number of training points 

 Module 1: LSF construction 
 Initialise a grid g 
 for each ݔiሬሬԦ ∊ training 
 φ0 = apply Equation (3) 
 end for 
 φ = φ0 
 Module 2: Current FNr (λi) computation 
 s(1) = 0 
 for each ݔiሬሬԦ ∊ training 
 if ߮ሺݔiሬሬԦሻ ൐ 0 then s(1) = s(1) + 1 
 end for 
:௜ߣ  ൌ /ሺ1ሻݏ ௧ܰ௥  
 Module 3: Locally adaptive boundary evolution 
 Initialise aValue 
 while (ߣ௜ ב ሾߣ െ ,ߝ ߣ ൅  (ሿߝ
 a = Speed-Adaptation (φ, training, aValue, g) 
 φ = evolve current φ applying LSE (4) with a 
 φ = Gσ ∗ φ 
 λi = apply Module 2 to training using φ 
 end while 
 Output: φ 
 
Testing Process 

 
Input: φ, test data including normal and abnormal samples 

Nnormal – number of normal points in test data 
Nabnormal – number of abnormal points in test data 

 s(1) = 0 and s(2) = 0 
 for each ݔiሬሬԦ ∊ test.normal 
 if ߮ሺݔiሬሬԦሻ ൐ 0 then s(1) = s(1) + 1 
 end for 
ݎܰܨ  ൌ /ሺ1ሻݏ ௡ܰ௢௥௠௔௟  
 for each ݔiሬሬԦ ∊ test.abnormal 
 if ߮ሺݔiሬሬԦሻ ൑ 0 then s(2) = s(2) + 1 
 end for 

ݎܲܨ  ൌ /ሺ2ሻݏ ௔ܰ௕௡௢௥௠௔௟  
Output: FNr, FPr 
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(a) 

 
(b) 

Fig. 4. Two statuses of the boundary evolved by EP-LABD where the FNr 
is 0.0226 in (a) and 0.0109 in (b). 

 
(a) 

 
(b) 

Fig. 5. The testing results where (a) shows FNr=0.0150 and (b) shows 
FPr=0.3864. 

 

 

Fig. 6. ROC curves of six novelty detectors with the three datasets. 

 
V. CONCLUSION 

This paper proposed a locally adaptive boundary evolution 
algorithm for LSM-based novelty detection. The algorithm, 
EP-LABD, utilised the exterior points to indirectly locally 
evolve the nearby segments of the boundary. This results in 
an adaptive boundary that better fits the data distribution than 
the reported LSBD-based globally evolved boundary. The 

EP-LABD is practically applicable to any dimensional data, 
while the LSBD suffers from the requirement of isosurface 
reconstruction which is currently impracticable for data with 
higher than three dimensions. The experimental results 
demonstrated that the EP-LABD approach obtained higher 
novelty detection accuracy than the LSBD and four 
representative methods under an exacting FNr requirement. 
Future work will focus on the evaluation on more datasets. 
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