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Abstract—A Brain Computer Interface (BCI) is a 
communication system designed to allow the users to directly 
interact with external devices using their minds without using 
any muscle activities. P300, a component of Event Related 
Potentials (ERPs), is a widely used feature component of EEG 
signal for BCI applications. However, single trial analysis is 
difficult since ERPs such as P300 signals have a very low signal 
to noise ratio, which bring down the communication rate. And 
the numerous number of channels needed to record EEG 
prevents the popularization of BCI applications due to the 
complexity and high cost of the system. In this paper, a new 
efficient method, extreme learning machine (ELM), is 
presented to detect P300 components using a single channel 
data from a visual stimuli Oddball paradigm experiment. It 
reaches an average accuracy above 85% and performs better 
than BPNN and SVM. 

Keywords—single channel EEG; ERP; P300; extreme 
learning machine (ELM) 

I. INTRODUCTION  
The electroencephalogram (EEG) is defined as recording 

of the brain’s electrical activity which usually can be 
recorded by electrodes from the surface of the scalp. Event-
related potentials (ERPs), which have wide usage in research 
purposes and clinical diagnostic, are one of important EEG, 
and psycho-physiological correlates of neuro-cognitive 
functions that reflect the responses of the brain to the 
external or internal environment of the organism changes 
(events). Because of the high temporal resolution, low cost 
and ease of use (compared with the other acquisition 
techniques, such as fMRI, EMG), EEG signals have been 
used widely in brain computer interface (BCI), a 
communication system designed to allow the users directly 
interact with external environment that does not depend on 
the brain's normal output pathways of peripheral nerves and 
muscles [1]. So far, Many BCI systems have been introduced 
with their own application, among which many are Event 
Related Potentials (ERPs) based. P300 speller is one of the 
most common BCI systems, which was introduced by 

Farwell and Donchin and attracts a lot of attention [2]. It uses 
a positive evoked potential called P300, a robust positive 
ERP component which appears after a visual or auditory 
stimulus with a latency of about 300 milliseconds and is 
often used as an indicator for target task in an oddball 
paradigm [3]. 

However, there are still some problems which should be 
addressed in these systems. Since ERPs such as P300 signals 
have a very low Signal to Noise Ratio (SNR), it is a common 
method that synchronously averaging over many trials, 
which effectively diminishes the random noise. But this is 
not a practical method in BCI applications because it is 
pretty slow and meanwhile reduces the communication rate 
greatly. Many investigators tried to overcome this problem 
by reducing the number of averaged trials or going toward 
the single trial detection [4]-[6]. Nevertheless, the efficiency 
of single trial P300 detection still needs to be improved. 
Another major problem in many BCI systems is the large 
number of channels needed to record EEG signals in order to 
have a reliable system, which prevents the popularization of 
BCI applications since multi-channels recording will cause 
complexity of the system and high cost [7]. It is of great help 
to reduce the record channels.  

Currently, Back Propagation Neural Network (BPNN) 
and Support vector machine (SVM) are the most succeeded 
and commonly used algorithms to classify the EEG data to 
detect P300 component. These two method need to adjust 
learning parameters iteratively. Extreme Learning Machine 
(ELM) is a new efficient tuning-free algorithm to train 
single-hidden-layer feedforward neural networks (SLFNs), 
proposed by Huang [8]. This new method has been used in 
many fields, such as image processing and neural 
information processing [9]-[12]. Usually, ELM shows 
similar or better results than SVM, and needs much less time 
to train networks than BPNN[13], [14]. 

In this paper, we tried to detect P300 over single trial 
using just one single channel to record EEG data. ELM was 
used to process the data from a visual stimuli oddball 
paradigm experiment. Channel and parameters selection 
were studied in detail. And the performance of ELM is This work was supported by the graduate starting seed fund of
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compared with BPNN and SVM in terms of training time 
and testing classification accuracy. 

II. EXPERIMENTAL SETUP 

A. Experiment in Oddball Paradigm 
To evoke P300, a visual stimuli Oddball paradigm was 

implemented, in which the participants saw a randomized  
Bernoulli series of letter “X” and “O”. In this oddball task, 
letter “X” was presented as the task-irrelevant standard 
stimulus with a probability of 80% (240 out of all 300 trials), 
whereas the letter “O” was the target stimulus with a 
probability of 20% (60 out of all 300 trials). All the stimuli 
were located in the center of a black background, with 
Courier New font, white color, bold and 40 pt size. We used 
“+” as the fixation, with the same configuration as the 
stimuli except for the size (34 pt). The letters subtended 0.8 
degrees visual angle in height and width. E-Prime 2.0 was 
used for stimulus presentation and response collection. 

During the experiment, the subjects were seated on a 
comfortable chair in front of a monitor which was used for 
commands and stimuli presentation. An SRBox was used to 
input subjects’ response. The schema of the experiment is 
illustrated in Fig. 1. In each trial, after a fixation period of 
800-1200ms, the stimulus was presented for 1000ms 
followed by a 1000ms black screen, repeatedly. 

 
Fig. 1. Schema of the experiment. For presentation purposes the fixation 

cross and black screen are slightly faded in this figure. However, in 
the real experiments they all were black background. 

To make the subjects getting familiar with the 
experiments, we had a practice part in the beginning of the 
experiment, during which eight standard stimuli “X” and two 
target stimuli “O” were presented randomly. Then it went to 
the 300 recording trials and the subjects would have a rest 
time as long as they want after every 30 trials. The subjects 
had to put one hand on the SRBox during the experiment and 
press a button when the target stimulus “O” appeared. They 
were asked to keep their eyes fixed on the fixation cross “+”. 

B. Data Acquisition 
The recording room was shielded with a Faraday cage. 

The EEG signals were acquired at 200Hz, filtered between 

0.3 and 100Hz using Net Amps 300 (EGI product) and saved 
to a computer for off-line processing. A GSN (Geodesic 
sensor net) with 64 sensors was used (referenced at Cz, 
showed in Fig. 1) and the Impedance of all electrodes was 
kept below 50 . 

Data were collected from nine healthy right-handed 
undergraduate or graduate subjects (seven male, two female; 
age:23±3years) with normal or corrected to normal vision. 
One male subject’s data were excluded because of too many 
artifacts. The eight subjects are named as S1, S2 to S8 in the 
following text. All the processing was performed in Matlab 
and some figures were depicted by Net Station. 

III. DATA PROCESSING 

A. Extreme Learning Machine 
Unlike Neural networks (NN) and support vector 

machines (SVM), which need to adjust learning parameters 
iteratively, ELM is a tuning-free algorithm by randomly 
generating the input weights and the hidden bias before 
seeing the trainning data. And the hidden node parameters 
are not only independent of trainning data but also of each 
other. 

 
Fig. 2. Single-hidden-layer feedforward neural networks (SLFNs). ELM is 

a new efficient learning method to train the SLFNs by generating the 
input weights and the hidden bias randomly and computing a set of 
linear equations. 

First step of ELM is making a SLFN which has L  
hidden neurons and randomly generate the input weights and 
the hidden bias ( , ), 1, ,i ia b i L= . Assume we have N train 
data (x , t ), 1, ,j j j N= , where 1 2x [ , , , ]j j j T n

j nx x x R= ∈  
is input vector and its target output value is 

1 2t [ , , , ]j j j T m
j mt t t R= ∈ . Trainning the SLFN (showed in 

Fig. 2) to learn the map between the input and output 
patterns is mathmaticaly to solve the following set of 
equations: 

 ( )
1

(x ) , , x t ; 1,...,
L

L j i i i j j
i

f G a b j Nβ
=

= = =∑ . (1) 

where m
1 2=[ , , , ]i i i T

i m Rβ β β β ∈   are the output weights 
from the hidden unit to the output unit. And 

( ), , x ( x )i i j i j iG a b g a b= +  where g  denotes the nonlinear 
activitation function of the hidden node. It can be the 
sigmoid, sine, hardlim, tribas or radial function and choosed 
before training. The problem becomes a set of linear 
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equations once the output of the hidden units is fixed and can 
be solved by minimum square error estimation. Equation (1) 
can be written in matrix form as: H =Tβ .  

 ( ) ( )

( ) ( )
1 1 1 1 1 1

1 1

, , x , , x t
H = T=

, , x , , x t

T T
L L

T T
N L L N L NL m N mN L

G a b G a b

G a b G a b

β
β

β
× ××

= ， ，  (2) 

H  is called the hidden layer output matrix of the network 
and T  is the target matrix of output layer. After calculate the 
output matrix of the hidden layer H , We can solving this 
linear system by computing the least-squares estimation 
ˆ H Tβ += , where H+  is the moore-penrose inverse of H . 

The ELM training algorithm is summarized in Table I. 

TABLE I.  ELM TRAINNING ALGORITHM 

 inputs parameters : Number of Hidden Neurons L , 
activation function, train data (x , t ), 1, ,j j j N= . 

1) Generate the hidden node parameters ( , ), 1, ,i ia b i L=  
randomly; 

2) Calculate the hidden layer output matrix H ; 

3) Calculate the output weights ˆ H Tβ +=  ; 

B. Data preprocessing 
After band pass filtering with a range of 1-15Hz, the 

EEG was partly denoised. Then it was segmented by a time 
window of [ 100,700)−  ms, 160 samples, post-stimulus to 
extract all 300 trials waveforms, which were classified in two 
categories (240 Non-target, 60 Target). Baseline of each 
segment was corrected by subtracting mean of 100-0 ms 
prior to stimulus onset. 

 
Fig. 3. One trial marked as “ARTIFACTS” at 64 channels. This figure 

shows eye blink artifacts from one subject.  

All the trials whose amplitude (max-min) exceeding 140 
μV were suspicious for eye blink artifacts, eye movement 
artifacts or EMG related artifacts and marked as 

“ARTIFACTS” for further analysis. The others were marked 
as “CLEAN”, which remains approximately 88–98% of 
trials across participants. Fig. 3 shows one trial segment 
marked as “Artifacts”. 

C. Channel selection 
One important part of this research is selecting a best 

recording channel, which performs good detection accuracy 
and suits to different individuals. First, we calculated the 
time-domain grand average ERPs over all 8 subjects. Fig. 4 
depicts grand average ERPs at all 64 channels from data 
“CLEAN” after the preprocessing. The blue waveforms are 
ERPs of task-irrelevant standard stimuli “X” whereas the red 
ones are ERPs of target stimuli “O”. The P300 components 
of ERPs from target tasks were apparently enhanced than 
those from the non-target ones. And the topology maps 
showed on the top left corner of the Fig.4 present the voltage 
at the time of 349ms after stimulus when the ERPs went 
around the highest P3. The right one is for the target stimuli 
and the left one is for standard stimuli). The voltages at the 
occipital and parietal region for target tasks were much 
higher than those for the non-target ones. Here we chose 15 
sensors on the occipital and parietal region to be studied as 
recording channels, because signals from those on the frontal 
field of scalp were apparently interfered by eye artifacts 
(showed in Fig. 3). These channels were CH26, CH28, 
CH31, CH32, CH33, CH34, CH35, CH36, CH37, CH38, 
CH39, CH40, CH42, CH43 and CH46. 

 
Fig. 4. Grand average ERPs at all 64 channels from data “CLEAN”. 

Average ERPs were calculated over all 8 subjects. Red lines and blue 
lines show targets and non-targets respectively. And the topology 
maps show the ERPs voltage at time of 349ms post-stimulus (right 
one for the target stimuli, left one for standard stimuli). 

Then the final channel was selected according to the 
accuracy of classification. The single trial EEG data from 
each single channel were classified using extreme learning 
machine to detect whether P300 component were contained. 
The influence of artifacts on single channel P300 detection 
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was also studied in this part by comparing the results of 
classifying the “CLEAN” dataset and the “ALL” dataset 
(which contained “CLEAN” and “ARTIFACTS” trials). In 
this binary classification problem, target and standard stimuli 
were labeled to 1 and 0 respectively. The ratio of training set 
to testing set was 1:1. In the ELM-SLFNs, according to prior 
test, we used 3000 hidden neurons and chose sigmoid 
function as the activation function (which will be studied in 
detail in the next section). 

After training the SLFN using the training set, the EEG 
data from testing set were classified and testing accuracy was 
calculated. All the testing accuracies in this paper were over 
30 runs averagely. Fig. 5 shows the testing accuracies of the 
every channel from each subject. “CLEAN” accuracies are 
marked with small crosses “x” whereas dashed lines depict 
the “ALL” accuracies in plot style. The red big crosses “x” 
and bold solid line represent the averages of the “CLEAN” 
and “ALL” accuracies over all subjects. From the results 
between “CLEAN” and “ALL” data, which showed similar 
accuracies, we found little difference was caused by the 
artifacts through all subjects. This showed the robust of the 
method, so the next processing was on the “ALL” data. 
CH39 (O2) performed best average accuracy of “CLEAN” 
dataset at 86.30%. Top five average accuracies of the “ALL” 
dataset were showed by CH33, CH35 (O1), CH36, CH37 
(Oz) and CH39 (O2) at 86.08%, 86.12%, 85.90%, 
85.73%and 85.89%. CH35 was selected as the recording 
sensor because not only the highest accuracy in average but 
also more distinction between two tasks it showed in the 
topology map in Fig.4 and more robust efficiencies through 
different individuals. 

 

Fig. 5. Testing accuracy of each channel using ELM. The crosses “x” and 
the dashed lines show the accuracy of “CLEAN” data and “ALL” 
data (CLEAN and ARTIFACTS) at each channel from each subject. 
And the red big “x” and solid bold line shows the average of the 
“CLEAN” and “ALL” accuracy over all subjects. 

D. ELM Parameter Selection 
For classification single trial (160 samples) P300s, the 

sigmoid and hardlim function were best which showed 
similar high accuracy around 85% when the number of 
hidden neurons was 3000, whereas triangular basis and radial 
basis function performed around 72%, and sine function did 

worst around 50%. The activation function was set as 
sigmoid after comparing. 

Another important parameter, number of hidden neurons, 
was selected according to both testing accuracy and time 
required by raining and testing. Empirically, number of 
hidden neurons should be larger than number of input 
neurons. Here we chose numbers from 200 to 4000 with the 
step of 10 to study. The Fig. 6a depicts the average testing 
accuracy over 30 runs against different number of hidden 
neurons. The increase of validation accuracy was significant 
until the number of hidden neurons in the SLFN was over 
1500 and keeps slowly ascendant after it. Meanwhile, the 
training time using 150 segments and testing time of 150 
segments (Fig. 6b and Fig. 6c) were increased linearly with 
the growth of the number. 2500 was chosen as the number of 
hidden neurons when accuracy and time were taken into 
account. 

 
Fig. 6. Testing accuracy, training time  and testing time against number of 

hidden neurons, from 200 to 4000 with the step of 10. All the data 
were averagely calculated over 30runs. Red bold lines show the 
average values over all subjects. 

E. Single channel-Single trial P300 Detection 
After setting all the parameters, the processing of ELM 

based single channel-single trail detection was confirmed. 
The schema is summarized in Fig. 7. The results of the 
proposed detection method are shown in the next section. 

BPNN and SVM were used to evaluate the performance 
of ELM. Before performance comparison, the parameters of 
BPNN and SVM were pre-estimated to achieve their best 
generalization performance. The testing accuracy of BPNN 
increased slightly when more hidden neurons were used, but 
this also requires two or three orders of magnitude more 
training time. Five was chosen as the number of hidden 
neurons in BPNN. Linear kernel, Gaussian kernel, Multilayer 
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Perceptron kernel and polynomial kernel were test for SVM. 
The order 3 polynomial kernel showed the best results. 

 

Fig. 7. The schematic diagram of the whole method 

IV. RESULTS 
The performance of the method proposed in this paper to 

detect single trial P300 using just one recording channel was 
evaluated by the testing accuracy. The testing accuracy and 
model training time for each subject using different 
classification method are listed in Table II. “NH” stands for 
number of hidden nodes and polynomial is the kernel 
function used in SVM. The numbers attached after the 
accuracy are standard deviations between different runs 
whereas the average’s standard deviations were computed 
between different subjects. Testing time is not listed because 
the limited space and all testing parts were done very 
quickly. Fig. 8 depicts the comparison of accuracies. 

TABLE II.  TESTNG ACCURACY (%) AND TRAINING TIME (S) 

Subjects 
ELM BP SVM 

HN=2500 HN=5 ‘polynomial’ 

1 84.11±2.00 
(0.0876s) 

79.67±3.36 
(1.2269s) 

84.07±1.70 
(0.0286s) 

2 93.29±1.59 
(0.0822s) 

86.49±4.35 
(1.2598s) 

90.22±1.73 
(0.0194s) 

3 91.18±1.88 
(0.0900s) 

84.71±4.22 
(1.3096S) 

86.24±2.08 
(0.0222s) 

4 83.91±2.62 
(0.0845s) 

79.76±5.89 
(1.1682s) 

79.82±3.08 
(0.0416s) 

5 84.87±1.65 
(0.0884s) 

79.00±3.81 
(1.1615s) 

82.67±1.89 
(0.0283s) 

6 88.69±1.71 
(0.0870s) 

82.71±3.04 
(1.2643s) 

84.60±1.74 
(0.0272s) 

7 78.53±2.40 
(0.0870s) 

72.27±8.30 
(1.1745s) 

80.16±2.02 
(0.0326s) 

8 81.16±2.37 
(0.0880s) 

75.49±5.36 
(1.1808s) 

80.16±2.23 
(0.0260s) 

Average 85.72±4.68 
(0.0869s) 

80.01±4.37 
(1.2182s) 

83.52±3.34 
(0.0282s) 

The experiment results show that extreme learning 
machine successfully detects P300 component using single 
channel (O1) EEG, and achieve an average accuracy above 
85%. Two subjects’ testing accuracy using ELM exceeded 
90%.  

ELM with 2500 hidden neurons performed 5% better 
than BPNN and using only 7% training time of BPNN to 
train its classifier model. When the number of hidden 
neurons in ELM was set as 700, ELM reached similar 
accuracy to SVM and cost same time in training processing. 
It cost more time to train ELM with 2500 hidden neurons 
than SVM, but ELM performed 2% more accuracy in 
average.  

V. CONCLUSIONS 
In this paper, we study using only one channel to record 

signals effectively and use extreme learning machines to 
detect the single trail P300 using just single recording 
channel. The results showed that this method can efficiently 
detect the P300 component and performs better than BPNN 
and SVM. 

 
Fig. 8. Comparison of different classification method. The standard 

deviations between different runs were showed on the top of the bars 
of 8 subjects. However, the average accuracies were calculated over 
all 8 subjects and three standard deviations were computed between 
different subjects. 
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